/[MITgcm]/MITgcm_contrib/plumes/plume2dyn.F
ViewVC logotype

Diff of /MITgcm_contrib/plumes/plume2dyn.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by molod, Thu May 13 22:21:45 2004 UTC revision 1.2 by molod, Tue May 25 18:08:51 2004 UTC
# Line 1  Line 1 
1        subroutine plume2dyn(qplume,idimin,jdimin,Lmplume,        subroutine plume2dyn(qplume,Nxplume,Lmplume,uref,vref,flag,
2       .     idim1,idim2,jdim1,jdim2,Lmout,Nsx,Nsy,bi,bj,qdyn)       .     idim1,idim2,jdim1,jdim2,Lmout,Nsx,Nsy,bi,bj,qdyn1,qdyn2)
3  C***********************************************************************  C***********************************************************************
4  C Purpose:  C Purpose:
5  C   To interpolate an arbitrary quantity from higher resolution plumes  C   To interpolate an arbitrary quantity from higher resolution plume
6  C         grid to the model's dynamics grid  C         grid to the model's dynamics grid
7  C Algorithm:  C Algorithm:
8  C   Plumes -> Dynamics computes the plumes are mean value  C   Plumes -> Dynamics computes the plumes mean value, and in the case
9    C             of a vector field, preserves the direction of a vector
10    C             given in (uref,vref)
11  C  C
12  C Input:  C Input:
13  C   qplume... [im,jm,Lmplume] Arbitrary Quantity on Input Grid  C   qplume... [idim2,jdim2,im,Lmplume,bi] Quantity on Input Grid
 C   pephy.... [im,jm,Lmplume+1] Pressures at bottom edges of input levels  
14  C   idimin... Longitude Dimension of Input  C   idimin... Longitude Dimension of Input
 C   jdimin... Latitude  Dimension of Input  
15  C   Lmplume.. Vertical  Dimension of Input  C   Lmplume.. Vertical  Dimension of Input
16    C   uref .... [im,jm,Lmout,bi,bj] Reference u-component of velocity
17    C   vref .... [im,jm,Lmout,bi,bj] Reference v-component of velocity
18    C   flag .... Flag to indicate vector (1) or scalar (0) interpolation
19    C   idim1,2.. Beginning and ending i-values of output grid
20    C   jdim1,2.. Beginning and ending j-values of output grid
21    C   Lmout.... Vertical  Dimension of Output
22  C   Nsx...... Number of processes in x-direction  C   Nsx...... Number of processes in x-direction
23  C   Nsy...... Number of processes in y-direction  C   Nsy...... Number of processes in y-direction
 C   idim1,2.. Beginning and ending i-values to calculate  
 C   jdim1,2.. Beginning and ending j-values to calculate  
24  C   bi....... Index of process number in x-direction  C   bi....... Index of process number in x-direction
25  C   bj....... Index of process number in x-direction  C   bj....... Index of process number in x-direction
 C   pedyn.... [im,jm,Lmout+1] Pressures at bottom edges of output levels  
 C   Lmout.... Vertical  Dimension of Output  
 C   nlperdyn. Mapping Array-Highest Physics level in each dynmics level  
26  C  C
27  C Output:  C Output:
28  C   qdyn..... [im,jm,Lmout] Quantity at output grid (physics grid)  C   qdyn1..... [im,jm,Lmout,bi,bj] Field at output grid (dynamics)
29    C   qdyn2..... [im,jm,Lmout,bi,bj] Field at output grid (dynamics)
30  C  C
31  C Notes:  C Notes:
32  C   1) This algorithm assumes that the output (physics) grid levels  C   1)  Assume (for now) that the number of vertical levels is the
33  C      fit exactly into the input (dynamics) grid levels  C       same on both the input and output grids
34  C***********************************************************************  C***********************************************************************
35        implicit none        implicit none
36  #include "CPP_OPTIONS.h"  #include "CPP_OPTIONS.h"
37    
38        integer  idimin, jdimin, Lmout, Lmplume, Nsx, Nsy        integer  Nxplume, Lmplume, Lmout, Nsx, Nsy
39        integer idim1, idim2, jdim1, jdim2, bi, bj        integer idim1, idim2, jdim1, jdim2, bi, bj, flag
40        _RL qplume(idimin,jdimin,Lmplume,Nsx,Nsy)        _RL qplume(idim2,jdim2,Nxplume,Lmplume,Nsx)
41        _RL pedyn(idimin,jdimin,Lmout+1,Nsx,Nsy)        _RL uref(idim1:idim2,jdim1:jdim2,Lmout,Nsx,Nsy)
42        _RL pephy(idimin,jdimin,Lmplume+1,Nsx,Nsy)        _RL vref(idim1:idim2,jdim1:jdim2,Lmout,Nsx,Nsy)
43        integer nlperdyn(idimin,jdimin,Lmout,Nsx,Nsy)        _RL qdyn1(idim1:idim2,jdim1:jdim2,Lmout,Nsx,Nsy)
44        _RL qdyn(idimin,jdimin,Lmout,Nsx,Nsy)        _RL qdyn2(idim1:idim2,jdim1:jdim2,Lmout,Nsx,Nsy)
45        integer Lbot(idimin,jdimin,Nsx,Nsy)  
46          integer i,j,L,iplume
47        integer  i,j,L,Lout1,Lout1p1,Lout2,Lphy        _RL qplumeav(idim1,jdim2,Lmplume)
48        _RL getcon, kappa, dpkephy, dpkedyn, sum        _RL sqrtarg
49    
50        kappa = getcon('KAPPA')  C First step - compute the average of qplume over Nxplume
51          do j = jdim1,jdim2
52  c do loop for all dynamics (output) levels        do i = idim1,idim2
53        do L = 1,Lmout         do L = 1,Lmplume
54  c do loop for all grid points          qplumeav(i,j,L) = 0.
55         do j = jdim1,jdim2          do iplume = 1,Nxplume
56          do i = idim1,idim2           qplumeav(i,j,L)=qplumeav(i,j,L)+qplume(i,j,iplume,L,bi)/Nxplume
          qdyn(i,j,L,bi,bj) = 0.  
 c Check to make sure we are above ground - otherwise do nothing  
          if(L.ge.Lbot(i,j,bi,bj))then  
           if(L.eq.Lbot(i,j,bi,bj)) then  
            Lout1 = 0  
           else  
            Lout1 = nlperdyn(i,j,L-1,bi,bj)  
           endif  
           Lout2 = nlperdyn(i,j,L,bi,bj)  
 c do loop for all physics levels contained in this dynamics level  
 cinterp1  dpkedyn = (pedyn(i,j,L,bi,bj)**kappa)-  
 cinterp1                                   (pedyn(i,j,L+1,bi,bj)**kappa)  
           dpkedyn = pedyn(i,j,L,bi,bj)-pedyn(i,j,L+1,bi,bj)  
           sum = 0.  
           Lout1p1 = Lout1+1  
           do Lphy = Lout1p1,Lout2  
 cinterp1   dpkephy = (pephy(i,j,Lphy,bi,bj)**kappa)-  
 cinterp1                                (pephy(i,j,Lphy+1,bi,bj)**kappa)  
            dpkephy = pephy(i,j,Lphy,bi,bj)-pephy(i,j,Lphy+1,bi,bj)  
            sum=sum+qplume(i,j,Lphy,bi,bj)*(dpkephy/dpkedyn)  
           enddo  
           qdyn(i,j,L,bi,bj) = sum  
          endif  
57          enddo          enddo
58         enddo         enddo
59        enddo        enddo
60          enddo
61    
62    C Now check the flag -- if a scalar, we are done - just assign
63    C the average to all the i and j points of the output grid.
64    C If a vector, there is some more work to do in order to preserve
65    C the angle given by uref and vref
66    
67          if (flag.eq.0) then
68           do j = jdim1,jdim2
69           do i = idim1,idim2
70           do L = 1,Lmplume
71            qdyn1(i,j,L,bi,bj) = qplumeav(i,j,L)
72           enddo
73           enddo
74           enddo
75          elseif (flag.eq.1) then
76           do j = jdim1,jdim2
77           do i = idim1,idim2
78           do L = 1,Lmplume
79            sqrtarg = (qplumeav(i,j,L)*qplumeav(i,j,L)) /
80         .  ( ( (uref(i,j,L,bi,bj)*uref(i,j,L,bi,bj)) /
81         .      (vref(i,j,L,bi,bj)*vref(i,j,L,bi,bj)) ) + 1. )
82            qdyn2(i,j,L,bi,bj) = sqrt(sqrtarg)
83            qdyn1(i,j,L,bi,bj) = qdyn2(i,j,L,bi,bj) *
84         .                            (uref(i,j,L,bi,bj)/vref(i,j,L,bi,bj))
85           enddo
86           enddo
87           enddo
88          endif
89    
90        return        return
91        end        end

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.2

  ViewVC Help
Powered by ViewVC 1.1.22