| 1 |
afe |
1.1 |
% converts U (rho), V (theta) and W in polar coords into |
| 2 |
|
|
% proper u,v, and w in cartesian coords, plus into theta and |
| 3 |
|
|
% rho vector components in a more physical annulus layout |
| 4 |
|
|
|
| 5 |
|
|
if (1) |
| 6 |
|
|
% load data |
| 7 |
|
|
Wwhole=rdmds('W'); |
| 8 |
|
|
%Twhole=rdmds('T'); |
| 9 |
|
|
W=Wwhole(:,:,15); |
| 10 |
|
|
% set null-space areas to NaN (makes interpolation happier) |
| 11 |
|
|
W(find(W==0))=NaN; |
| 12 |
|
|
%T(find(T==0))=NaN; |
| 13 |
|
|
%W(120,:)=0.005; |
| 14 |
|
|
[ydim xdim]=size(W); |
| 15 |
|
|
else |
| 16 |
|
|
xdim=31; |
| 17 |
|
|
ydim=120; |
| 18 |
|
|
[X Y ]=meshgrid(1:xdim,1:ydim); |
| 19 |
|
|
W=X; |
| 20 |
|
|
W(:,1:8)=nan; |
| 21 |
|
|
W(:,31)=nan; |
| 22 |
|
|
%W(:,9)=26; |
| 23 |
|
|
|
| 24 |
|
|
|
| 25 |
|
|
end |
| 26 |
|
|
|
| 27 |
|
|
|
| 28 |
|
|
|
| 29 |
|
|
% this determines resolution of interpolated fields |
| 30 |
|
|
% 0.5 is perhaps a bit fine, but it looks pretty |
| 31 |
|
|
%step=0.5; |
| 32 |
|
|
% good for quiver plots |
| 33 |
|
|
% step=1; |
| 34 |
|
|
step=(xdim*2+1)/(xdim*2); |
| 35 |
|
|
|
| 36 |
|
|
|
| 37 |
|
|
rhoi=1:31; |
| 38 |
|
|
thetai=1:120; |
| 39 |
|
|
z=1; |
| 40 |
|
|
|
| 41 |
|
|
|
| 42 |
|
|
|
| 43 |
|
|
|
| 44 |
|
|
% convert w (effectively a scalar) |
| 45 |
|
|
w=cyl2cart(W,-xdim:step:xdim,-xdim:step:xdim); |
| 46 |
|
|
Wback=cart2cyl(w,thetai,rhoi); |
| 47 |
|
|
% Tc=cyl2cart(T,-30:step:30,-30:step:30); |
| 48 |
|
|
figure(1);imagesc(W(:,:,z));colorbar; |
| 49 |
|
|
figure(2);imagesc(w(:,:,z));colorbar; |
| 50 |
|
|
figure(3);imagesc(Wback(:,:,z));colorbar; |
| 51 |
|
|
Werr=Wback-W; |
| 52 |
|
|
figure(4);imagesc(Werr(:,:,z));colorbar; |
| 53 |
|
|
|
| 54 |
|
|
|
| 55 |
|
|
|