1 |
dgoldberg |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/shelfice/shelfice_thermodynamics.F,v 1.44 2015/02/15 15:46:24 jmc Exp $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SHELFICE_OPTIONS.h" |
5 |
|
|
#ifdef ALLOW_AUTODIFF |
6 |
|
|
# include "AUTODIFF_OPTIONS.h" |
7 |
|
|
#endif |
8 |
|
|
#ifdef ALLOW_CTRL |
9 |
|
|
# include "CTRL_OPTIONS.h" |
10 |
|
|
#endif |
11 |
|
|
|
12 |
|
|
CBOP |
13 |
|
|
C !ROUTINE: SHELFICE_THERMODYNAMICS |
14 |
|
|
C !INTERFACE: |
15 |
|
|
SUBROUTINE SHELFICE_REMESHING( |
16 |
|
|
I myTime, myIter, myThid ) |
17 |
|
|
C !DESCRIPTION: \bv |
18 |
|
|
C *=============================================================* |
19 |
|
|
C | S/R SHELFICE_THERMODYNAMICS |
20 |
|
|
C | o shelf-ice main routine. |
21 |
|
|
C | compute temperature and (virtual) salt flux at the |
22 |
|
|
C | shelf-ice ocean interface |
23 |
|
|
C | |
24 |
|
|
C | stresses at the ice/water interface are computed in separate |
25 |
|
|
C | routines that are called from mom_fluxform/mom_vecinv |
26 |
|
|
C *=============================================================* |
27 |
|
|
C \ev |
28 |
|
|
|
29 |
|
|
C !USES: |
30 |
|
|
IMPLICIT NONE |
31 |
|
|
|
32 |
|
|
C === Global variables === |
33 |
|
|
#include "SIZE.h" |
34 |
|
|
#include "EEPARAMS.h" |
35 |
|
|
#include "PARAMS.h" |
36 |
|
|
#include "GRID.h" |
37 |
|
|
#include "DYNVARS.h" |
38 |
|
|
#include "FFIELDS.h" |
39 |
|
|
#include "SHELFICE.h" |
40 |
|
|
#include "SHELFICE_COST.h" |
41 |
|
|
#ifdef ALLOW_AUTODIFF |
42 |
|
|
# include "CTRL_SIZE.h" |
43 |
|
|
# include "ctrl.h" |
44 |
|
|
# include "ctrl_dummy.h" |
45 |
|
|
#endif /* ALLOW_AUTODIFF */ |
46 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
47 |
|
|
# ifdef SHI_ALLOW_GAMMAFRICT |
48 |
|
|
# include "tamc.h" |
49 |
|
|
# include "tamc_keys.h" |
50 |
|
|
# endif /* SHI_ALLOW_GAMMAFRICT */ |
51 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
52 |
|
|
|
53 |
|
|
C === Functions ==== |
54 |
|
|
LOGICAL DIFFERENT_MULTIPLE |
55 |
|
|
EXTERNAL DIFFERENT_MULTIPLE |
56 |
|
|
|
57 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
58 |
|
|
C === Routine arguments === |
59 |
|
|
C myIter :: iteration counter for this thread |
60 |
|
|
C myTime :: time counter for this thread |
61 |
|
|
C myThid :: thread number for this instance of the routine. |
62 |
|
|
_RL myTime |
63 |
|
|
INTEGER myIter |
64 |
|
|
INTEGER myThid |
65 |
|
|
_RL hFacCtmp |
66 |
|
|
_RL hFacMnSz |
67 |
|
|
_RS tmpfld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
68 |
|
|
|
69 |
|
|
C === Local variables === |
70 |
|
|
C I,J,K,Kp1,bi,bj :: loop counters |
71 |
|
|
C tLoc, sLoc, pLoc :: local in-situ temperature, salinity, pressure |
72 |
|
|
C theta/saltFreeze :: temperature and salinity of water at the |
73 |
|
|
C ice-ocean interface (at the freezing point) |
74 |
|
|
C freshWaterFlux :: local variable for fresh water melt flux due |
75 |
|
|
C to melting in kg/m^2/s |
76 |
|
|
C (negative density x melt rate) |
77 |
|
|
C convertFW2SaltLoc:: local copy of convertFW2Salt |
78 |
|
|
C cFac :: 1 for conservative form, 0, otherwise |
79 |
|
|
C rFac :: realFreshWaterFlux factor |
80 |
|
|
C dFac :: 0 for diffusive heat flux (Holland and Jenkins, 1999, |
81 |
|
|
C eq21) |
82 |
|
|
C 1 for advective and diffusive heat flux (eq22, 26, 31) |
83 |
|
|
C fwflxFac :: only effective for dFac=1, 1 if we expect a melting |
84 |
|
|
C fresh water flux, 0 otherwise |
85 |
|
|
C auxiliary variables and abbreviations: |
86 |
|
|
C a0, a1, a2, b, c0 |
87 |
|
|
C eps1, eps2, eps3, eps3a, eps4, eps5, eps6, eps7, eps8 |
88 |
|
|
C aqe, bqe, cqe, discrim, recip_aqe |
89 |
|
|
C drKp1, recip_drLoc |
90 |
|
|
INTEGER I,J,K,Kp1 |
91 |
|
|
INTEGER bi,bj |
92 |
|
|
_RL tLoc(1:sNx,1:sNy) |
93 |
|
|
_RL sLoc(1:sNx,1:sNy) |
94 |
|
|
_RL pLoc(1:sNx,1:sNy) |
95 |
|
|
_RL uLoc(1:sNx,1:sNy) |
96 |
|
|
_RL vLoc(1:sNx,1:sNy) |
97 |
|
|
_RL u_topdr(1:sNx+1,1:sNy+1,nSx,nSy) |
98 |
|
|
_RL v_topdr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
99 |
|
|
_RL thetaFreeze, saltFreeze, recip_Cp |
100 |
|
|
_RL freshWaterFlux, convertFW2SaltLoc |
101 |
|
|
_RL a0, a1, a2, b, c0 |
102 |
|
|
_RL eps1, eps2, eps3, eps3a, eps4, eps5, eps6, eps7, eps8 |
103 |
|
|
_RL cFac, rFac, dFac, fwflxFac |
104 |
|
|
_RL aqe, bqe, cqe, discrim, recip_aqe |
105 |
|
|
_RL drKp1, recip_drLoc |
106 |
|
|
_RL recip_latentHeat |
107 |
|
|
_RL tmpFac |
108 |
|
|
|
109 |
|
|
|
110 |
|
|
_RL shiPr, shiSc, shiLo, recip_shiKarman, shiTwoThirds |
111 |
|
|
_RL gammaTmoleT, gammaTmoleS, gammaTurb, gammaTurbConst |
112 |
|
|
_RL ustar, ustarSq, etastar |
113 |
|
|
CEOP |
114 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
115 |
|
|
|
116 |
|
|
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
IF ( SHELFICERemeshFrequency .EQ. myTime) THEN |
120 |
|
|
print *, 'JJ WOZ HERE',R_shelfIce |
121 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
122 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
123 |
|
|
DO J = 1, sNy+1 |
124 |
|
|
DO I = 1, sNx+1 |
125 |
|
|
IF (etaN(I,J,bi,bj) .GT. 4.4 ) THEN |
126 |
|
|
K = MAX(1,kTopC(I,J,bi,bj)) |
127 |
|
|
c salt(I,J,bi,bj,K-1)=salt(I,J,bi,bj,K) |
128 |
|
|
c theta(I,J,bi,bj,K-1)=theta(I,J,bi,bj,K) |
129 |
|
|
c uVel(I,J,bi,bj,K-1)=uVel(I,J,bi,bj,K) |
130 |
|
|
c uVel(I+1,J,bi,bj,K-1)=uVel(I+1,J,bi,bj,K) |
131 |
|
|
c vVel(I,J,bi,bj,K-1)=uVel(I,J,bi,bj,K) |
132 |
|
|
c vVel(I,J+1,bi,bj,K-1)=uVel(I,J+1,bi,bj,K) |
133 |
|
|
etaN(I,J,bi,bj) = etaN(I,J,bi,bj) - 10.0 |
134 |
|
|
R_shelfIce(I,J,bi,bj) = R_shelfIce(I,J,bi,bj) + 10.0 |
135 |
|
|
ENDIF |
136 |
|
|
ENDDO |
137 |
|
|
ENDDO |
138 |
|
|
ENDDO |
139 |
|
|
ENDDO |
140 |
|
|
|
141 |
|
|
|
142 |
|
|
DO K=1, Nr |
143 |
|
|
hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) ) |
144 |
|
|
DO J=1-OLy,sNy+OLy |
145 |
|
|
DO I=1-OLx,sNx+OLx |
146 |
|
|
c o Non-dimensional distance between grid boundary and model surface |
147 |
|
|
hFacCtmp = (rF(k)-R_shelfIce(I,J,bi,bj))*recip_drF(K) |
148 |
|
|
C o Reduce the previous fraction : substract the outside part. |
149 |
|
|
hFacCtmp = hFacC(I,J,K,bi,bj) - max( hFacCtmp, 0. _d 0) |
150 |
|
|
c o set to zero if empty Column : |
151 |
|
|
hFacCtmp = max( hFacCtmp, 0. _d 0) |
152 |
|
|
C o Impose minimum fraction and/or size (dimensional) |
153 |
|
|
IF (hFacCtmp.LT.hFacMnSz) THEN |
154 |
|
|
IF (hFacCtmp.LT.hFacMnSz*0.5) THEN |
155 |
|
|
hFacC(I,J,K,bi,bj)=0. |
156 |
|
|
ELSE |
157 |
|
|
hFacC(I,J,K,bi,bj)=hFacMnSz |
158 |
|
|
ENDIF |
159 |
|
|
ELSE |
160 |
|
|
hFacC(I,J,K,bi,bj)=hFacCtmp |
161 |
|
|
ENDIF |
162 |
|
|
ENDDO |
163 |
|
|
ENDDO |
164 |
|
|
ENDDO |
165 |
|
|
c |
166 |
|
|
cC- Re-calculate Reference surface position, taking into account hFacC |
167 |
|
|
cC initialize Total column fluid thickness and surface k index |
168 |
|
|
cC Note: if no fluid (continent) ==> kSurf = Nr+1 |
169 |
|
|
DO bj=myByLo(myThid), myByHi(myThid) |
170 |
|
|
DO bi=myBxLo(myThid), myBxHi(myThid) |
171 |
|
|
DO j=1-OLy,sNy+OLy |
172 |
|
|
DO i=1-OLx,sNx+OLx |
173 |
|
|
tmpfld(i,j,bi,bj) = 0. |
174 |
|
|
kSurfC(i,j,bi,bj) = Nr+1 |
175 |
|
|
c maskH(i,j,bi,bj) = 0. |
176 |
|
|
Ro_surf(i,j,bi,bj) = R_low(i,j,bi,bj) |
177 |
|
|
DO k=Nr,1,-1 |
178 |
|
|
Ro_surf(i,j,bi,bj)=Ro_surf(i,j,bi,bj) |
179 |
|
|
& +drF(k)*hFacC(i,j,k,bi,bj) |
180 |
|
|
IF (hFacC(i,j,k,bi,bj).NE.0.) THEN |
181 |
|
|
kSurfC(i,j,bi,bj) = k |
182 |
|
|
c maskH(i,j,bi,bj) = 1. |
183 |
|
|
tmpfld(i,j,bi,bj) = tmpfld(i,j,bi,bj) + 1. |
184 |
|
|
ENDIF |
185 |
|
|
ENDDO |
186 |
|
|
kLowC(i,j,bi,bj) = 0 |
187 |
|
|
DO k= 1, Nr |
188 |
|
|
IF (hFacC(i,j,k,bi,bj).NE.0) THEN |
189 |
|
|
kLowC(i,j,bi,bj) = k |
190 |
|
|
ENDIF |
191 |
|
|
ENDDO |
192 |
|
|
maskInC(i,j,bi,bj)= 0. |
193 |
|
|
C Weird IF loop here JJ |
194 |
|
|
IF ( kSurfC(i,j,bi,bj).LE.Nr ) THEN |
195 |
|
|
maskInC(i,j,bi,bj)= 1. |
196 |
|
|
ENDIF |
197 |
|
|
ENDDO |
198 |
|
|
ENDDO |
199 |
|
|
C- end bi,bj loops. |
200 |
|
|
ENDDO |
201 |
|
|
ENDDO |
202 |
|
|
c |
203 |
|
|
c IF ( printDomain ) THEN |
204 |
|
|
cc CALL PLOT_FIELD_XYRS( tmpfld, |
205 |
|
|
c & 'Model Depths K Index' , -1, myThid ) |
206 |
|
|
c CALL PLOT_FIELD_XYRS(R_low, |
207 |
|
|
c & 'Model R_low (ini_masks_etc)', -1, myThid ) |
208 |
|
|
c CALL PLOT_FIELD_XYRS(Ro_surf, |
209 |
|
|
c & 'Model Ro_surf (ini_masks_etc)', -1, myThid ) |
210 |
|
|
c ENDIF |
211 |
|
|
c |
212 |
|
|
cC-- Calculate quantities derived from XY depth map |
213 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
214 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
215 |
|
|
DO j=1-OLy,sNy+OLy |
216 |
|
|
DO i=1-OLx,sNx+OLx |
217 |
|
|
C Total fluid column thickness (r_unit) : |
218 |
|
|
c Rcolumn(i,j,bi,bj)= Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
219 |
|
|
tmpfld(i,j,bi,bj) = Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
220 |
|
|
C Inverse of fluid column thickness (1/r_unit) |
221 |
|
|
IF ( tmpfld(i,j,bi,bj) .LE. 0. ) THEN |
222 |
|
|
recip_Rcol(i,j,bi,bj) = 0. |
223 |
|
|
ELSE |
224 |
|
|
recip_Rcol(i,j,bi,bj) = 1. _d 0 / tmpfld(i,j,bi,bj) |
225 |
|
|
ENDIF |
226 |
|
|
ENDDO |
227 |
|
|
ENDDO |
228 |
|
|
ENDDO |
229 |
|
|
ENDDO |
230 |
|
|
c |
231 |
|
|
cC-- hFacW and hFacS (at U and V points) |
232 |
|
|
DO bj=myByLo(myThid), myByHi(myThid) |
233 |
|
|
DO bi=myBxLo(myThid), myBxHi(myThid) |
234 |
|
|
DO k=1, Nr |
235 |
|
|
DO j=1-OLy,sNy+OLy |
236 |
|
|
hFacW(1-OLx,j,k,bi,bj)= 0. |
237 |
|
|
DO i=2-OLx,sNx+OLx |
238 |
|
|
hFacW(i,j,k,bi,bj)= |
239 |
|
|
& MIN(hFacC(i,j,k,bi,bj),hFacC(i-1,j,k,bi,bj)) |
240 |
|
|
ENDDO |
241 |
|
|
ENDDO |
242 |
|
|
DO i=1-OLx,sNx+OLx |
243 |
|
|
hFacS(i,1-OLy,k,bi,bj)= 0. |
244 |
|
|
ENDDO |
245 |
|
|
DO j=2-OLy,sNy+oly |
246 |
|
|
DO i=1-OLx,sNx+OLx |
247 |
|
|
hFacS(i,j,k,bi,bj)= |
248 |
|
|
& MIN(hFacC(i,j,k,bi,bj),hFacC(i,j-1,k,bi,bj)) |
249 |
|
|
ENDDO |
250 |
|
|
ENDDO |
251 |
|
|
ENDDO |
252 |
|
|
c |
253 |
|
|
cC rLow & reference rSurf at Western & Southern edges (U and V points) |
254 |
|
|
i = 1-OLx |
255 |
|
|
DO j=1-OLy,sNy+OLy |
256 |
|
|
rLowW (i,j,bi,bj) = 0. |
257 |
|
|
rSurfW(i,j,bi,bj) = 0. |
258 |
|
|
ENDDO |
259 |
|
|
j = 1-OLy |
260 |
|
|
DO i=1-OLx,sNx+OLx |
261 |
|
|
rLowS (i,j,bi,bj) = 0. |
262 |
|
|
rSurfS(i,j,bi,bj) = 0. |
263 |
|
|
ENDDO |
264 |
|
|
DO j=1-OLy,sNy+OLy |
265 |
|
|
DO i=2-OLx,sNx+OLx |
266 |
|
|
rLowW(i,j,bi,bj) = |
267 |
|
|
& MAX( R_low(i-1,j,bi,bj), R_low(i,j,bi,bj) ) |
268 |
|
|
rSurfW(i,j,bi,bj) = |
269 |
|
|
& MIN( Ro_surf(i-1,j,bi,bj), Ro_surf(i,j,bi,bj) ) |
270 |
|
|
rSurfW(i,j,bi,bj) = |
271 |
|
|
& MAX( rSurfW(i,j,bi,bj), rLowW(i,j,bi,bj) ) |
272 |
|
|
ENDDO |
273 |
|
|
ENDDO |
274 |
|
|
|
275 |
|
|
DO j=2-OLy,sNy+OLy |
276 |
|
|
DO i=1-OLx,sNx+OLx |
277 |
|
|
rLowS(i,j,bi,bj) = |
278 |
|
|
& MAX( R_low(i,j-1,bi,bj), R_low(i,j,bi,bj) ) |
279 |
|
|
rSurfS(i,j,bi,bj) = |
280 |
|
|
& MIN( Ro_surf(i,j-1,bi,bj), Ro_surf(i,j,bi,bj) ) |
281 |
|
|
rSurfS(i,j,bi,bj) = |
282 |
|
|
& MAX( rSurfS(i,j,bi,bj), rLowS(i,j,bi,bj) ) |
283 |
|
|
ENDDO |
284 |
|
|
ENDDO |
285 |
|
|
C- end bi,bj loops. |
286 |
|
|
ENDDO |
287 |
|
|
ENDDO |
288 |
|
|
CALL EXCH_UV_XYZ_RS(hFacW,hFacS,.FALSE.,myThid) |
289 |
|
|
CALL EXCH_UV_XY_RS( rSurfW, rSurfS, .FALSE., myThid ) |
290 |
|
|
CALL EXCH_UV_XY_RS( rLowW, rLowS, .FALSE., myThid ) |
291 |
|
|
c |
292 |
|
|
cC-- Addtional closing of Western and Southern grid-cell edges: for example, |
293 |
|
|
cC a) might add some "thin walls" in specific location |
294 |
|
|
cC-- b) close non-periodic N & S boundaries of lat-lon grid at the N/S poles. |
295 |
|
|
CALL ADD_WALLS2MASKS( myThid ) |
296 |
|
|
cC-- Calculate surface k index for interface W & S (U & V points) |
297 |
|
|
DO bj=myByLo(myThid), myByHi(myThid) |
298 |
|
|
DO bi=myBxLo(myThid), myBxHi(myThid) |
299 |
|
|
DO j=1-OLy,sNy+OLy |
300 |
|
|
DO i=1-OLx,sNx+OLx |
301 |
|
|
kSurfW(i,j,bi,bj) = Nr+1 |
302 |
|
|
kSurfS(i,j,bi,bj) = Nr+1 |
303 |
|
|
DO k=Nr,1,-1 |
304 |
|
|
IF (hFacW(i,j,k,bi,bj).NE.0.) kSurfW(i,j,bi,bj) = k |
305 |
|
|
IF (hFacS(i,j,k,bi,bj).NE.0.) kSurfS(i,j,bi,bj) = k |
306 |
|
|
ENDDO |
307 |
|
|
maskInW(i,j,bi,bj)= 0. |
308 |
|
|
cC Wierd if statements JJ |
309 |
|
|
c |
310 |
|
|
IF ( kSurfW(i,j,bi,bj).LE.Nr ) THEN |
311 |
|
|
maskInW(i,j,bi,bj)= 1. |
312 |
|
|
maskInS(i,j,bi,bj)= 0. |
313 |
|
|
ENDIF |
314 |
|
|
IF ( kSurfS(i,j,bi,bj).LE.Nr ) THEN |
315 |
|
|
maskInS(i,j,bi,bj)= 1. |
316 |
|
|
ENDIF |
317 |
|
|
ENDDO |
318 |
|
|
ENDDO |
319 |
|
|
ENDDO |
320 |
|
|
ENDDO |
321 |
|
|
|
322 |
|
|
c ELSE |
323 |
|
|
#ifndef DISABLE_SIGMA_CODE |
324 |
|
|
C--- Sigma and Hybrid-Sigma set-up: |
325 |
|
|
CALL INI_SIGMA_HFAC( myThid ) |
326 |
|
|
c#endif /* DISABLE_SIGMA_CODE */ |
327 |
|
|
cc ENDIF |
328 |
|
|
cC---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
329 |
|
|
|
330 |
|
|
C-- Write to disk: Total Column Thickness & hFac(C,W,S): |
331 |
|
|
C This I/O is now done in write_grid.F |
332 |
|
|
c CALL WRITE_FLD_XY_RS( 'Depth',' ',tmpfld,0,myThid) |
333 |
|
|
c CALL WRITE_FLD_XYZ_RS( 'hFacC',' ',hFacC,0,myThid) |
334 |
|
|
c CALL WRITE_FLD_XYZ_RS( 'hFacW',' ',hFacW,0,myThid) |
335 |
|
|
c CALL WRITE_FLD_XYZ_RS( 'hFacS',' ',hFacS,0,myThid) |
336 |
|
|
c |
337 |
|
|
IF ( printDomain ) THEN |
338 |
|
|
CALL PLOT_FIELD_XYZRS( hFacC, 'hFacC' , Nr, 0, myThid ) |
339 |
|
|
CALL PLOT_FIELD_XYZRS( hFacW, 'hFacW' , Nr, 0, myThid ) |
340 |
|
|
CALL PLOT_FIELD_XYZRS( hFacS, 'hFacS' , Nr, 0, myThid ) |
341 |
|
|
ENDIF |
342 |
|
|
C-- Masks and reciprocals of hFac[CWS] |
343 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
344 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
345 |
|
|
DO k=1,Nr |
346 |
|
|
DO j=1-OLy,sNy+OLy |
347 |
|
|
DO i=1-OLx,sNx+OLx |
348 |
|
|
IF (hFacC(i,j,k,bi,bj) .NE. 0. ) THEN |
349 |
|
|
c recip_hFacC(i,j,k,bi,bj) = 1. _d 0 / hFacC(i,j,k,bi,bj) |
350 |
|
|
c maskC(i,j,k,bi,bj) = 1. |
351 |
|
|
ELSE |
352 |
|
|
c recip_hFacC(i,j,k,bi,bj) = 0. |
353 |
|
|
c maskC(i,j,k,bi,bj) = 0. |
354 |
|
|
ENDIF |
355 |
|
|
IF (hFacW(i,j,k,bi,bj) .NE. 0. ) THEN |
356 |
|
|
c recip_hFacW(i,j,k,bi,bj) = 1. _d 0 / hFacW(i,j,k,bi,bj) |
357 |
|
|
c maskW(i,j,k,bi,bj) = 1. |
358 |
|
|
ELSE |
359 |
|
|
c recip_hFacW(i,j,k,bi,bj) = 0. |
360 |
|
|
c maskW(i,j,k,bi,bj) = 0. |
361 |
|
|
ENDIF |
362 |
|
|
IF (hFacS(i,j,k,bi,bj) .NE. 0. ) THEN |
363 |
|
|
c recip_hFacS(i,j,k,bi,bj) = 1. _d 0 / hFacS(i,j,k,bi,bj) |
364 |
|
|
c maskS(i,j,k,bi,bj) = 1. |
365 |
|
|
ELSE |
366 |
|
|
c recip_hFacS(i,j,k,bi,bj) = 0. |
367 |
|
|
c maskS(i,j,k,bi,bj) = 0. |
368 |
|
|
ENDIF |
369 |
|
|
ENDDO |
370 |
|
|
ENDDO |
371 |
|
|
ENDDO |
372 |
|
|
|
373 |
|
|
c#ifdef NONLIN_FRSURF |
374 |
|
|
C-- Save initial geometrical hFac factor into h0Fac (fixed in time): |
375 |
|
|
C Note: In case 1 pkg modifies hFac (from packages_init_fixed, called |
376 |
|
|
C later in sequence of calls) this pkg would need also to update h0Fac. |
377 |
|
|
c DO k=1,Nr |
378 |
|
|
c DO j=1-OLy,sNy+OLy |
379 |
|
|
c DO i=1-OLx,sNx+OLx |
380 |
|
|
c h0FacC(i,j,k,bi,bj) = _hFacC(i,j,k,bi,bj) |
381 |
|
|
c h0FacW(i,j,k,bi,bj) = _hFacW(i,j,k,bi,bj) |
382 |
|
|
c h0FacS(i,j,k,bi,bj) = _hFacS(i,j,k,bi,bj) |
383 |
|
|
c ENDDO |
384 |
|
|
c ENDDO |
385 |
|
|
c ENDDO |
386 |
|
|
#endif /* NONLIN_FRSURF */ |
387 |
|
|
C- end bi,bj loops. |
388 |
|
|
ENDDO |
389 |
|
|
ENDDO |
390 |
|
|
|
391 |
|
|
|
392 |
|
|
ENDIF |
393 |
|
|
RETURN |
394 |
|
|
END |