| 1 | afe | 1.1 | % converts U (rho), V (theta) and W in polar coords into | 
| 2 |  |  | % proper u,v, and w in cartesian coords, plus into theta and | 
| 3 |  |  | % rho vector components in a more physical annulus layout | 
| 4 |  |  |  | 
| 5 |  |  | if (1) | 
| 6 |  |  | % load data | 
| 7 |  |  | Wwhole=rdmds('W'); | 
| 8 |  |  | %Twhole=rdmds('T'); | 
| 9 |  |  | W=Wwhole(:,:,15); | 
| 10 |  |  | % set null-space areas to NaN (makes interpolation happier) | 
| 11 |  |  | W(find(W==0))=NaN; | 
| 12 |  |  | %T(find(T==0))=NaN; | 
| 13 |  |  | %W(120,:)=0.005; | 
| 14 |  |  | [ydim xdim]=size(W); | 
| 15 |  |  | else | 
| 16 |  |  | xdim=31; | 
| 17 |  |  | ydim=120; | 
| 18 |  |  | [X Y ]=meshgrid(1:xdim,1:ydim); | 
| 19 |  |  | W=X; | 
| 20 |  |  | W(:,1:8)=nan; | 
| 21 |  |  | W(:,31)=nan; | 
| 22 |  |  | %W(:,9)=26; | 
| 23 |  |  |  | 
| 24 |  |  |  | 
| 25 |  |  | end | 
| 26 |  |  |  | 
| 27 |  |  |  | 
| 28 |  |  |  | 
| 29 |  |  | % this determines resolution of interpolated fields | 
| 30 |  |  | % 0.5 is perhaps a bit fine, but it looks pretty | 
| 31 |  |  | %step=0.5; | 
| 32 |  |  | % good for quiver plots | 
| 33 |  |  | % step=1; | 
| 34 |  |  | step=(xdim*2+1)/(xdim*2); | 
| 35 |  |  |  | 
| 36 |  |  |  | 
| 37 |  |  | rhoi=1:31; | 
| 38 |  |  | thetai=1:120; | 
| 39 |  |  | z=1; | 
| 40 |  |  |  | 
| 41 |  |  |  | 
| 42 |  |  |  | 
| 43 |  |  |  | 
| 44 |  |  | % convert w (effectively a scalar) | 
| 45 |  |  | w=cyl2cart(W,-xdim:step:xdim,-xdim:step:xdim); | 
| 46 |  |  | Wback=cart2cyl(w,thetai,rhoi); | 
| 47 |  |  | % Tc=cyl2cart(T,-30:step:30,-30:step:30); | 
| 48 |  |  | figure(1);imagesc(W(:,:,z));colorbar; | 
| 49 |  |  | figure(2);imagesc(w(:,:,z));colorbar; | 
| 50 |  |  | figure(3);imagesc(Wback(:,:,z));colorbar; | 
| 51 |  |  | Werr=Wback-W; | 
| 52 |  |  | figure(4);imagesc(Werr(:,:,z));colorbar; | 
| 53 |  |  |  | 
| 54 |  |  |  | 
| 55 |  |  |  |