| 1 | edhill | 1.1 | clear path | 
| 2 |  |  |  | 
| 3 |  |  | global Nx Ny Nz | 
| 4 |  |  | global lat long dz dm mdep | 
| 5 |  |  | global delt_su su_its t_su delt | 
| 6 |  |  | global descriptor this_path | 
| 7 |  |  | global f deltaf Q beta r_expt r_heat H | 
| 8 |  |  | global time rots it | 
| 9 |  |  | global g Cp rho_bar alpha | 
| 10 |  |  | global u v t w | 
| 11 |  |  | global iterations | 
| 12 |  |  |  | 
| 13 |  |  |  | 
| 14 |  |  | param_file_name =   ... | 
| 15 |  |  | input(' Please enter the name of the m-file with the parameters for this run : ','s') ; | 
| 16 |  |  | feval(param_file_name) ; | 
| 17 |  |  |  | 
| 18 |  |  | % iterations | 
| 19 |  |  |  | 
| 20 |  |  | itstart = input(' Please enter start iteration : ','s') | 
| 21 |  |  | itend = input(' Please enter end iteration : ','s') | 
| 22 |  |  |  | 
| 23 |  |  |  | 
| 24 |  |  | sizeit=size(iterations); | 
| 25 |  |  | for i=1:sizeit(1) | 
| 26 |  |  | iter(i)=eval(iterations(i,1:10)); | 
| 27 |  |  | end | 
| 28 |  |  | nitstart=find(iter==eval(itstart)) | 
| 29 |  |  | nitend=find(iter==eval(itend)) | 
| 30 |  |  |  | 
| 31 |  |  | path   = this_path | 
| 32 |  |  | cmdstr=['cd ' path ]; | 
| 33 |  |  | eval(cmdstr); | 
| 34 |  |  | path=pwd | 
| 35 |  |  |  | 
| 36 |  |  | sumtheta=zeros(Nx,Ny,Nz); | 
| 37 |  |  | sumu=zeros(Nx,Ny,Nz); | 
| 38 |  |  | sumv=zeros(Nx,Ny,Nz); | 
| 39 |  |  | sumw=zeros(Nx,Ny,Nz); | 
| 40 |  |  | counter=0; | 
| 41 |  |  |  | 
| 42 |  |  | for i=nitstart:nitend | 
| 43 |  |  | tfilename=(['T.' iterations((i),1:10) ]) ; | 
| 44 |  |  | t=rdmds(tfilename,'b'); | 
| 45 |  |  |  | 
| 46 |  |  | ufilename=(['U.' iterations((i),1:10) ]) ; | 
| 47 |  |  | u=rdmds(ufilename,'b'); | 
| 48 |  |  |  | 
| 49 |  |  | vfilename=(['V.' iterations((i),1:10) ]) ; | 
| 50 |  |  | v=rdmds(vfilename,'b'); | 
| 51 |  |  |  | 
| 52 |  |  | wfilename=(['W.' iterations((i),1:10) ]) ; | 
| 53 |  |  | w=rdmds(wfilename,'b'); | 
| 54 |  |  |  | 
| 55 |  |  | sumtheta=sumtheta+t; | 
| 56 |  |  | sumu=sumu+u; | 
| 57 |  |  | sumv=sumv+v; | 
| 58 |  |  | sumw=sumw+w; | 
| 59 |  |  | counter=counter+1; | 
| 60 |  |  | end | 
| 61 |  |  |  | 
| 62 |  |  | meantheta=sumtheta/counter; | 
| 63 |  |  | meanu=sumu/counter; | 
| 64 |  |  | meanv=sumv/counter; | 
| 65 |  |  | meanw=sumw/counter; | 
| 66 |  |  |  | 
| 67 |  |  | sumut=zeros(Nx,Ny,Nz); | 
| 68 |  |  | sumvt=zeros(Nx,Ny,Nz); | 
| 69 |  |  | sumwt=zeros(Nx,Ny,Nz); | 
| 70 |  |  |  | 
| 71 |  |  | sumuu=zeros(Nx,Ny,Nz); | 
| 72 |  |  | sumvu=zeros(Nx,Ny,Nz); | 
| 73 |  |  | sumwu=zeros(Nx,Ny,Nz); | 
| 74 |  |  | sumvv=zeros(Nx,Ny,Nz); | 
| 75 |  |  | sumwv=zeros(Nx,Ny,Nz); | 
| 76 |  |  |  | 
| 77 |  |  | meanu=smooth3(meanu); | 
| 78 |  |  | meanv=smooth3(meanv); | 
| 79 |  |  | meanw=smooth3(meanw); | 
| 80 |  |  | meantheta=smooth3(meantheta); | 
| 81 |  |  |  | 
| 82 |  |  | for i=nitstart:nitend | 
| 83 |  |  | i | 
| 84 |  |  | tfilename=(['T.' iterations((i),1:10) ]) ; | 
| 85 |  |  | t=rdmds(tfilename,'b'); | 
| 86 |  |  |  | 
| 87 |  |  | ufilename=(['U.' iterations((i),1:10) ]) ; | 
| 88 |  |  | u=rdmds(ufilename,'b'); | 
| 89 |  |  |  | 
| 90 |  |  | vfilename=(['V.' iterations((i),1:10) ]) ; | 
| 91 |  |  | v=rdmds(vfilename,'b'); | 
| 92 |  |  |  | 
| 93 |  |  | wfilename=(['W.' iterations((i),1:10) ]) ; | 
| 94 |  |  | w=rdmds(wfilename,'b'); | 
| 95 |  |  |  | 
| 96 |  |  | t=t-meantheta; | 
| 97 |  |  | u=u-meanu; | 
| 98 |  |  | v=v-meanv; | 
| 99 |  |  | w=w-meanw; | 
| 100 |  |  |  | 
| 101 |  |  | sumut=sumut+u.*t; | 
| 102 |  |  | sumvt=sumvt+v.*t; | 
| 103 |  |  | sumwt=sumwt+w.*t; | 
| 104 |  |  |  | 
| 105 |  |  | sumuu=sumuu+u.*u; | 
| 106 |  |  | sumvu=sumvu+v.*u; | 
| 107 |  |  | sumwu=sumwu+w.*u; | 
| 108 |  |  | sumvv=sumvv+v.*v; | 
| 109 |  |  | sumwv=sumwv+w.*v; | 
| 110 |  |  | end | 
| 111 |  |  |  | 
| 112 |  |  | sumut=sumut/counter; | 
| 113 |  |  | sumvt=sumvt/counter; | 
| 114 |  |  | sumwt=sumwt/counter; | 
| 115 |  |  |  | 
| 116 |  |  | sumuu=sumuu/counter; | 
| 117 |  |  | sumvu=sumvu/counter; | 
| 118 |  |  | sumwu=sumwu/counter; | 
| 119 |  |  | sumvv=sumvv/counter; | 
| 120 |  |  | sumwv=sumwv/counter; | 
| 121 |  |  |  | 
| 122 |  |  | Mu=zeros(Nx,Ny,Nz); | 
| 123 |  |  | Mv=zeros(Nx,Ny,Nz); | 
| 124 |  |  | Nu=zeros(Nx,Ny,Nz); | 
| 125 |  |  | Nv=zeros(Nx,Ny,Nz); | 
| 126 |  |  | D=zeros(Nx,Ny,Nz); | 
| 127 |  |  |  | 
| 128 |  |  | dx=dm; | 
| 129 |  |  | dy=dm; | 
| 130 |  |  | dz=-dz; | 
| 131 |  |  |  | 
| 132 |  |  | Mu(2:Nx-1,2:Ny-1,2:Nz-1)=-(sumuu(3:Nx,2:Ny-1,2:Nz-1)-sumuu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... | 
| 133 |  |  | -(sumvu(2:Nx-1,3:Ny,2:Nz-1)-sumvu(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... | 
| 134 |  |  | -(sumwu(2:Nx-1,2:Ny-1,3:Nz)-sumwu(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); | 
| 135 |  |  |  | 
| 136 |  |  | Mv(2:Nx-1,2:Ny-1,2:Nz-1)=-(sumvu(3:Nx,2:Ny-1,2:Nz-1)-sumvu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... | 
| 137 |  |  | -(sumvv(2:Nx-1,3:Ny,2:Nz-1)-sumvv(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... | 
| 138 |  |  | -(sumwv(2:Nx-1,2:Ny-1,3:Nz)-sumwv(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); | 
| 139 |  |  |  | 
| 140 |  |  | Nu(2:Nx-1,2:Ny-1,2:Nz-1)=-(meanu(3:Nx,2:Ny-1,2:Nz-1).*meanu(3:Nx,2:Ny-1,2:Nz-1) ... | 
| 141 |  |  | -meanu(1:Nx-2,2:Ny-1,2:Nz-1).*meanu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... | 
| 142 |  |  | -(meanv(2:Nx-1,3:Ny,2:Nz-1).*meanu(2:Nx-1,3:Ny,2:Nz-1) ... | 
| 143 |  |  | -meanv(2:Nx-1,1:Ny-2,2:Nz-1).*meanu(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... | 
| 144 |  |  | -(meanw(2:Nx-1,2:Ny-1,3:Nz).*meanu(2:Nx-1,2:Ny-1,3:Nz) ... | 
| 145 |  |  | -meanw(2:Nx-1,2:Ny-1,1:Nz-2).*meanu(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); | 
| 146 |  |  |  | 
| 147 |  |  | Nv(2:Nx-1,2:Ny-1,2:Nz-1)=-(meanv(3:Nx,2:Ny-1,2:Nz-1).*meanu(3:Nx,2:Ny-1,2:Nz-1) ... | 
| 148 |  |  | -meanv(1:Nx-2,2:Ny-1,2:Nz-1).*meanu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... | 
| 149 |  |  | -(meanv(2:Nx-1,3:Ny,2:Nz-1).*meanv(2:Nx-1,3:Ny,2:Nz-1) ... | 
| 150 |  |  | -meanv(2:Nx-1,1:Ny-2,2:Nz-1).*meanv(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... | 
| 151 |  |  | -(meanw(2:Nx-1,2:Ny-1,3:Nz).*meanv(2:Nx-1,2:Ny-1,3:Nz) ... | 
| 152 |  |  | -meanw(2:Nx-1,2:Ny-1,1:Nz-2).*meanv(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); | 
| 153 |  |  |  | 
| 154 |  |  | D(2:Nx-1,2:Ny-1,2:Nz-1)=-(sumut(3:Nx,2:Ny-1,2:Nz-1)-sumut(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... | 
| 155 |  |  | -(sumvt(2:Nx-1,3:Ny,2:Nz-1)-sumvt(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... | 
| 156 |  |  | -(sumwt(2:Nx-1,2:Ny-1,3:Nz)-sumwt(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); | 
| 157 |  |  |  | 
| 158 |  |  | pv=zeros(Nx,Ny,Nz); | 
| 159 |  |  | ff=zeros(Nx,Ny,Nz); | 
| 160 |  |  |  | 
| 161 |  |  |  | 
| 162 |  |  | for j=1:Ny | 
| 163 |  |  | ff(:,j,:)=f+(j-1)*dy*beta; | 
| 164 |  |  | end | 
| 165 |  |  |  | 
| 166 |  |  | pv(2:Nx-1,2:Ny-1,2:Nz-1)=(ff(2:Nx-1,2:Ny-1,2:Nz-1)) ... | 
| 167 |  |  | .*(meantheta(2:Nx-1,2:Ny-1,3:Nz)-meantheta(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); | 
| 168 |  |  |  | 
| 169 |  |  | Mp=zeros(Nx,Ny,Nz); | 
| 170 |  |  | Np=zeros(Nx,Ny,Nz); | 
| 171 |  |  | Dp=zeros(Nx,Ny,Nz); | 
| 172 |  |  |  | 
| 173 |  |  | Mp(3:Nx-2,3:Ny-2,3:Nz-2)=((Mv(4:Nx-1,3:Ny-2,3:Nz-2)-Mv(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx)-  ... | 
| 174 |  |  | (Mu(3:Nx-2,4:Ny-1,3:Nz-2)-Mu(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy)).* ... | 
| 175 |  |  | (meantheta(3:Nx-2,3:Ny-2,4:Nz-1)-meantheta(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz) ... | 
| 176 |  |  | -(Mv(3:Nx-2,3:Ny-2,4:Nz-1)-Mv(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... | 
| 177 |  |  | (meantheta(4:Nx-1,3:Ny-2,3:Nz-2)-meantheta(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx) ... | 
| 178 |  |  | +(Mu(3:Nx-2,3:Ny-2,4:Nz-1)-Mu(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... | 
| 179 |  |  | (meantheta(3:Nx-2,4:Ny-1,3:Nz-2)-meantheta(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy); | 
| 180 |  |  |  | 
| 181 |  |  | Dp(3:Nx-2,3:Ny-2,3:Nz-2)=(D(3:Nx-2,3:Ny-2,4:Nz-1)-D(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... | 
| 182 |  |  | ff(3:Nx-2,3:Ny-2,3:Nz-2); | 
| 183 |  |  |  | 
| 184 |  |  | Np(3:Nx-2,3:Ny-2,3:Nz-2)=((Nv(4:Nx-1,3:Ny-2,3:Nz-2)-Nv(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx)-  ... | 
| 185 |  |  | (Nu(3:Nx-2,4:Ny-1,3:Nz-2)-Nu(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy)).* ... | 
| 186 |  |  | (meantheta(3:Nx-2,3:Ny-2,4:Nz-1)-meantheta(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz) ... | 
| 187 |  |  | -(Nv(3:Nx-2,3:Ny-2,4:Nz-1)-Nv(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... | 
| 188 |  |  | (meantheta(4:Nx-1,3:Ny-2,3:Nz-2)-meantheta(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx) ... | 
| 189 |  |  | +(Nu(3:Nx-2,3:Ny-2,4:Nz-1)-Nu(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... | 
| 190 |  |  | (meantheta(3:Nx-2,4:Ny-1,3:Nz-2)-meantheta(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy); | 
| 191 |  |  |  | 
| 192 |  |  | sumM=zeros(Nx,Ny); | 
| 193 |  |  | sumN=zeros(Nx,Ny); | 
| 194 |  |  | sumD=zeros(Nx,Ny); | 
| 195 |  |  | sumW=zeros(Nx,Ny); | 
| 196 |  |  |  | 
| 197 |  |  | dz=-dz; | 
| 198 |  |  |  | 
| 199 |  |  | % DEFINE BOX OF INTEGRATION | 
| 200 |  |  | Nx1=3; | 
| 201 |  |  | Nx2=Nx-2; | 
| 202 |  |  | Ny1=3; | 
| 203 |  |  | Ny2=Ny-2; | 
| 204 |  |  | Nz1=5; | 
| 205 |  |  | Nz2=Nz-4; | 
| 206 |  |  |  | 
| 207 |  |  |  | 
| 208 |  |  | for k=Nz1:Nz2 | 
| 209 |  |  | sumM(3:Nx-2,3:Ny-2)=sumM(3:Nx-2,3:Ny-2)+Mp(3:Nx-2,3:Ny-2,k).*pv(3:Nx-2,3:Ny-2,k)*dz; | 
| 210 |  |  | sumN(3:Nx-2,3:Ny-2)=sumN(3:Nx-2,3:Ny-2)+Np(3:Nx-2,3:Ny-2,k).*pv(3:Nx-2,3:Ny-2,k)*dz; | 
| 211 |  |  | sumD(3:Nx-2,3:Ny-2)=sumD(3:Nx-2,3:Ny-2)+Dp(3:Nx-2,3:Ny-2,k).*pv(3:Nx-2,3:Ny-2,k)*dz; | 
| 212 |  |  | end | 
| 213 |  |  | sumW(3:Nx-2,3:Ny-2)=0.5*meanw(3:Nx-2,3:Ny-2,Nz1).*pv(3:Nx-2,3:Ny-2,Nz1).*pv(3:Nx-2,3:Ny-2,Nz1); | 
| 214 |  |  |  | 
| 215 |  |  | %contourf(sumM',20);colorbar; | 
| 216 |  |  | %figure | 
| 217 |  |  | %contourf(sumD',20);colorbar; | 
| 218 |  |  |  | 
| 219 |  |  | V=[-10 10]; | 
| 220 |  |  | title='Vorticity input'; | 
| 221 |  |  | imagesc(lat,long,sumW(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); | 
| 222 |  |  | set(gca,'ydir','norm') | 
| 223 |  |  | text(0,110,title); | 
| 224 |  |  | figure | 
| 225 |  |  | title='Buoyancy diffusion integral'; | 
| 226 |  |  | imagesc(lat,long,sumD(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); | 
| 227 |  |  | set(gca,'ydir','norm') | 
| 228 |  |  | text(0,110,title); | 
| 229 |  |  | figure | 
| 230 |  |  | title='Non-linear terms integral'; | 
| 231 |  |  | imagesc(lat,long,sumN(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); | 
| 232 |  |  | set(gca,'ydir','norm') | 
| 233 |  |  | text(0,110,title); | 
| 234 |  |  | figure | 
| 235 |  |  | title='Momentum diffusion integral'; | 
| 236 |  |  | imagesc(lat,long,sumM(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); | 
| 237 |  |  | set(gca,'ydir','norm') | 
| 238 |  |  | text(0,110,title); | 
| 239 |  |  |  | 
| 240 |  |  |  | 
| 241 |  |  | %-----TEST------------------------------------------------- | 
| 242 |  |  |  | 
| 243 |  |  | sum=0; | 
| 244 |  |  | sumT=0; | 
| 245 |  |  | for i=Nx1:Nx2 | 
| 246 |  |  | for j=Ny1:Ny2 | 
| 247 |  |  | sum=sum+0.5*meanw(i,j,Nz1)*pv(i,j,Nz1)*pv(i,j,Nz1)*dx*dy; | 
| 248 |  |  | sumT=sum-0.5*meanw(i,j,Nz2)*pv(i,j,Nz2)*pv(i,j,Nz2)*dx*dy; | 
| 249 |  |  | end | 
| 250 |  |  | end | 
| 251 |  |  |  | 
| 252 |  |  | for j=Ny1:Ny2 | 
| 253 |  |  | for k=Nz1:Nz2 | 
| 254 |  |  | sumT=sumT+0.5*meanu(Nx2,j,k)*pv(Nx2,j,k)*pv(Nx2,j,k)*dz*dy; | 
| 255 |  |  | sumT=sumT-0.5*meanu(Nx1,j,k)*pv(Nx1,j,k)*pv(Nx1,j,k)*dz*dy; | 
| 256 |  |  | end | 
| 257 |  |  | end | 
| 258 |  |  |  | 
| 259 |  |  | for i=Nx1:Nx2 | 
| 260 |  |  | for k=Nz1:Nz2 | 
| 261 |  |  | sumT=sumT+0.5*meanv(i,Ny2,k)*pv(i,Ny2,k)*pv(i,Ny2,k)*dz*dx; | 
| 262 |  |  | sumT=sumT-0.5*meanv(i,Ny1,k)*pv(i,Ny1,k)*pv(i,Ny1,k)*dz*dx; | 
| 263 |  |  | end | 
| 264 |  |  | end | 
| 265 |  |  | 'VORTICITY GENERATION' | 
| 266 |  |  | sum | 
| 267 |  |  | sumT | 
| 268 |  |  |  | 
| 269 |  |  |  | 
| 270 |  |  | sum=0; | 
| 271 |  |  | for i=Nx1:Nx2 | 
| 272 |  |  | for j=Ny1:Ny2 | 
| 273 |  |  | sum=sum+sumD(i,j)*dx*dy; | 
| 274 |  |  | end | 
| 275 |  |  | end | 
| 276 |  |  | 'DISSIPATION BY EDDY-DIFFUSIVITY' | 
| 277 |  |  | sum | 
| 278 |  |  |  | 
| 279 |  |  | sum=0; | 
| 280 |  |  | for i=Nx1:Nx2 | 
| 281 |  |  | for j=Ny1:Ny2 | 
| 282 |  |  | sum=sum+sumM(i,j)*dx*dy; | 
| 283 |  |  | end | 
| 284 |  |  | end | 
| 285 |  |  | 'DISSIPATION BY EDDY-VISCOSITY' | 
| 286 |  |  | sum | 
| 287 |  |  |  | 
| 288 |  |  | sum=0; | 
| 289 |  |  | for i=Nx1:Nx2 | 
| 290 |  |  | for j=Ny1:Ny2 | 
| 291 |  |  | sum=sum+sumN(i,j)*dx*dy; | 
| 292 |  |  | end | 
| 293 |  |  | end | 
| 294 |  |  | 'NONLINEARITY' | 
| 295 |  |  | sum |