| 1 | C $Header: /u/gcmpack/MITgcm_contrib/shelfice_remeshing/AUTO/code/shelfice_thermodynamics.F,v 1.2 2015/10/06 10:38:53 dgoldberg Exp $ | 
| 2 | C $Name:  $ | 
| 3 |  | 
| 4 | #include "SHELFICE_OPTIONS.h" | 
| 5 | #ifdef ALLOW_AUTODIFF | 
| 6 | # include "AUTODIFF_OPTIONS.h" | 
| 7 | #endif | 
| 8 | #ifdef ALLOW_CTRL | 
| 9 | # include "CTRL_OPTIONS.h" | 
| 10 | #endif | 
| 11 |  | 
| 12 | CBOP | 
| 13 | C     !ROUTINE: SHELFICE_THERMODYNAMICS | 
| 14 | C     !INTERFACE: | 
| 15 | SUBROUTINE SHELFICE_THERMODYNAMICS( | 
| 16 | I                        myTime, myIter, myThid ) | 
| 17 | C     !DESCRIPTION: \bv | 
| 18 | C     *=============================================================* | 
| 19 | C     | S/R  SHELFICE_THERMODYNAMICS | 
| 20 | C     | o shelf-ice main routine. | 
| 21 | C     |   compute temperature and (virtual) salt flux at the | 
| 22 | C     |   shelf-ice ocean interface | 
| 23 | C     | | 
| 24 | C     | stresses at the ice/water interface are computed in separate | 
| 25 | C     | routines that are called from mom_fluxform/mom_vecinv | 
| 26 | C     *=============================================================* | 
| 27 | C     \ev | 
| 28 |  | 
| 29 | C     !USES: | 
| 30 | IMPLICIT NONE | 
| 31 |  | 
| 32 | C     === Global variables === | 
| 33 | #include "SIZE.h" | 
| 34 | #include "EEPARAMS.h" | 
| 35 | #include "PARAMS.h" | 
| 36 | #include "GRID.h" | 
| 37 | #include "DYNVARS.h" | 
| 38 | #include "FFIELDS.h" | 
| 39 | #include "SHELFICE.h" | 
| 40 | #include "SHELFICE_COST.h" | 
| 41 | #ifdef ALLOW_AUTODIFF | 
| 42 | # include "CTRL_SIZE.h" | 
| 43 | # include "ctrl.h" | 
| 44 | # include "ctrl_dummy.h" | 
| 45 | #endif /* ALLOW_AUTODIFF */ | 
| 46 | #ifdef ALLOW_AUTODIFF_TAMC | 
| 47 | # ifdef SHI_ALLOW_GAMMAFRICT | 
| 48 | #  include "tamc.h" | 
| 49 | #  include "tamc_keys.h" | 
| 50 | # endif /* SHI_ALLOW_GAMMAFRICT */ | 
| 51 | #endif /* ALLOW_AUTODIFF_TAMC */ | 
| 52 |  | 
| 53 | C     !INPUT/OUTPUT PARAMETERS: | 
| 54 | C     === Routine arguments === | 
| 55 | C     myIter :: iteration counter for this thread | 
| 56 | C     myTime :: time counter for this thread | 
| 57 | C     myThid :: thread number for this instance of the routine. | 
| 58 | _RL  myTime | 
| 59 | INTEGER myIter | 
| 60 | INTEGER myThid | 
| 61 |  | 
| 62 | #ifdef ALLOW_SHELFICE | 
| 63 | C     !LOCAL VARIABLES : | 
| 64 | C     === Local variables === | 
| 65 | C     I,J,K,Kp1,bi,bj  :: loop counters | 
| 66 | C     tLoc, sLoc, pLoc :: local in-situ temperature, salinity, pressure | 
| 67 | C     theta/saltFreeze :: temperature and salinity of water at the | 
| 68 | C                         ice-ocean interface (at the freezing point) | 
| 69 | C     freshWaterFlux   :: local variable for fresh water melt flux due | 
| 70 | C                         to melting in kg/m^2/s | 
| 71 | C                         (negative density x melt rate) | 
| 72 | C     convertFW2SaltLoc:: local copy of convertFW2Salt | 
| 73 | C     cFac             :: 1 for conservative form, 0, otherwise | 
| 74 | C     rFac             :: realFreshWaterFlux factor | 
| 75 | C     dFac             :: 0 for diffusive heat flux (Holland and Jenkins, 1999, | 
| 76 | C                           eq21) | 
| 77 | C                         1 for advective and diffusive heat flux (eq22, 26, 31) | 
| 78 | C     fwflxFac         :: only effective for dFac=1, 1 if we expect a melting | 
| 79 | C                         fresh water flux, 0 otherwise | 
| 80 | C     auxiliary variables and abbreviations: | 
| 81 | C     a0, a1, a2, b, c0 | 
| 82 | C     eps1, eps2, eps3, eps3a, eps4, eps5, eps6, eps7, eps8 | 
| 83 | C     aqe, bqe, cqe, discrim, recip_aqe | 
| 84 | C     drKp1, recip_drLoc | 
| 85 | INTEGER I,J,K,Kp1,kp2 | 
| 86 | INTEGER bi,bj | 
| 87 | _RL tLoc(1:sNx,1:sNy) | 
| 88 | _RL sLoc(1:sNx,1:sNy) | 
| 89 | _RL pLoc(1:sNx,1:sNy) | 
| 90 | _RL uLoc(1:sNx,1:sNy) | 
| 91 | _RL vLoc(1:sNx,1:sNy) | 
| 92 | _RL u_topdr(1:sNx+1,1:sNy+1,nSx,nSy) | 
| 93 | _RL v_topdr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 94 | _RL thetaFreeze, saltFreeze, recip_Cp | 
| 95 | _RL freshWaterFlux, convertFW2SaltLoc | 
| 96 | _RL a0, a1, a2, b, c0 | 
| 97 | _RL eps1, eps2, eps3, eps3a, eps4, eps5, eps6, eps7, eps8 | 
| 98 | _RL cFac, rFac, dFac, fwflxFac, realfwFac | 
| 99 | _RL aqe, bqe, cqe, discrim, recip_aqe | 
| 100 | _RL drKp1, drKp2, recip_drLoc | 
| 101 | _RL recip_latentHeat | 
| 102 | _RL tmpFac | 
| 103 |  | 
| 104 | #ifdef SHI_ALLOW_GAMMAFRICT | 
| 105 | _RL shiPr, shiSc, shiLo, recip_shiKarman, shiTwoThirds | 
| 106 | _RL gammaTmoleT, gammaTmoleS, gammaTurb, gammaTurbConst | 
| 107 | _RL ustar, ustarSq, etastar | 
| 108 | PARAMETER ( shiTwoThirds = 0.66666666666666666666666666667D0 ) | 
| 109 | #ifdef ALLOW_DIAGNOSTICS | 
| 110 | _RL uStarDiag(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 111 | #endif /* ALLOW_DIAGNOSTICS */ | 
| 112 | #endif | 
| 113 |  | 
| 114 | #ifndef ALLOW_OPENAD | 
| 115 | _RL SW_TEMP | 
| 116 | EXTERNAL SW_TEMP | 
| 117 | #endif | 
| 118 |  | 
| 119 | #ifdef ALLOW_SHIFWFLX_CONTROL | 
| 120 | _RL xx_shifwflx_loc(1-olx:snx+olx,1-oly:sny+oly,nsx,nsy) | 
| 121 | #endif | 
| 122 | CEOP | 
| 123 | C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| | 
| 124 |  | 
| 125 | #ifdef SHI_ALLOW_GAMMAFRICT | 
| 126 | #ifdef ALLOW_AUTODIFF | 
| 127 | C     re-initialize here again, curtesy to TAF | 
| 128 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 129 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 130 | DO J = 1-OLy,sNy+OLy | 
| 131 | DO I = 1-OLx,sNx+OLx | 
| 132 | shiTransCoeffT(i,j,bi,bj) = SHELFICEheatTransCoeff | 
| 133 | shiTransCoeffS(i,j,bi,bj) = SHELFICEsaltTransCoeff | 
| 134 | ENDDO | 
| 135 | ENDDO | 
| 136 | ENDDO | 
| 137 | ENDDO | 
| 138 | #endif /* ALLOW_AUTODIFF */ | 
| 139 | IF ( SHELFICEuseGammaFrict ) THEN | 
| 140 | C     Implement friction velocity-dependent transfer coefficient | 
| 141 | C     of Holland and Jenkins, JPO, 1999 | 
| 142 | recip_shiKarman= 1. _d 0 / 0.4 _d 0 | 
| 143 | shiLo = 0. _d 0 | 
| 144 | shiPr = shiPrandtl**shiTwoThirds | 
| 145 | shiSc = shiSchmidt**shiTwoThirds | 
| 146 | cph      shiPr = (viscArNr(1)/diffKrNrT(1))**shiTwoThirds | 
| 147 | cph      shiSc = (viscArNr(1)/diffKrNrS(1))**shiTwoThirds | 
| 148 | gammaTmoleT = 12.5 _d 0 * shiPr - 6. _d 0 | 
| 149 | gammaTmoleS = 12.5 _d 0 * shiSc - 6. _d 0 | 
| 150 | C     instead of etastar = sqrt(1+zetaN*ustar./(f*Lo*Rc)) | 
| 151 | etastar = 1. _d 0 | 
| 152 | gammaTurbConst  = 1. _d 0 / (2. _d 0 * shiZetaN*etastar) | 
| 153 | &      - recip_shiKarman | 
| 154 | #ifdef ALLOW_AUTODIFF | 
| 155 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 156 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 157 | DO J = 1-OLy,sNy+OLy | 
| 158 | DO I = 1-OLx,sNx+OLx | 
| 159 | shiTransCoeffT(i,j,bi,bj) = 0. _d 0 | 
| 160 | shiTransCoeffS(i,j,bi,bj) = 0. _d 0 | 
| 161 | ENDDO | 
| 162 | ENDDO | 
| 163 | ENDDO | 
| 164 | ENDDO | 
| 165 | #endif /* ALLOW_AUTODIFF */ | 
| 166 | ENDIF | 
| 167 | #endif /* SHI_ALLOW_GAMMAFRICT */ | 
| 168 |  | 
| 169 | recip_latentHeat = 0. _d 0 | 
| 170 | IF ( SHELFICElatentHeat .NE. 0. _d 0 ) | 
| 171 | &     recip_latentHeat = 1. _d 0/SHELFICElatentHeat | 
| 172 | C     are we doing the conservative form of Jenkins et al. (2001)? | 
| 173 | recip_Cp = 1. _d 0 / HeatCapacity_Cp | 
| 174 | cFac = 0. _d 0 | 
| 175 | IF ( SHELFICEconserve ) cFac = 1. _d 0 | 
| 176 |  | 
| 177 | realFWfac = 0. _d 0 | 
| 178 | IF ( SHELFICErealFWflux ) realFWfac = 1. _d 0 | 
| 179 | C     with "real fresh water flux" (affecting ETAN), | 
| 180 | C     there is more to modify | 
| 181 | rFac = 1. _d 0 | 
| 182 | IF ( SHELFICEconserve .AND. useRealFreshWaterFlux ) rFac = 0. _d 0 | 
| 183 | C     heat flux into the ice shelf, default is diffusive flux | 
| 184 | C     (Holland and Jenkins, 1999, eq.21) | 
| 185 | dFac = 0. _d 0 | 
| 186 | IF ( SHELFICEadvDiffHeatFlux ) dFac = 1. _d 0 | 
| 187 | fwflxFac = 0. _d 0 | 
| 188 | C     linear dependence of freezing point on salinity | 
| 189 | a0 = -0.0575   _d  0 | 
| 190 | a1 =  0.0      _d -0 | 
| 191 | a2 =  0.0      _d -0 | 
| 192 | c0 =  0.0901   _d  0 | 
| 193 | b  =  -7.61    _d -4 | 
| 194 | #ifdef ALLOW_ISOMIP_TD | 
| 195 | IF ( useISOMIPTD ) THEN | 
| 196 | C     non-linear dependence of freezing point on salinity | 
| 197 | a0 = -0.0575   _d  0 | 
| 198 | a1 = 1.710523  _d -3 | 
| 199 | a2 = -2.154996 _d -4 | 
| 200 | b  = -7.53     _d -4 | 
| 201 | c0 = 0. _d 0 | 
| 202 | ENDIF | 
| 203 | convertFW2SaltLoc = convertFW2Salt | 
| 204 | C     hardcoding this value here is OK because it only applies to ISOMIP | 
| 205 | C     where this value is part of the protocol | 
| 206 | IF ( convertFW2SaltLoc .EQ. -1. ) convertFW2SaltLoc = 33.4 _d 0 | 
| 207 | #endif /* ALLOW_ISOMIP_TD */ | 
| 208 |  | 
| 209 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 210 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 211 | DO J = 1-OLy,sNy+OLy | 
| 212 | DO I = 1-OLx,sNx+OLx | 
| 213 | shelfIceHeatFlux      (I,J,bi,bj) = 0. _d 0 | 
| 214 | shelfIceFreshWaterFlux(I,J,bi,bj) = 0. _d 0 | 
| 215 | shelficeForcingT      (I,J,bi,bj) = 0. _d 0 | 
| 216 | shelficeForcingS      (I,J,bi,bj) = 0. _d 0 | 
| 217 | #if (defined SHI_ALLOW_GAMMAFRICT && defined ALLOW_DIAGNOSTICS) | 
| 218 | uStarDiag             (I,J,bi,bj) = 0. _d 0 | 
| 219 | #endif /* SHI_ALLOW_GAMMAFRICT and ALLOW_DIAGNOSTICS */ | 
| 220 | ENDDO | 
| 221 | ENDDO | 
| 222 | ENDDO | 
| 223 | ENDDO | 
| 224 | #ifdef ALLOW_SHIFWFLX_CONTROL | 
| 225 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 226 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 227 | DO J = 1-OLy,sNy+OLy | 
| 228 | DO I = 1-OLx,sNx+OLx | 
| 229 | xx_shifwflx_loc(I,J,bi,bj) = 0. _d 0 | 
| 230 | ENDDO | 
| 231 | ENDDO | 
| 232 | ENDDO | 
| 233 | ENDDO | 
| 234 | #ifdef ALLOW_CTRL | 
| 235 | if (useCTRL) CALL CTRL_GET_GEN ( | 
| 236 | &     xx_shifwflx_file, xx_shifwflxstartdate, xx_shifwflxperiod, | 
| 237 | &     maskSHI, xx_shifwflx_loc, xx_shifwflx0, xx_shifwflx1, | 
| 238 | &     xx_shifwflx_dummy, | 
| 239 | &     xx_shifwflx_remo_intercept, xx_shifwflx_remo_slope, | 
| 240 | &     wshifwflx, | 
| 241 | &     myTime, myIter, myThid ) | 
| 242 | #endif | 
| 243 | #endif /* ALLOW_SHIFWFLX_CONTROL */ | 
| 244 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 245 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 246 |  | 
| 247 | IF ( SHELFICEBoundaryLayer ) THEN | 
| 248 | C--   average over boundary layer width | 
| 249 | DO J = 1, sNy+1 | 
| 250 | DO I = 1, sNx+1 | 
| 251 | u_topdr(I,J,bi,bj) = 0.0 | 
| 252 | v_topdr(I,J,bi,bj) = 0.0 | 
| 253 | ENDDO | 
| 254 | ENDDO | 
| 255 | ENDIF | 
| 256 |  | 
| 257 | #ifdef ALLOW_AUTODIFF_TAMC | 
| 258 | # ifdef SHI_ALLOW_GAMMAFRICT | 
| 259 | act1 = bi - myBxLo(myThid) | 
| 260 | max1 = myBxHi(myThid) - myBxLo(myThid) + 1 | 
| 261 | act2 = bj - myByLo(myThid) | 
| 262 | max2 = myByHi(myThid) - myByLo(myThid) + 1 | 
| 263 | act3 = myThid - 1 | 
| 264 | max3 = nTx*nTy | 
| 265 | act4 = ikey_dynamics - 1 | 
| 266 | ikey = (act1 + 1) + act2*max1 | 
| 267 | &                    + act3*max1*max2 | 
| 268 | &                    + act4*max1*max2*max3 | 
| 269 | # endif /* SHI_ALLOW_GAMMAFRICT */ | 
| 270 | #endif /* ALLOW_AUTODIFF_TAMC */ | 
| 271 | DO J = 1, sNy | 
| 272 | DO I = 1, sNx | 
| 273 | C--   make local copies of temperature, salinity and depth (pressure in deci-bar) | 
| 274 | C--   underneath the ice | 
| 275 | K         = MAX(1,kTopC(I,J,bi,bj)) | 
| 276 | pLoc(I,J) = ABS(R_shelfIce(I,J,bi,bj)) | 
| 277 | c         pLoc(I,J) = shelficeMass(I,J,bi,bj)*gravity*1. _d -4 | 
| 278 | tLoc(I,J) = theta(I,J,K,bi,bj) | 
| 279 | sLoc(I,J) = MAX(salt(I,J,K,bi,bj), zeroRL) | 
| 280 | IF ( .not.SHELFICEBoundaryLayer ) THEN | 
| 281 | uLoc(I,J) = recip_hFacC(I,J,K,bi,bj) * | 
| 282 | &         ( uVel(I,  J,K,bi,bj) * _hFacW(I,  J,K,bi,bj) | 
| 283 | &         + uVel(I+1,J,K,bi,bj) * _hFacW(I+1,J,K,bi,bj) ) | 
| 284 | vLoc(I,J) = recip_hFacC(I,J,K,bi,bj) * | 
| 285 | &         ( vVel(I,  J,K,bi,bj) * _hFacS(I,  J,K,bi,bj) | 
| 286 | &         + vVel(I,J+1,K,bi,bj) * _hFacS(I,J+1,K,bi,bj) ) | 
| 287 | ENDIF | 
| 288 | ENDDO | 
| 289 | ENDDO | 
| 290 |  | 
| 291 | !         IF ( SHELFICEBoundaryLayer ) THEN | 
| 292 | !          DO J = 1, sNy+1 | 
| 293 | !           DO I = 1, sNx+1 | 
| 294 | ! | 
| 295 | !            K = ksurfW(I,J,bi,bj) | 
| 296 | !            Kp1 = K+1 | 
| 297 | !            Kp2 = K+2 | 
| 298 | ! | 
| 299 | !            IF (ShelficeThickBoundaryLayer .and. | 
| 300 | !      &      (K.ne.0.and.K.LT.Nr-1)) THEN | 
| 301 | ! | 
| 302 | !             drKp1 = drF(K)*( 1.5 - _hFacW(I,J,K,bi,bj) ) | 
| 303 | !             drKp2 = drKp1 - drF(kp1)*_hFacW(I,J,kp1,bi,bj) | 
| 304 | !             drKp2 = MAX( drKp2, 0. _d 0) | 
| 305 | !             drKp2 = MIN( drKp2, | 
| 306 | !      &        drF(kp2)*_hFacW(I,J,kp2,bi,bj)) | 
| 307 | !             drKp1 = drKp1 - drKp2 | 
| 308 | !             drKp1 = MAX( drKp1, 0. _d 0) | 
| 309 | !             recip_drLoc = 1. _d 0 / | 
| 310 | !      &           (drF(K)*_hFacW(I,J,K,bi,bj)+drKp1+drKp2) | 
| 311 | !             u_topdr(I,J,bi,bj) = | 
| 312 | !      &       (drF(K)*_hFacW(I,J,K,bi,bj)*uVel(I,J,K,bi,bj) + | 
| 313 | !      &        drKp1*uVel(I,J,Kp1,bi,bj)) * recip_drLoc | 
| 314 | !             u_topdr(I,J,bi,bj) = u_topdr(I,J,bi,bj) + | 
| 315 | !      &        drKp2 * uVel(I,J,Kp2,bi,bj) * recip_drLoc | 
| 316 | ! | 
| 317 | !            ELSEIF ( (K .NE. 0 .AND. K.EQ.Nr-1) .OR. | 
| 318 | !      &      (.not.SHELFICEthickboundarylayer.AND. | 
| 319 | !      &       (K .NE. 0 .AND. K .LT. Nr) ) ) THEN | 
| 320 | ! | 
| 321 | !             drKp1 = drF(K)*(1. _d 0-_hFacW(I,J,K,bi,bj)) | 
| 322 | !             drKp1 = max (drKp1, 0. _d 0) | 
| 323 | !             recip_drLoc = 1.0 / | 
| 324 | !      &       (drF(K)*_hFacW(I,J,K,bi,bj)+drKp1) | 
| 325 | !             u_topdr(I,J,bi,bj) = | 
| 326 | !      &       (drF(K)*_hFacW(I,J,K,bi,bj)*uVel(I,J,K,bi,bj) + | 
| 327 | !      &        drKp1*uVel(I,J,Kp1,bi,bj)) | 
| 328 | !      &      * recip_drLoc | 
| 329 | ! | 
| 330 | !            ELSE | 
| 331 | ! | 
| 332 | !             u_topdr(I,J,bi,bj) = 0. _d 0 | 
| 333 | ! | 
| 334 | !            ENDIF | 
| 335 | ! | 
| 336 | !            K = ksurfS(I,J,bi,bj) | 
| 337 | !            Kp1 = K+1 | 
| 338 | !            Kp2 = K+2 | 
| 339 | ! | 
| 340 | !            IF (ShelficeThickBoundaryLayer .and. | 
| 341 | !      &      (K.ne.0.and.K.LT.Nr-1)) THEN | 
| 342 | ! | 
| 343 | !             drKp1 = drF(K)*( 1.5 - _hFacS(I,J,K,bi,bj) ) | 
| 344 | !             drKp2 = drKp1 - drF(kp1)*_hFacS(I,J,kp1,bi,bj) | 
| 345 | !             drKp2 = MAX( drKp2, 0. _d 0) | 
| 346 | !             drKp2 = MIN( drKp2, | 
| 347 | !      &        drF(kp2)*_hFacS(I,J,kp2,bi,bj)) | 
| 348 | !             drKp1 = drKp1 - drKp2 | 
| 349 | !             drKp1 = MAX( drKp1, 0. _d 0) | 
| 350 | !             recip_drLoc = 1. _d 0 / | 
| 351 | !      &           (drF(K)*_hFacS(I,J,K,bi,bj)+drKp1+drKp2) | 
| 352 | !             v_topdr(I,J,bi,bj) = | 
| 353 | !      &       (drF(K)*_hFacS(I,J,K,bi,bj)*vVel(I,J,K,bi,bj) + | 
| 354 | !      &        drKp1*vVel(I,J,Kp1,bi,bj)) * recip_drLoc | 
| 355 | !             v_topdr(I,J,bi,bj) = v_topdr(I,J,bi,bj) + | 
| 356 | !      &        drKp2 * vVel(I,J,Kp2,bi,bj) * recip_drLoc | 
| 357 | ! | 
| 358 | !            ELSEIF ( (K .NE. 0 .AND. K.EQ.Nr-1) .OR. | 
| 359 | !      &      ((.NOT.SHELFICEthickboundarylayer).AND. | 
| 360 | !      &       (K .NE. 0 .AND. K .LT. Nr) ) ) THEN | 
| 361 | ! | 
| 362 | !             drKp1 = drF(K)*(1. _d 0-_hFacS(I,J,K,bi,bj)) | 
| 363 | !             drKp1 = max (drKp1, 0. _d 0) | 
| 364 | !             recip_drLoc = 1.0 / | 
| 365 | !      &       (drF(K)*_hFacS(I,J,K,bi,bj)+drKp1) | 
| 366 | !             v_topdr(I,J,bi,bj) = | 
| 367 | !      &       (drF(K)*_hFacS(I,J,K,bi,bj)*vVel(I,J,K,bi,bj) + | 
| 368 | !      &        drKp1*vVel(I,J,Kp1,bi,bj)) | 
| 369 | !      &      * recip_drLoc | 
| 370 | ! | 
| 371 | !            ELSE | 
| 372 | ! | 
| 373 | !             v_topdr(I,J,bi,bj) = 0. _d 0 | 
| 374 | ! | 
| 375 | !            ENDIF | 
| 376 | ! | 
| 377 | !           ENDDO | 
| 378 | !          ENDDO | 
| 379 | !         ENDIF | 
| 380 |  | 
| 381 | IF ( SHELFICEBoundaryLayer ) THEN | 
| 382 | DO J = 1, sNy+1 | 
| 383 | DO I = 1, sNx+1 | 
| 384 | K = ksurfW(I,J,bi,bj) | 
| 385 | Kp1 = K+1 | 
| 386 | IF (K.lt.Nr) then | 
| 387 | drKp1 = drF(K)*(1. _d 0-_hFacW(I,J,K,bi,bj)) | 
| 388 | drKp1 = max (drKp1, 0. _d 0) | 
| 389 | recip_drLoc = 1.0 / | 
| 390 | &       (drF(K)*_hFacW(I,J,K,bi,bj)+drKp1) | 
| 391 | u_topdr(I,J,bi,bj) = | 
| 392 | &       (drF(K)*_hFacW(I,J,K,bi,bj)*uVel(I,J,K,bi,bj) + | 
| 393 | &        drKp1*uVel(I,J,Kp1,bi,bj)) | 
| 394 | &      * recip_drLoc | 
| 395 | ELSE | 
| 396 | u_topdr(I,J,bi,bj) = 0. _d 0 | 
| 397 | ENDIF | 
| 398 |  | 
| 399 | K = ksurfS(I,J,bi,bj) | 
| 400 | Kp1 = K+1 | 
| 401 | IF (K.lt.Nr) then | 
| 402 | drKp1 = drF(K)*(1. _d 0-_hFacS(I,J,K,bi,bj)) | 
| 403 | drKp1 = max (drKp1, 0. _d 0) | 
| 404 | recip_drLoc = 1.0 / | 
| 405 | &       (drF(K)*_hFacS(I,J,K,bi,bj)+drKp1) | 
| 406 | v_topdr(I,J,bi,bj) = | 
| 407 | &       (drF(K)*_hFacS(I,J,K,bi,bj)*vVel(I,J,K,bi,bj) + | 
| 408 | &        drKp1*vVel(I,J,Kp1,bi,bj)) | 
| 409 | &      * recip_drLoc | 
| 410 | ELSE | 
| 411 | v_topdr(I,J,bi,bj) = 0. _d 0 | 
| 412 | ENDIF | 
| 413 |  | 
| 414 | ENDDO | 
| 415 | ENDDO | 
| 416 | ENDIF | 
| 417 |  | 
| 418 | IF ( SHELFICEBoundaryLayer ) THEN | 
| 419 | C--   average over boundary layer width | 
| 420 | DO J = 1, sNy | 
| 421 | DO I = 1, sNx | 
| 422 | K   = kTopC(I,J,bi,bj) | 
| 423 | IF ( K .NE. 0 .AND. K .LT. Nr ) THEN | 
| 424 | Kp1 = MIN(Nr,K+1) | 
| 425 | C--   overlap into lower cell | 
| 426 | drKp1 = drF(K)*( 1. _d 0 - _hFacC(I,J,K,bi,bj) ) | 
| 427 | C-- Dans fix | 
| 428 | drKp1 = MAX(drKp1, 0.) | 
| 429 | C--   lower cell may not be as thick as required | 
| 430 | drKp1 = MIN( drKp1, drF(Kp1) * _hFacC(I,J,Kp1,bi,bj) ) | 
| 431 | recip_drLoc = 1. _d 0 / | 
| 432 | &           ( drF(K)*_hFacC(I,J,K,bi,bj) + drKp1 ) | 
| 433 | tLoc(I,J) = ( tLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) | 
| 434 | &           + theta(I,J,Kp1,bi,bj) *drKp1 ) | 
| 435 | &           * recip_drLoc | 
| 436 | sLoc(I,J) = ( sLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) | 
| 437 | &           + MAX(salt(I,J,Kp1,bi,bj), zeroRL) * drKp1 ) | 
| 438 | &           * recip_drLoc | 
| 439 |  | 
| 440 | !              uLoc(I,J) = ( uLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) | 
| 441 | !      &           + drKp1 * recip_hFacC(I,J,Kp1,bi,bj) * | 
| 442 | !      &           ( uVel(I,  J,Kp1,bi,bj) * _hFacW(I,  J,Kp1,bi,bj) | 
| 443 | !      &           + uVel(I+1,J,Kp1,bi,bj) * _hFacW(I+1,J,Kp1,bi,bj) ) | 
| 444 | !      &           ) * recip_drLoc | 
| 445 | !             vLoc(I,J) = ( vLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) | 
| 446 | !      &           + drKp1 * recip_hFacC(I,J,Kp1,bi,bj) * | 
| 447 | !      &           ( vVel(I,J,  Kp1,bi,bj) * _hFacS(I,J,  Kp1,bi,bj) | 
| 448 | !      &           + vVel(I,J+1,Kp1,bi,bj) * _hFacS(I,J+1,Kp1,bi,bj) ) | 
| 449 | !      &           ) * recip_drLoc | 
| 450 | ENDIF | 
| 451 | ENDDO | 
| 452 | ENDDO | 
| 453 | ENDIF | 
| 454 |  | 
| 455 |  | 
| 456 | IF ( SHELFICEBoundaryLayer ) THEN | 
| 457 | DO J = 1, sNy | 
| 458 | DO I = 1, sNx | 
| 459 | uLoc(I,J) = | 
| 460 | &      u_topdr(I,J,bi,bj) + u_topdr(I+1,J,bi,bj) | 
| 461 | vLoc(I,J) = | 
| 462 | &      v_topdr(I,J,bi,bj) + v_topdr(I,J+1,bi,bj) | 
| 463 | ENDDO | 
| 464 | ENDDO | 
| 465 | ENDIF | 
| 466 |  | 
| 467 | C--   turn potential temperature into in-situ temperature relative | 
| 468 | C--   to the surface | 
| 469 | DO J = 1, sNy | 
| 470 | DO I = 1, sNx | 
| 471 | #ifndef ALLOW_OPENAD | 
| 472 | tLoc(I,J) = SW_TEMP(sLoc(I,J),tLoc(I,J),pLoc(I,J),zeroRL) | 
| 473 | #else | 
| 474 | CALL SW_TEMP(sLoc(I,J),tLoc(I,J),pLoc(I,J),zeroRL,tLoc(I,J)) | 
| 475 | #endif | 
| 476 | ENDDO | 
| 477 | ENDDO | 
| 478 |  | 
| 479 | #ifdef SHI_ALLOW_GAMMAFRICT | 
| 480 | IF ( SHELFICEuseGammaFrict ) THEN | 
| 481 | DO J = 1, sNy | 
| 482 | DO I = 1, sNx | 
| 483 | K = kTopC(I,J,bi,bj) | 
| 484 | IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN | 
| 485 | ustarSq = shiCdrag * MAX( 1.D-6, | 
| 486 | &           0.25 _d 0 *(uLoc(I,J)*uLoc(I,J)+vLoc(I,J)*vLoc(I,J)) ) | 
| 487 | ustar   = SQRT(ustarSq) | 
| 488 | #ifdef ALLOW_DIAGNOSTICS | 
| 489 | uStarDiag(I,J,bi,bj) = ustar | 
| 490 | #endif /* ALLOW_DIAGNOSTICS */ | 
| 491 | C     instead of etastar = sqrt(1+zetaN*ustar./(f*Lo*Rc)) | 
| 492 | C           etastar = 1. _d 0 | 
| 493 | C           gammaTurbConst  = 1. _d 0 / (2. _d 0 * shiZetaN*etastar) | 
| 494 | C    &           - recip_shiKarman | 
| 495 | IF ( fCori(I,J,bi,bj) .NE. 0. _d 0 ) THEN | 
| 496 | gammaTurb = LOG( ustarSq * shiZetaN * etastar**2 | 
| 497 | &            / ABS(fCori(I,J,bi,bj) * 5.0 _d 0 * shiKinVisc)) | 
| 498 | &            * recip_shiKarman | 
| 499 | &            + gammaTurbConst | 
| 500 | C     Do we need to catch the unlikely case of very small ustar | 
| 501 | C     that can lead to negative gammaTurb? | 
| 502 | C            gammaTurb = MAX(0.D0, gammaTurb) | 
| 503 | ELSE | 
| 504 | gammaTurb = gammaTurbConst | 
| 505 | ENDIF | 
| 506 | shiTransCoeffT(i,j,bi,bj) = MAX( zeroRL, | 
| 507 | &           ustar/(gammaTurb + gammaTmoleT) ) | 
| 508 | shiTransCoeffS(i,j,bi,bj) = MAX( zeroRL, | 
| 509 | &           ustar/(gammaTurb + gammaTmoleS) ) | 
| 510 | ENDIF | 
| 511 | ENDDO | 
| 512 | ENDDO | 
| 513 | ENDIF | 
| 514 | #endif /* SHI_ALLOW_GAMMAFRICT */ | 
| 515 |  | 
| 516 | #ifdef ALLOW_AUTODIFF_TAMC | 
| 517 | # ifdef SHI_ALLOW_GAMMAFRICT | 
| 518 | CADJ STORE shiTransCoeffS(:,:,bi,bj) = comlev1_bibj, | 
| 519 | CADJ &     key=ikey, byte=isbyte | 
| 520 | CADJ STORE shiTransCoeffT(:,:,bi,bj) = comlev1_bibj, | 
| 521 | CADJ &     key=ikey, byte=isbyte | 
| 522 | # endif /* SHI_ALLOW_GAMMAFRICT */ | 
| 523 | #endif /* ALLOW_AUTODIFF_TAMC */ | 
| 524 | #ifdef ALLOW_ISOMIP_TD | 
| 525 | IF ( useISOMIPTD ) THEN | 
| 526 | DO J = 1, sNy | 
| 527 | DO I = 1, sNx | 
| 528 | K = kTopC(I,J,bi,bj) | 
| 529 | IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN | 
| 530 | C--   Calculate freezing temperature as a function of salinity and pressure | 
| 531 | thetaFreeze = | 
| 532 | &           sLoc(I,J) * ( a0 + a1*sqrt(sLoc(I,J)) + a2*sLoc(I,J) ) | 
| 533 | &           + b*pLoc(I,J) + c0 | 
| 534 | C--   Calculate the upward heat and  fresh water fluxes | 
| 535 | shelfIceHeatFlux(I,J,bi,bj) = maskC(I,J,K,bi,bj) | 
| 536 | &           * shiTransCoeffT(i,j,bi,bj) | 
| 537 | &           * ( tLoc(I,J) - thetaFreeze ) | 
| 538 | &           * HeatCapacity_Cp*rUnit2mass | 
| 539 | #ifdef ALLOW_SHIFWFLX_CONTROL | 
| 540 | &           - xx_shifwflx_loc(I,J,bi,bj)*SHELFICElatentHeat | 
| 541 | #endif /*  ALLOW_SHIFWFLX_CONTROL */ | 
| 542 | C     upward heat flux into the shelf-ice implies basal melting, | 
| 543 | C     thus a downward (negative upward) fresh water flux (as a mass flux), | 
| 544 | C     and vice versa | 
| 545 | shelfIceFreshWaterFlux(I,J,bi,bj) = | 
| 546 | &           - shelfIceHeatFlux(I,J,bi,bj) | 
| 547 | &           *recip_latentHeat | 
| 548 | C--   compute surface tendencies | 
| 549 | shelficeForcingT(i,j,bi,bj) = | 
| 550 | &           - shelfIceHeatFlux(I,J,bi,bj) | 
| 551 | &           *recip_Cp*mass2rUnit | 
| 552 | &           - cFac * shelfIceFreshWaterFlux(I,J,bi,bj)*mass2rUnit | 
| 553 | &           * ( thetaFreeze - tLoc(I,J) ) | 
| 554 | shelficeForcingS(i,j,bi,bj) = | 
| 555 | &           shelfIceFreshWaterFlux(I,J,bi,bj) * mass2rUnit | 
| 556 | &           * ( cFac*sLoc(I,J) + (1. _d 0-cFac)*convertFW2SaltLoc ) | 
| 557 | C--   stress at the ice/water interface is computed in separate | 
| 558 | C     routines that are called from mom_fluxform/mom_vecinv | 
| 559 | ELSE | 
| 560 | shelfIceHeatFlux      (I,J,bi,bj) = 0. _d 0 | 
| 561 | shelfIceFreshWaterFlux(I,J,bi,bj) = 0. _d 0 | 
| 562 | shelficeForcingT      (I,J,bi,bj) = 0. _d 0 | 
| 563 | shelficeForcingS      (I,J,bi,bj) = 0. _d 0 | 
| 564 | ENDIF | 
| 565 | ENDDO | 
| 566 | ENDDO | 
| 567 | ELSE | 
| 568 | #else | 
| 569 | IF ( .TRUE. ) THEN | 
| 570 | #endif /* ALLOW_ISOMIP_TD */ | 
| 571 | C     use BRIOS thermodynamics, following Hellmers PhD thesis: | 
| 572 | C     Hellmer, H., 1989, A two-dimensional model for the thermohaline | 
| 573 | C     circulation under an ice shelf, Reports on Polar Research, No. 60 | 
| 574 | C     (in German). | 
| 575 |  | 
| 576 | DO J = 1, sNy | 
| 577 | DO I = 1, sNx | 
| 578 | K    = kTopC(I,J,bi,bj) | 
| 579 | IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN | 
| 580 | C     heat flux into the ice shelf, default is diffusive flux | 
| 581 | C     (Holland and Jenkins, 1999, eq.21) | 
| 582 | thetaFreeze = a0*sLoc(I,J)+c0+b*pLoc(I,J) | 
| 583 | fwflxFac    = 0. _d 0 | 
| 584 | IF ( tLoc(I,J) .GT. thetaFreeze ) fwflxFac = dFac | 
| 585 | C     a few abbreviations | 
| 586 | eps1 = rUnit2mass*HeatCapacity_Cp | 
| 587 | &           *shiTransCoeffT(i,j,bi,bj) | 
| 588 | eps2 = rUnit2mass*SHELFICElatentHeat | 
| 589 | &           *shiTransCoeffS(i,j,bi,bj) | 
| 590 | eps5 = rUnit2mass*HeatCapacity_Cp | 
| 591 | &           *shiTransCoeffS(i,j,bi,bj) | 
| 592 |  | 
| 593 | C     solve quadratic equation for salinity at shelfice-ocean interface | 
| 594 | C     note: this part of the code is not very intuitive as it involves | 
| 595 | C     many arbitrary abbreviations that were introduced to derive the | 
| 596 | C     correct form of the quadratic equation for salinity. The abbreviations | 
| 597 | C     only make sense in connection with my notes on this (M.Losch) | 
| 598 | C | 
| 599 | C     eps3a was introduced as a constant variant of eps3 to avoid AD of | 
| 600 | C     code of typ (pLoc-const)/pLoc | 
| 601 | eps3a = rhoShelfIce*SHELFICEheatCapacity_Cp | 
| 602 | &           * SHELFICEkappa *  ( 1. _d 0 - dFac ) | 
| 603 | eps3 = eps3a/pLoc(I,J) | 
| 604 | eps4 = b*pLoc(I,J) + c0 | 
| 605 | eps6 = eps4 - tLoc(I,J) | 
| 606 | eps7 = eps4 - SHELFICEthetaSurface | 
| 607 | eps8 = rUnit2mass*SHELFICEheatCapacity_Cp | 
| 608 | &           *shiTransCoeffS(i,j,bi,bj) * fwflxFac | 
| 609 | aqe = a0  *(eps1+eps3-eps8) | 
| 610 | recip_aqe = 0. _d 0 | 
| 611 | IF ( aqe .NE. 0. _d 0 ) recip_aqe = 0.5 _d 0/aqe | 
| 612 | c           bqe = eps1*eps6 + eps3*eps7 - eps2 | 
| 613 | bqe = eps1*eps6 | 
| 614 | &           + eps3a*( b | 
| 615 | &                   + ( c0 - SHELFICEthetaSurface )/pLoc(I,J) ) | 
| 616 | &           - eps2 | 
| 617 | &           + eps8*( a0*sLoc(I,J) - eps7 ) | 
| 618 | cqe = ( eps2 + eps8*eps7 )*sLoc(I,J) | 
| 619 | discrim = bqe*bqe - 4. _d 0*aqe*cqe | 
| 620 | #undef ALLOW_SHELFICE_DEBUG | 
| 621 | #ifdef ALLOW_SHELFICE_DEBUG | 
| 622 | IF ( discrim .LT. 0. _d 0 ) THEN | 
| 623 | print *, 'ml-shelfice: discrim = ', discrim,aqe,bqe,cqe | 
| 624 | print *, 'ml-shelfice: pLoc    = ', pLoc(I,J) | 
| 625 | print *, 'ml-shelfice: tLoc    = ', tLoc(I,J) | 
| 626 | print *, 'ml-shelfice: sLoc    = ', sLoc(I,J) | 
| 627 | print *, 'ml-shelfice: tsurface= ', | 
| 628 | &            SHELFICEthetaSurface | 
| 629 | print *, 'ml-shelfice: eps1    = ', eps1 | 
| 630 | print *, 'ml-shelfice: eps2    = ', eps2 | 
| 631 | print *, 'ml-shelfice: eps3    = ', eps3 | 
| 632 | print *, 'ml-shelfice: eps4    = ', eps4 | 
| 633 | print *, 'ml-shelfice: eps5    = ', eps5 | 
| 634 | print *, 'ml-shelfice: eps6    = ', eps6 | 
| 635 | print *, 'ml-shelfice: eps7    = ', eps7 | 
| 636 | print *, 'ml-shelfice: eps8    = ', eps8 | 
| 637 | print *, 'ml-shelfice: rU2mass = ', rUnit2mass | 
| 638 | print *, 'ml-shelfice: rhoIce  = ', rhoShelfIce | 
| 639 | print *, 'ml-shelfice: cFac    = ', cFac | 
| 640 | print *, 'ml-shelfice: Cp_W    = ', HeatCapacity_Cp | 
| 641 | print *, 'ml-shelfice: Cp_I    = ', | 
| 642 | &            SHELFICEHeatCapacity_Cp | 
| 643 | print *, 'ml-shelfice: gammaT  = ', | 
| 644 | &            SHELFICEheatTransCoeff | 
| 645 | print *, 'ml-shelfice: gammaS  = ', | 
| 646 | &            SHELFICEsaltTransCoeff | 
| 647 | print *, 'ml-shelfice: lat.heat= ', | 
| 648 | &            SHELFICElatentHeat | 
| 649 | STOP 'ABNORMAL END in S/R SHELFICE_THERMODYNAMICS' | 
| 650 | ENDIF | 
| 651 | #endif /* ALLOW_SHELFICE_DEBUG */ | 
| 652 | saltFreeze = (- bqe - SQRT(discrim))*recip_aqe | 
| 653 | IF ( saltFreeze .LT. 0. _d 0 ) | 
| 654 | &           saltFreeze = (- bqe + SQRT(discrim))*recip_aqe | 
| 655 | thetaFreeze = a0*saltFreeze + eps4 | 
| 656 | C--   upward fresh water flux due to melting (in kg/m^2/s) | 
| 657 | cph change to identical form | 
| 658 | cph            freshWaterFlux = rUnit2mass | 
| 659 | cph     &           * shiTransCoeffS(i,j,bi,bj) | 
| 660 | cph     &           * ( saltFreeze - sLoc(I,J) ) / saltFreeze | 
| 661 | freshWaterFlux = rUnit2mass | 
| 662 | &           * shiTransCoeffS(i,j,bi,bj) | 
| 663 | &           * ( 1. _d 0 - sLoc(I,J) / saltFreeze ) | 
| 664 | #ifdef ALLOW_SHIFWFLX_CONTROL | 
| 665 | &           + xx_shifwflx_loc(I,J,bi,bj) | 
| 666 | #endif /*  ALLOW_SHIFWFLX_CONTROL */ | 
| 667 | C--   Calculate the upward heat and fresh water fluxes; | 
| 668 | C--   MITgcm sign conventions: downward (negative) fresh water flux | 
| 669 | C--   implies melting and due to upward (positive) heat flux | 
| 670 | shelfIceHeatFlux(I,J,bi,bj) = | 
| 671 | &           ( eps3 | 
| 672 | &           - freshWaterFlux*SHELFICEheatCapacity_Cp*fwflxFac ) | 
| 673 | &           * ( thetaFreeze - SHELFICEthetaSurface ) | 
| 674 | &           -  cFac*freshWaterFlux*( SHELFICElatentHeat | 
| 675 | &             - HeatCapacity_Cp*( thetaFreeze - rFac*tLoc(I,J) ) ) | 
| 676 | shelfIceFreshWaterFlux(I,J,bi,bj) = freshWaterFlux | 
| 677 | C--   compute surface tendencies | 
| 678 | shelficeForcingT(i,j,bi,bj) = | 
| 679 | &           ( shiTransCoeffT(i,j,bi,bj) | 
| 680 | &           - cFac*shelfIceFreshWaterFlux(I,J,bi,bj)*mass2rUnit ) | 
| 681 | &           * ( thetaFreeze - tLoc(I,J) ) | 
| 682 | &           - realFWfac*shelfIceFreshWaterFlux(I,J,bi,bj)* | 
| 683 | &             mass2rUnit* | 
| 684 | &             ( tLoc(I,J) - theta(I,J,K,bi,bj) ) | 
| 685 | shelficeForcingS(i,j,bi,bj) = | 
| 686 | &           ( shiTransCoeffS(i,j,bi,bj) | 
| 687 | &           - cFac*shelfIceFreshWaterFlux(I,J,bi,bj)*mass2rUnit ) | 
| 688 | &           * ( saltFreeze - sLoc(I,J) ) | 
| 689 | &           - realFWfac*shelfIceFreshWaterFlux(I,J,bi,bj)* | 
| 690 | &             mass2rUnit* | 
| 691 | &             ( sLoc(I,J) - salt(I,J,K,bi,bj) ) | 
| 692 | ELSE | 
| 693 | shelfIceHeatFlux      (I,J,bi,bj) = 0. _d 0 | 
| 694 | shelfIceFreshWaterFlux(I,J,bi,bj) = 0. _d 0 | 
| 695 | shelficeForcingT      (I,J,bi,bj) = 0. _d 0 | 
| 696 | shelficeForcingS      (I,J,bi,bj) = 0. _d 0 | 
| 697 | ENDIF | 
| 698 | ENDDO | 
| 699 | ENDDO | 
| 700 | ENDIF | 
| 701 | C     endif (not) useISOMIPTD | 
| 702 | ENDDO | 
| 703 | ENDDO | 
| 704 |  | 
| 705 | IF (SHELFICEMassStepping) THEN | 
| 706 | !       CALL SHELFICE_STEP_ICEMASS( myTime, myIter, myThid ) | 
| 707 | ENDIF | 
| 708 |  | 
| 709 | C--  Calculate new loading anomaly (in case the ice-shelf mass was updated) | 
| 710 | #ifndef ALLOW_AUTODIFF | 
| 711 | c     IF ( SHELFICEloadAnomalyFile .EQ. ' ' ) THEN | 
| 712 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 713 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 714 | DO j = 1-OLy, sNy+OLy | 
| 715 | DO i = 1-OLx, sNx+OLx | 
| 716 | shelficeLoadAnomaly(i,j,bi,bj) = gravity | 
| 717 | &      *( shelficeMass(i,j,bi,bj) + rhoConst*Ro_surf(i,j,bi,bj) ) | 
| 718 | ENDDO | 
| 719 | ENDDO | 
| 720 | ENDDO | 
| 721 | ENDDO | 
| 722 | c     ENDIF | 
| 723 | #endif /* ndef ALLOW_AUTODIFF */ | 
| 724 |  | 
| 725 | #ifdef ALLOW_DIAGNOSTICS | 
| 726 | IF ( useDiagnostics ) THEN | 
| 727 | CALL DIAGNOSTICS_FILL_RS(shelfIceFreshWaterFlux,'SHIfwFlx', | 
| 728 | &      0,1,0,1,1,myThid) | 
| 729 | CALL DIAGNOSTICS_FILL_RS(shelfIceHeatFlux,      'SHIhtFlx', | 
| 730 | &      0,1,0,1,1,myThid) | 
| 731 | C     SHIForcT (Ice shelf forcing for theta [W/m2], >0 increases theta) | 
| 732 | tmpFac = HeatCapacity_Cp*rUnit2mass | 
| 733 | CALL DIAGNOSTICS_SCALE_FILL(shelficeForcingT,tmpFac,1, | 
| 734 | &      'SHIForcT',0,1,0,1,1,myThid) | 
| 735 | C     SHIForcS (Ice shelf forcing for salt [g/m2/s], >0 increases salt) | 
| 736 | tmpFac = rUnit2mass | 
| 737 | CALL DIAGNOSTICS_SCALE_FILL(shelficeForcingS,tmpFac,1, | 
| 738 | &      'SHIForcS',0,1,0,1,1,myThid) | 
| 739 | C     Transfer coefficients | 
| 740 | CALL DIAGNOSTICS_FILL(shiTransCoeffT,'SHIgammT', | 
| 741 | &      0,1,0,1,1,myThid) | 
| 742 | CALL DIAGNOSTICS_FILL(shiTransCoeffS,'SHIgammS', | 
| 743 | &      0,1,0,1,1,myThid) | 
| 744 | C     Friction velocity | 
| 745 | #ifdef SHI_ALLOW_GAMMAFRICT | 
| 746 | IF ( SHELFICEuseGammaFrict ) | 
| 747 | &  CALL DIAGNOSTICS_FILL(uStarDiag,'SHIuStar',0,1,0,1,1,myThid) | 
| 748 | #endif /* SHI_ALLOW_GAMMAFRICT */ | 
| 749 | ENDIF | 
| 750 | CALL DIAGNOSTICS_FILL(R_shelfice,'SHI_Rshelfice', | 
| 751 | &      0,1,0,1,1,myThid) | 
| 752 |  | 
| 753 |  | 
| 754 | #endif /* ALLOW_DIAGNOSTICS */ | 
| 755 |  | 
| 756 | #endif /* ALLOW_SHELFICE */ | 
| 757 | RETURN | 
| 758 | END |