1 |
afe |
1.1 |
function [u,v] = cyl2cartuv(thetav,rhov,xi,yi,varargin) |
2 |
|
|
% [u,v]=cyl2cartuv(thetav,rhov,xi,yi); |
3 |
|
|
% |
4 |
|
|
% Re-grids model output in cylindrical coords to cartesian. |
5 |
|
|
% c is a 2-D or 3-D scalar or z-vector field |
6 |
|
|
% xi,yi are vectors of the new regular lat-lon grid to interpolate to. |
7 |
|
|
% z is the interpolated data with dimensions of size(xi) by size(yi). |
8 |
afe |
1.2 |
% theta=0 is at 12 o'clock. |
9 |
afe |
1.1 |
% |
10 |
|
|
% e.g. |
11 |
|
|
% >> t=rdmds('Ttave.0000513360'); |
12 |
|
|
% >> xi=-179:2:180;yi=-89:2:90; |
13 |
|
|
% >> ti=cyl2cart(x,y,t,xi,yi); |
14 |
|
|
% |
15 |
afe |
1.3 |
% $Header: /u/gcmpack/MITgcm_contrib/osse/utils/cyl2cartuv.m,v 1.2 2004/07/12 21:43:16 afe Exp $ |
16 |
afe |
1.1 |
|
17 |
|
|
if ~isequal(size(thetav),size(rhov)) |
18 |
|
|
error('Theta and rho vector arrays must be same size'); |
19 |
|
|
end |
20 |
|
|
|
21 |
|
|
%work out mappings of polar to cartesian |
22 |
|
|
NN=size(thetav); |
23 |
|
|
[ntheta nrho nz]=size(thetav); |
24 |
|
|
[RHO,THETA,NZ] = meshgrid(1:nrho,-pi+2*pi/ntheta:2*pi/ntheta:pi,1:nz); |
25 |
|
|
[x,y] = pol2cart(THETA(:,:,1),RHO(:,:,1)); |
26 |
|
|
nx=ntheta;ny=nrho; |
27 |
|
|
|
28 |
|
|
% break out components |
29 |
|
|
uv=thetav.*cos(THETA)+rhov.*sin(THETA); |
30 |
|
|
vv=thetav.*-sin(THETA)+rhov.*cos(THETA); |
31 |
|
|
|
32 |
|
|
X=reshape(x,[1 nx*ny]); |
33 |
|
|
Y=reshape(y,[1 nx*ny]); |
34 |
|
|
del=griddata_preprocess(Y,X,yi,xi',varargin{:}); |
35 |
|
|
|
36 |
|
|
for k=1:nz; |
37 |
|
|
UV=reshape(uv(:,:,k),[1 nx*ny]); |
38 |
|
|
VV=reshape(vv(:,:,k),[1 nx*ny]); |
39 |
|
|
u(:,:,k)=griddata(Y,X,UV,yi,xi',varargin{:}); |
40 |
|
|
v(:,:,k)=griddata(Y,X,VV,yi,xi',varargin{:}); |
41 |
|
|
end % k |
42 |
|
|
|
43 |
|
|
% Split vertical and time dimensions |
44 |
|
|
if size(NN,2)>2 |
45 |
|
|
u=reshape(u,[size(u,1) size(u,2) NN(3:end)]); |
46 |
|
|
v=reshape(v,[size(v,1) size(v,2) NN(3:end)]); |
47 |
|
|
end |