1 |
C $Header: /u/gcmpack/MITgcm_contrib/verification_other/shelfice_remeshing/code/shelfice_update_masks_JJ.F,v 1.2 2016/01/05 16:04:36 dgoldberg Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SHELFICE_OPTIONS.h" |
5 |
#ifdef ALLOW_CTRL |
6 |
# include "CTRL_OPTIONS.h" |
7 |
#endif |
8 |
|
9 |
CBOP |
10 |
C !ROUTINE: SHELFICE_UPDATE_MASKS |
11 |
C !INTERFACE: |
12 |
SUBROUTINE SHELFICE_UPDATE_MASKS_JJ( |
13 |
I rF, recip_drF, |
14 |
U hFacC, |
15 |
I myThid ) |
16 |
C !DESCRIPTION: \bv |
17 |
C *==========================================================* |
18 |
C | SUBROUTINE SHELFICE_UPDATE_MASKS |
19 |
C | o modify topography factor hFacC according to ice shelf |
20 |
C | topography |
21 |
C *==========================================================* |
22 |
C \ev |
23 |
|
24 |
C !USES: |
25 |
IMPLICIT NONE |
26 |
C === Global variables === |
27 |
#include "SIZE.h" |
28 |
#include "EEPARAMS.h" |
29 |
#include "PARAMS.h" |
30 |
#include "DYNVARS.h" |
31 |
#include "SURFACE.h" |
32 |
#ifdef ALLOW_SHELFICE |
33 |
# include "SHELFICE.h" |
34 |
#endif /* ALLOW_SHELFICE */ |
35 |
|
36 |
C !INPUT/OUTPUT PARAMETERS: |
37 |
C == Routine arguments == |
38 |
C rF :: R-coordinate of face of cell (units of r). |
39 |
C recip_drF :: Recipricol of cell face separation along Z axis ( units of r ). |
40 |
C hFacC :: Fraction of cell in vertical which is open (see GRID.h) |
41 |
C myThid :: Number of this instance of SHELFICE_UPDATE_MASKS |
42 |
_RS rF (1:Nr+1) |
43 |
_RS recip_drF (1:Nr) |
44 |
_RS hFacC (1-OLx:sNx+OLx,1-OLy:sNy+OLy,1:Nr,nSx,nSy) |
45 |
|
46 |
INTEGER myThid |
47 |
|
48 |
#ifdef ALLOW_SHELFICE |
49 |
C !LOCAL VARIABLES: |
50 |
C == Local variables == |
51 |
C bi,bj :: tile indices |
52 |
C I,J,K :: Loop counters |
53 |
INTEGER bi, bj |
54 |
INTEGER I, J, K |
55 |
_RL hFacCtmp |
56 |
_RL hFacMnSz |
57 |
|
58 |
C- Update etaN |
59 |
DO bj = myByLo(myThid), myByHi(myThid) |
60 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
61 |
DO J = 1,sNy |
62 |
DO I = 1,sNx |
63 |
IF ( R_shelfice(I,J,bi,bj) .LT. 0.0) THEN |
64 |
IF (etah(I,J,bi,bj) .GT. SHELFICESplitThreshold ) THEN |
65 |
K = MAX(1,kTopC(I,J,bi,bj)) |
66 |
etaN(I,J,bi,bj) = etaN(I,J,bi,bj) - 1/recip_drF(K) |
67 |
etaH(I,J,bi,bj) = etaH(I,J,bi,bj) - 1/recip_drF(K) |
68 |
R_shelfIce(I,J,bi,bj) = R_shelfIce(I,J,bi,bj)+1/recip_drF(K) |
69 |
uVel(I,J,K-1,bi,bj)=uVel(I,J,K,bi,bj) |
70 |
uVel(I+1,J,K-1,bi,bj)=uVel(I+1,J,K,bi,bj) |
71 |
vVel(I,J,K-1,bi,bj)=vVel(I,J,K,bi,bj) |
72 |
vVel(I,J+1,K-1,bi,bj)=vVel(I,J+1,K,bi,bj) |
73 |
|
74 |
gvnm1(I,J,K-1,bi,bj)=gvnm1(I,J,K,bi,bj) |
75 |
gvnm1(I,J+1,K-1,bi,bj)=gvnm1(I,J+1,K,bi,bj) |
76 |
gunm1(I,J,K-1,bi,bj)=gunm1(I,J,K,bi,bj) |
77 |
gunm1(I+1,J,K-1,bi,bj)=gunm1(I,J,K,bi,bj) |
78 |
|
79 |
salt(I,J,K-1,bi,bj)=salt(I,J,K,bi,bj) |
80 |
theta(I,J,K-1,bi,bj)=theta(I,J,K,bi,bj) |
81 |
hfacC(I,J,K,bi,bj)=1.0 |
82 |
Rmin_surf(I,J,bi,bj) = Rmin_surf(I,J,bi,bj)+1/recip_drF(K) |
83 |
|
84 |
ENDIF |
85 |
IF (R_shelfice(i,j,bi,bj) .NE. R_grounding(i,j,bi,bj))THEN |
86 |
IF (etah(I,J,bi,bj) .LT. SHELFICEMergeThreshold ) THEN |
87 |
K = MAX(1,kTopC(I,J,bi,bj)) |
88 |
|
89 |
salt(I,J,K+1,bi,bj)=((salt(I,J,K,bi,bj)*(1/recip_drF(K)+ |
90 |
& etaN(I,J,bi,bj)))+(salt(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/( |
91 |
& 1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
92 |
|
93 |
theta(I,J,K+1,bi,bj)=((theta(I,J,K,bi,bj)*(1/recip_drF(K)+ |
94 |
& etaN(I,J,bi,bj)))+(theta(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/( |
95 |
& 1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
96 |
|
97 |
vVel(I,J,K+1,bi,bj)=((vVel(I,J,K,bi,bj)*(1/recip_drF(K)+ |
98 |
& etaN(I,J,bi,bj)))+(vVel(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/( |
99 |
& 1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
100 |
|
101 |
vVel(I,J+1,K+1,bi,bj)=((vVel(I,J+1,K,bi,bj)*(1/recip_drF(K)+ |
102 |
& etaN(I,J,bi,bj)))+(vVel(I,J+1,K+1,bi,bj)*1/recip_drF(K+1)))/ |
103 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
104 |
|
105 |
uVel(I,J,K+1,bi,bj)=((uVel(I,J,K,bi,bj)*(1/recip_drF(K)+ |
106 |
& etaN(I,J,bi,bj)))+(uVel(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/( |
107 |
& 1/recip_ drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
108 |
|
109 |
uVel(I+1,J,K+1,bi,bj)=((uVel(I+1,J,K,bi,bj)*(1/recip_drF(K)+ |
110 |
& etaN(I,J,bi,bj)))+(uVel(I+1,J,K+1,bi,bj)*1/recip_drF(K+1)))/ |
111 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
112 |
|
113 |
etaN(I,J,bi,bj) = etaN(I,J,bi,bj) +1/recip_drF(K) |
114 |
etaH(I,J,bi,bj) = etaH(I,J,bi,bj) +1/recip_drF(K) |
115 |
R_shelfice(I,J,bi,bj) = R_shelfice(I,J,bi,bj) -1/recip_drF(K) |
116 |
Rmin_surf(I,J,bi,bj) = Rmin_surf(I,J,bi,bj) -1/recip_drF(K) |
117 |
|
118 |
gunm1(I+1,J,K+1,bi,bj)=((gunm1(I+1,J,K,bi,bj)*(1/recip_drF(K)+ |
119 |
& etaN(I,J,bi,bj)))+(gunm1(I+1,J,K+1,bi,bj)*1/recip_drF(K+1)))/ |
120 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
121 |
|
122 |
gunm1(I,J,K+1,bi,bj)=((gunm1(I,J,K,bi,bj)*(1/recip_drF(K)+ |
123 |
& etaN(I,J,bi,bj)))+(gunm1(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/ |
124 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
125 |
|
126 |
gvnm1(I,J+1,K+1,bi,bj)=((gvnm1(I,J+1,K,bi,bj)*(1/recip_drF(K)+ |
127 |
& etaN(I,J,bi,bj)))+(gvnm1(I,J+1,K+1,bi,bj)*1/recip_drF(K+1)))/ |
128 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
129 |
|
130 |
|
131 |
gvnm1(I,J,K+1,bi,bj)=((gvnm1(I,J,K,bi,bj)*(1/recip_drF(K)+ |
132 |
& etaN(I,J,bi,bj)))+(gvnm1(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/ |
133 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
134 |
|
135 |
hfacC(I,J,K,bi,bj)=1.0 |
136 |
ENDIF |
137 |
ENDIF |
138 |
ENDIF |
139 |
ENDDO |
140 |
ENDDO |
141 |
ENDDO |
142 |
ENDDO |
143 |
|
144 |
|
145 |
DO bj = myByLo(myThid), myByHi(myThid) |
146 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
147 |
DO J = 1,sNy |
148 |
DO I = 1,sNx |
149 |
etaH(I,J,bi,bj)=etaN(I,J,bi,bj) |
150 |
etaHnm1(I,J,bi,bj)=etaH(I,J,bi,bj) |
151 |
ENDDO |
152 |
ENDDO |
153 |
ENDDO |
154 |
ENDDO |
155 |
|
156 |
|
157 |
|
158 |
DO bj = myByLo(myThid), myByHi(myThid) |
159 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
160 |
DO J = 1,sNy |
161 |
DO I = 1,sNx |
162 |
K = MAX(1,kTopC(I,J,bi,bj)) |
163 |
hfac_surfc(I,J,bi,bj)= ((etaH(I,J,bi,bJ) +(1/recip_drF(K))) |
164 |
& *recip_drF(K)) |
165 |
ENDDO |
166 |
ENDDO |
167 |
ENDDO |
168 |
ENDDO |
169 |
|
170 |
|
171 |
CALL EXCH_XYZ_RL(salt,myThid) |
172 |
CALL EXCH_XYZ_RL(theta,myThid) |
173 |
CALL EXCH_XYZ_RL(uVel,myThid) |
174 |
CALL EXCH_XYZ_RL(vVel,myThid) |
175 |
CALL EXCH_XYZ_RL(gunm1,myThid) |
176 |
CALL EXCH_XYZ_RL(gvnm1,myThid) |
177 |
CALL EXCH_XYZ_RL(hFacC,myThid) |
178 |
|
179 |
CALL EXCH_XY_RL(EtaN,myThid) |
180 |
CALL EXCH_XY_RL(EtaH,myThid) |
181 |
CALL EXCH_XY_RL(EtaHnm1,myThid) |
182 |
CALL EXCH_XY_RL(R_shelfice,myThid) |
183 |
CALL EXCH_XY_RL(Rmin_surf,myThid) |
184 |
CALL EXCH_XY_RL(hFac_surfC,myThid) |
185 |
|
186 |
|
187 |
C- fill in the overlap (+ BARRIER): |
188 |
_EXCH_XY_RS(R_shelfIce, myThid ) |
189 |
|
190 |
C-- Calculate lopping factor hFacC : Remove part outside of the domain |
191 |
C taking into account the Reference (=at rest) Surface Position Ro_shelfIce |
192 |
DO bj=myByLo(myThid), myByHi(myThid) |
193 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
194 |
|
195 |
C-- compute contributions of shelf ice to looping factors |
196 |
DO K=1, Nr |
197 |
hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) ) |
198 |
DO J=1-OLy,sNy+OLy |
199 |
DO I=1-OLx,sNx+OLx |
200 |
C o Non-dimensional distance between grid boundary and model surface |
201 |
hFacCtmp = (rF(k)-R_shelfIce(I,J,bi,bj))*recip_drF(K) |
202 |
C o Reduce the previous fraction : substract the outside part. |
203 |
hFacCtmp = hFacC(I,J,K,bi,bj) - max( hFacCtmp, 0. _d 0) |
204 |
C o set to zero if empty Column : |
205 |
hFacCtmp = max( hFacCtmp, 0. _d 0) |
206 |
C o Impose minimum fraction and/or size (dimensional) |
207 |
IF (hFacCtmp.LT.hFacMnSz) THEN |
208 |
IF (hFacCtmp.LT.hFacMnSz*0.5) THEN |
209 |
hFacC(I,J,K,bi,bj)=0. |
210 |
ELSE |
211 |
hFacC(I,J,K,bi,bj)=hFacMnSz |
212 |
ENDIF |
213 |
ELSE |
214 |
hFacC(I,J,K,bi,bj)=hFacCtmp |
215 |
ENDIF |
216 |
ENDDO |
217 |
ENDDO |
218 |
ENDDO |
219 |
|
220 |
#ifdef ALLOW_SHIFWFLX_CONTROL |
221 |
C maskSHI is a hack to play along with the general ctrl-package |
222 |
C infrastructure, where only the k=1 layer of a 3D mask is used |
223 |
C for 2D fields. We cannot use maskInC instead, because routines |
224 |
C like ctrl_get_gen and ctrl_set_unpack_xy require 3D masks. |
225 |
DO K=1,Nr |
226 |
DO J=1-OLy,sNy+OLy |
227 |
DO I=1-OLx,sNx+OLx |
228 |
maskSHI(I,J,K,bi,bj) = 0. _d 0 |
229 |
ENDDO |
230 |
ENDDO |
231 |
ENDDO |
232 |
DO K=1,Nr |
233 |
DO J=1-OLy,sNy+OLy |
234 |
DO I=1-OLx,sNx+OLx |
235 |
IF ( ABS(R_shelfice(I,J,bi,bj)) .GT. 0. _d 0 |
236 |
& .AND. hFacC(I,J,K,bi,bj) .NE. 0. _d 0 ) THEN |
237 |
maskSHI(I,J,K,bi,bj) = 1. _d 0 |
238 |
maskSHI(I,J,1,bi,bj) = 1. _d 0 |
239 |
ENDIF |
240 |
ENDDO |
241 |
ENDDO |
242 |
ENDDO |
243 |
#endif /* ALLOW_SHIFWFLX_CONTROL */ |
244 |
|
245 |
C - end bi,bj loops. |
246 |
ENDDO |
247 |
ENDDO |
248 |
#endif /* ALLOW_SHELFICE */ |
249 |
RETURN |
250 |
END |