| 1 |
function [u,v] = cyl2cartuv(thetav,rhov,xi,yi,varargin) |
| 2 |
% [u,v]=cyl2cartuv(thetav,rhov,xi,yi); |
| 3 |
% |
| 4 |
% Re-grids model output in cylindrical coords to cartesian. |
| 5 |
% c is a 2-D or 3-D scalar or z-vector field |
| 6 |
% xi,yi are vectors of the new regular lat-lon grid to interpolate to. |
| 7 |
% z is the interpolated data with dimensions of size(xi) by size(yi). |
| 8 |
% theta=0 is at 12 o'clock. |
| 9 |
% |
| 10 |
% e.g. |
| 11 |
% >> t=rdmds('Ttave.0000513360'); |
| 12 |
% >> xi=-179:2:180;yi=-89:2:90; |
| 13 |
% >> ti=cyl2cart(x,y,t,xi,yi); |
| 14 |
% |
| 15 |
% $Header: /u/gcmpack/MITgcm_contrib/osse/utils/cyl2cartuv.m,v 1.2 2004/07/12 21:43:16 afe Exp $ |
| 16 |
|
| 17 |
if ~isequal(size(thetav),size(rhov)) |
| 18 |
error('Theta and rho vector arrays must be same size'); |
| 19 |
end |
| 20 |
|
| 21 |
%work out mappings of polar to cartesian |
| 22 |
NN=size(thetav); |
| 23 |
[ntheta nrho nz]=size(thetav); |
| 24 |
[RHO,THETA,NZ] = meshgrid(1:nrho,-pi+2*pi/ntheta:2*pi/ntheta:pi,1:nz); |
| 25 |
[x,y] = pol2cart(THETA(:,:,1),RHO(:,:,1)); |
| 26 |
nx=ntheta;ny=nrho; |
| 27 |
|
| 28 |
% break out components |
| 29 |
uv=thetav.*cos(THETA)+rhov.*sin(THETA); |
| 30 |
vv=thetav.*-sin(THETA)+rhov.*cos(THETA); |
| 31 |
|
| 32 |
X=reshape(x,[1 nx*ny]); |
| 33 |
Y=reshape(y,[1 nx*ny]); |
| 34 |
del=griddata_preprocess(Y,X,yi,xi',varargin{:}); |
| 35 |
|
| 36 |
for k=1:nz; |
| 37 |
UV=reshape(uv(:,:,k),[1 nx*ny]); |
| 38 |
VV=reshape(vv(:,:,k),[1 nx*ny]); |
| 39 |
u(:,:,k)=griddata(Y,X,UV,yi,xi',varargin{:}); |
| 40 |
v(:,:,k)=griddata(Y,X,VV,yi,xi',varargin{:}); |
| 41 |
end % k |
| 42 |
|
| 43 |
% Split vertical and time dimensions |
| 44 |
if size(NN,2)>2 |
| 45 |
u=reshape(u,[size(u,1) size(u,2) NN(3:end)]); |
| 46 |
v=reshape(v,[size(v,1) size(v,2) NN(3:end)]); |
| 47 |
end |