| 1 |
edhill |
1.1 |
clear path |
| 2 |
|
|
|
| 3 |
|
|
global Nx Ny Nz |
| 4 |
|
|
global lat long dz dm mdep |
| 5 |
|
|
global delt_su su_its t_su delt |
| 6 |
|
|
global descriptor this_path |
| 7 |
|
|
global f deltaf Q beta r_expt r_heat H |
| 8 |
|
|
global time rots it |
| 9 |
|
|
global g Cp rho_bar alpha |
| 10 |
|
|
global u v t w |
| 11 |
|
|
global iterations |
| 12 |
|
|
|
| 13 |
|
|
|
| 14 |
|
|
param_file_name = ... |
| 15 |
|
|
input(' Please enter the name of the m-file with the parameters for this run : ','s') ; |
| 16 |
|
|
feval(param_file_name) ; |
| 17 |
|
|
|
| 18 |
|
|
% iterations |
| 19 |
|
|
|
| 20 |
|
|
itstart = input(' Please enter start iteration : ','s') |
| 21 |
|
|
itend = input(' Please enter end iteration : ','s') |
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
sizeit=size(iterations); |
| 25 |
|
|
for i=1:sizeit(1) |
| 26 |
|
|
iter(i)=eval(iterations(i,1:10)); |
| 27 |
|
|
end |
| 28 |
|
|
nitstart=find(iter==eval(itstart)) |
| 29 |
|
|
nitend=find(iter==eval(itend)) |
| 30 |
|
|
|
| 31 |
|
|
path = this_path |
| 32 |
|
|
cmdstr=['cd ' path ]; |
| 33 |
|
|
eval(cmdstr); |
| 34 |
|
|
path=pwd |
| 35 |
|
|
|
| 36 |
|
|
sumtheta=zeros(Nx,Ny,Nz); |
| 37 |
|
|
sumu=zeros(Nx,Ny,Nz); |
| 38 |
|
|
sumv=zeros(Nx,Ny,Nz); |
| 39 |
|
|
sumw=zeros(Nx,Ny,Nz); |
| 40 |
|
|
counter=0; |
| 41 |
|
|
|
| 42 |
|
|
for i=nitstart:nitend |
| 43 |
|
|
tfilename=(['T.' iterations((i),1:10) ]) ; |
| 44 |
|
|
t=rdmds(tfilename,'b'); |
| 45 |
|
|
|
| 46 |
|
|
ufilename=(['U.' iterations((i),1:10) ]) ; |
| 47 |
|
|
u=rdmds(ufilename,'b'); |
| 48 |
|
|
|
| 49 |
|
|
vfilename=(['V.' iterations((i),1:10) ]) ; |
| 50 |
|
|
v=rdmds(vfilename,'b'); |
| 51 |
|
|
|
| 52 |
|
|
wfilename=(['W.' iterations((i),1:10) ]) ; |
| 53 |
|
|
w=rdmds(wfilename,'b'); |
| 54 |
|
|
|
| 55 |
|
|
sumtheta=sumtheta+t; |
| 56 |
|
|
sumu=sumu+u; |
| 57 |
|
|
sumv=sumv+v; |
| 58 |
|
|
sumw=sumw+w; |
| 59 |
|
|
counter=counter+1; |
| 60 |
|
|
end |
| 61 |
|
|
|
| 62 |
|
|
meantheta=sumtheta/counter; |
| 63 |
|
|
meanu=sumu/counter; |
| 64 |
|
|
meanv=sumv/counter; |
| 65 |
|
|
meanw=sumw/counter; |
| 66 |
|
|
|
| 67 |
|
|
sumut=zeros(Nx,Ny,Nz); |
| 68 |
|
|
sumvt=zeros(Nx,Ny,Nz); |
| 69 |
|
|
sumwt=zeros(Nx,Ny,Nz); |
| 70 |
|
|
|
| 71 |
|
|
sumuu=zeros(Nx,Ny,Nz); |
| 72 |
|
|
sumvu=zeros(Nx,Ny,Nz); |
| 73 |
|
|
sumwu=zeros(Nx,Ny,Nz); |
| 74 |
|
|
sumvv=zeros(Nx,Ny,Nz); |
| 75 |
|
|
sumwv=zeros(Nx,Ny,Nz); |
| 76 |
|
|
|
| 77 |
|
|
meanu=smooth3(meanu); |
| 78 |
|
|
meanv=smooth3(meanv); |
| 79 |
|
|
meanw=smooth3(meanw); |
| 80 |
|
|
meantheta=smooth3(meantheta); |
| 81 |
|
|
|
| 82 |
|
|
for i=nitstart:nitend |
| 83 |
|
|
i |
| 84 |
|
|
tfilename=(['T.' iterations((i),1:10) ]) ; |
| 85 |
|
|
t=rdmds(tfilename,'b'); |
| 86 |
|
|
|
| 87 |
|
|
ufilename=(['U.' iterations((i),1:10) ]) ; |
| 88 |
|
|
u=rdmds(ufilename,'b'); |
| 89 |
|
|
|
| 90 |
|
|
vfilename=(['V.' iterations((i),1:10) ]) ; |
| 91 |
|
|
v=rdmds(vfilename,'b'); |
| 92 |
|
|
|
| 93 |
|
|
wfilename=(['W.' iterations((i),1:10) ]) ; |
| 94 |
|
|
w=rdmds(wfilename,'b'); |
| 95 |
|
|
|
| 96 |
|
|
t=t-meantheta; |
| 97 |
|
|
u=u-meanu; |
| 98 |
|
|
v=v-meanv; |
| 99 |
|
|
w=w-meanw; |
| 100 |
|
|
|
| 101 |
|
|
sumut=sumut+u.*t; |
| 102 |
|
|
sumvt=sumvt+v.*t; |
| 103 |
|
|
sumwt=sumwt+w.*t; |
| 104 |
|
|
|
| 105 |
|
|
sumuu=sumuu+u.*u; |
| 106 |
|
|
sumvu=sumvu+v.*u; |
| 107 |
|
|
sumwu=sumwu+w.*u; |
| 108 |
|
|
sumvv=sumvv+v.*v; |
| 109 |
|
|
sumwv=sumwv+w.*v; |
| 110 |
|
|
end |
| 111 |
|
|
|
| 112 |
|
|
sumut=sumut/counter; |
| 113 |
|
|
sumvt=sumvt/counter; |
| 114 |
|
|
sumwt=sumwt/counter; |
| 115 |
|
|
|
| 116 |
|
|
sumuu=sumuu/counter; |
| 117 |
|
|
sumvu=sumvu/counter; |
| 118 |
|
|
sumwu=sumwu/counter; |
| 119 |
|
|
sumvv=sumvv/counter; |
| 120 |
|
|
sumwv=sumwv/counter; |
| 121 |
|
|
|
| 122 |
|
|
Mu=zeros(Nx,Ny,Nz); |
| 123 |
|
|
Mv=zeros(Nx,Ny,Nz); |
| 124 |
|
|
Nu=zeros(Nx,Ny,Nz); |
| 125 |
|
|
Nv=zeros(Nx,Ny,Nz); |
| 126 |
|
|
D=zeros(Nx,Ny,Nz); |
| 127 |
|
|
|
| 128 |
|
|
dx=dm; |
| 129 |
|
|
dy=dm; |
| 130 |
|
|
dz=-dz; |
| 131 |
|
|
|
| 132 |
|
|
Mu(2:Nx-1,2:Ny-1,2:Nz-1)=-(sumuu(3:Nx,2:Ny-1,2:Nz-1)-sumuu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
| 133 |
|
|
-(sumvu(2:Nx-1,3:Ny,2:Nz-1)-sumvu(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
| 134 |
|
|
-(sumwu(2:Nx-1,2:Ny-1,3:Nz)-sumwu(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
| 135 |
|
|
|
| 136 |
|
|
Mv(2:Nx-1,2:Ny-1,2:Nz-1)=-(sumvu(3:Nx,2:Ny-1,2:Nz-1)-sumvu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
| 137 |
|
|
-(sumvv(2:Nx-1,3:Ny,2:Nz-1)-sumvv(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
| 138 |
|
|
-(sumwv(2:Nx-1,2:Ny-1,3:Nz)-sumwv(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
| 139 |
|
|
|
| 140 |
|
|
Nu(2:Nx-1,2:Ny-1,2:Nz-1)=-(meanu(3:Nx,2:Ny-1,2:Nz-1).*meanu(3:Nx,2:Ny-1,2:Nz-1) ... |
| 141 |
|
|
-meanu(1:Nx-2,2:Ny-1,2:Nz-1).*meanu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
| 142 |
|
|
-(meanv(2:Nx-1,3:Ny,2:Nz-1).*meanu(2:Nx-1,3:Ny,2:Nz-1) ... |
| 143 |
|
|
-meanv(2:Nx-1,1:Ny-2,2:Nz-1).*meanu(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
| 144 |
|
|
-(meanw(2:Nx-1,2:Ny-1,3:Nz).*meanu(2:Nx-1,2:Ny-1,3:Nz) ... |
| 145 |
|
|
-meanw(2:Nx-1,2:Ny-1,1:Nz-2).*meanu(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
| 146 |
|
|
|
| 147 |
|
|
Nv(2:Nx-1,2:Ny-1,2:Nz-1)=-(meanv(3:Nx,2:Ny-1,2:Nz-1).*meanu(3:Nx,2:Ny-1,2:Nz-1) ... |
| 148 |
|
|
-meanv(1:Nx-2,2:Ny-1,2:Nz-1).*meanu(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
| 149 |
|
|
-(meanv(2:Nx-1,3:Ny,2:Nz-1).*meanv(2:Nx-1,3:Ny,2:Nz-1) ... |
| 150 |
|
|
-meanv(2:Nx-1,1:Ny-2,2:Nz-1).*meanv(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
| 151 |
|
|
-(meanw(2:Nx-1,2:Ny-1,3:Nz).*meanv(2:Nx-1,2:Ny-1,3:Nz) ... |
| 152 |
|
|
-meanw(2:Nx-1,2:Ny-1,1:Nz-2).*meanv(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
| 153 |
|
|
|
| 154 |
|
|
D(2:Nx-1,2:Ny-1,2:Nz-1)=-(sumut(3:Nx,2:Ny-1,2:Nz-1)-sumut(1:Nx-2,2:Ny-1,2:Nz-1))/(2*dx) ... |
| 155 |
|
|
-(sumvt(2:Nx-1,3:Ny,2:Nz-1)-sumvt(2:Nx-1,1:Ny-2,2:Nz-1))/(2*dy) ... |
| 156 |
|
|
-(sumwt(2:Nx-1,2:Ny-1,3:Nz)-sumwt(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
| 157 |
|
|
|
| 158 |
|
|
pv=zeros(Nx,Ny,Nz); |
| 159 |
|
|
ff=zeros(Nx,Ny,Nz); |
| 160 |
|
|
|
| 161 |
|
|
|
| 162 |
|
|
for j=1:Ny |
| 163 |
|
|
ff(:,j,:)=f+(j-1)*dy*beta; |
| 164 |
|
|
end |
| 165 |
|
|
|
| 166 |
|
|
pv(2:Nx-1,2:Ny-1,2:Nz-1)=(ff(2:Nx-1,2:Ny-1,2:Nz-1)) ... |
| 167 |
|
|
.*(meantheta(2:Nx-1,2:Ny-1,3:Nz)-meantheta(2:Nx-1,2:Ny-1,1:Nz-2))/(2*dz); |
| 168 |
|
|
|
| 169 |
|
|
Mp=zeros(Nx,Ny,Nz); |
| 170 |
|
|
Np=zeros(Nx,Ny,Nz); |
| 171 |
|
|
Dp=zeros(Nx,Ny,Nz); |
| 172 |
|
|
|
| 173 |
|
|
Mp(3:Nx-2,3:Ny-2,3:Nz-2)=((Mv(4:Nx-1,3:Ny-2,3:Nz-2)-Mv(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx)- ... |
| 174 |
|
|
(Mu(3:Nx-2,4:Ny-1,3:Nz-2)-Mu(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy)).* ... |
| 175 |
|
|
(meantheta(3:Nx-2,3:Ny-2,4:Nz-1)-meantheta(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz) ... |
| 176 |
|
|
-(Mv(3:Nx-2,3:Ny-2,4:Nz-1)-Mv(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
| 177 |
|
|
(meantheta(4:Nx-1,3:Ny-2,3:Nz-2)-meantheta(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx) ... |
| 178 |
|
|
+(Mu(3:Nx-2,3:Ny-2,4:Nz-1)-Mu(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
| 179 |
|
|
(meantheta(3:Nx-2,4:Ny-1,3:Nz-2)-meantheta(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy); |
| 180 |
|
|
|
| 181 |
|
|
Dp(3:Nx-2,3:Ny-2,3:Nz-2)=(D(3:Nx-2,3:Ny-2,4:Nz-1)-D(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
| 182 |
|
|
ff(3:Nx-2,3:Ny-2,3:Nz-2); |
| 183 |
|
|
|
| 184 |
|
|
Np(3:Nx-2,3:Ny-2,3:Nz-2)=((Nv(4:Nx-1,3:Ny-2,3:Nz-2)-Nv(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx)- ... |
| 185 |
|
|
(Nu(3:Nx-2,4:Ny-1,3:Nz-2)-Nu(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy)).* ... |
| 186 |
|
|
(meantheta(3:Nx-2,3:Ny-2,4:Nz-1)-meantheta(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz) ... |
| 187 |
|
|
-(Nv(3:Nx-2,3:Ny-2,4:Nz-1)-Nv(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
| 188 |
|
|
(meantheta(4:Nx-1,3:Ny-2,3:Nz-2)-meantheta(2:Nx-3,3:Ny-2,3:Nz-2))/(2*dx) ... |
| 189 |
|
|
+(Nu(3:Nx-2,3:Ny-2,4:Nz-1)-Nu(3:Nx-2,3:Ny-2,2:Nz-3))/(2*dz).* ... |
| 190 |
|
|
(meantheta(3:Nx-2,4:Ny-1,3:Nz-2)-meantheta(3:Nx-2,2:Ny-3,3:Nz-2))/(2*dy); |
| 191 |
|
|
|
| 192 |
|
|
sumM=zeros(Nx,Ny); |
| 193 |
|
|
sumN=zeros(Nx,Ny); |
| 194 |
|
|
sumD=zeros(Nx,Ny); |
| 195 |
|
|
sumW=zeros(Nx,Ny); |
| 196 |
|
|
|
| 197 |
|
|
dz=-dz; |
| 198 |
|
|
|
| 199 |
|
|
% DEFINE BOX OF INTEGRATION |
| 200 |
|
|
Nx1=3; |
| 201 |
|
|
Nx2=Nx-2; |
| 202 |
|
|
Ny1=3; |
| 203 |
|
|
Ny2=Ny-2; |
| 204 |
|
|
Nz1=5; |
| 205 |
|
|
Nz2=Nz-4; |
| 206 |
|
|
|
| 207 |
|
|
|
| 208 |
|
|
for k=Nz1:Nz2 |
| 209 |
|
|
sumM(3:Nx-2,3:Ny-2)=sumM(3:Nx-2,3:Ny-2)+Mp(3:Nx-2,3:Ny-2,k).*pv(3:Nx-2,3:Ny-2,k)*dz; |
| 210 |
|
|
sumN(3:Nx-2,3:Ny-2)=sumN(3:Nx-2,3:Ny-2)+Np(3:Nx-2,3:Ny-2,k).*pv(3:Nx-2,3:Ny-2,k)*dz; |
| 211 |
|
|
sumD(3:Nx-2,3:Ny-2)=sumD(3:Nx-2,3:Ny-2)+Dp(3:Nx-2,3:Ny-2,k).*pv(3:Nx-2,3:Ny-2,k)*dz; |
| 212 |
|
|
end |
| 213 |
|
|
sumW(3:Nx-2,3:Ny-2)=0.5*meanw(3:Nx-2,3:Ny-2,Nz1).*pv(3:Nx-2,3:Ny-2,Nz1).*pv(3:Nx-2,3:Ny-2,Nz1); |
| 214 |
|
|
|
| 215 |
|
|
%contourf(sumM',20);colorbar; |
| 216 |
|
|
%figure |
| 217 |
|
|
%contourf(sumD',20);colorbar; |
| 218 |
|
|
|
| 219 |
|
|
V=[-10 10]; |
| 220 |
|
|
title='Vorticity input'; |
| 221 |
|
|
imagesc(lat,long,sumW(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
| 222 |
|
|
set(gca,'ydir','norm') |
| 223 |
|
|
text(0,110,title); |
| 224 |
|
|
figure |
| 225 |
|
|
title='Buoyancy diffusion integral'; |
| 226 |
|
|
imagesc(lat,long,sumD(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
| 227 |
|
|
set(gca,'ydir','norm') |
| 228 |
|
|
text(0,110,title); |
| 229 |
|
|
figure |
| 230 |
|
|
title='Non-linear terms integral'; |
| 231 |
|
|
imagesc(lat,long,sumN(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
| 232 |
|
|
set(gca,'ydir','norm') |
| 233 |
|
|
text(0,110,title); |
| 234 |
|
|
figure |
| 235 |
|
|
title='Momentum diffusion integral'; |
| 236 |
|
|
imagesc(lat,long,sumM(Nx1:Nx2,Ny1:Ny2)');shading flat;axis image;colorbar('vertical'); |
| 237 |
|
|
set(gca,'ydir','norm') |
| 238 |
|
|
text(0,110,title); |
| 239 |
|
|
|
| 240 |
|
|
|
| 241 |
|
|
%-----TEST------------------------------------------------- |
| 242 |
|
|
|
| 243 |
|
|
sum=0; |
| 244 |
|
|
sumT=0; |
| 245 |
|
|
for i=Nx1:Nx2 |
| 246 |
|
|
for j=Ny1:Ny2 |
| 247 |
|
|
sum=sum+0.5*meanw(i,j,Nz1)*pv(i,j,Nz1)*pv(i,j,Nz1)*dx*dy; |
| 248 |
|
|
sumT=sum-0.5*meanw(i,j,Nz2)*pv(i,j,Nz2)*pv(i,j,Nz2)*dx*dy; |
| 249 |
|
|
end |
| 250 |
|
|
end |
| 251 |
|
|
|
| 252 |
|
|
for j=Ny1:Ny2 |
| 253 |
|
|
for k=Nz1:Nz2 |
| 254 |
|
|
sumT=sumT+0.5*meanu(Nx2,j,k)*pv(Nx2,j,k)*pv(Nx2,j,k)*dz*dy; |
| 255 |
|
|
sumT=sumT-0.5*meanu(Nx1,j,k)*pv(Nx1,j,k)*pv(Nx1,j,k)*dz*dy; |
| 256 |
|
|
end |
| 257 |
|
|
end |
| 258 |
|
|
|
| 259 |
|
|
for i=Nx1:Nx2 |
| 260 |
|
|
for k=Nz1:Nz2 |
| 261 |
|
|
sumT=sumT+0.5*meanv(i,Ny2,k)*pv(i,Ny2,k)*pv(i,Ny2,k)*dz*dx; |
| 262 |
|
|
sumT=sumT-0.5*meanv(i,Ny1,k)*pv(i,Ny1,k)*pv(i,Ny1,k)*dz*dx; |
| 263 |
|
|
end |
| 264 |
|
|
end |
| 265 |
|
|
'VORTICITY GENERATION' |
| 266 |
|
|
sum |
| 267 |
|
|
sumT |
| 268 |
|
|
|
| 269 |
|
|
|
| 270 |
|
|
sum=0; |
| 271 |
|
|
for i=Nx1:Nx2 |
| 272 |
|
|
for j=Ny1:Ny2 |
| 273 |
|
|
sum=sum+sumD(i,j)*dx*dy; |
| 274 |
|
|
end |
| 275 |
|
|
end |
| 276 |
|
|
'DISSIPATION BY EDDY-DIFFUSIVITY' |
| 277 |
|
|
sum |
| 278 |
|
|
|
| 279 |
|
|
sum=0; |
| 280 |
|
|
for i=Nx1:Nx2 |
| 281 |
|
|
for j=Ny1:Ny2 |
| 282 |
|
|
sum=sum+sumM(i,j)*dx*dy; |
| 283 |
|
|
end |
| 284 |
|
|
end |
| 285 |
|
|
'DISSIPATION BY EDDY-VISCOSITY' |
| 286 |
|
|
sum |
| 287 |
|
|
|
| 288 |
|
|
sum=0; |
| 289 |
|
|
for i=Nx1:Nx2 |
| 290 |
|
|
for j=Ny1:Ny2 |
| 291 |
|
|
sum=sum+sumN(i,j)*dx*dy; |
| 292 |
|
|
end |
| 293 |
|
|
end |
| 294 |
|
|
'NONLINEARITY' |
| 295 |
|
|
sum |