| 1 | 
 function [z] = cart2cyl(c,thetai,rhoi,varargin) | 
 function [z] = cart2cyl(c,thetai,rhoi,varargin) | 
| 2 | 
 % z=cart2cyl(c,xi,yi); | 
 % z=cart2cyl(c,xi,yi); | 
| 3 | 
 % | 
 % | 
 | 
 % Re-grids model output in cylindrical coords to cartesian. | 
  | 
 | 
 %  c     is a 2-D or 3-D scalar or z-vector field | 
  | 
 | 
 %  xi,yi are vectors of the new regular lat-lon grid to interpolate to. | 
  | 
 | 
 %  z     is the interpolated data with dimensions of size(xi) by size(yi). | 
  | 
 | 
 % | 
  | 
 | 
 % e.g. | 
  | 
 | 
 % >> t=rdmds('Ttave.0000513360'); | 
  | 
 | 
 % >> xi=-179:2:180;yi=-89:2:90; | 
  | 
 | 
 % >> ti=cyl2cart(t,xi,yi); | 
  | 
 | 
 % | 
  | 
| 4 | 
  | 
  | 
| 5 | 
 NN=size(c); | 
 NN=size(c); | 
| 6 | 
 %[theta rho nz]=size(c); | 
 %[theta rho nz]=size(c); | 
| 7 | 
 [x y nz]=size(c); | 
 [x y nz]=size(c); | 
| 8 | 
 %[RHO,THETA] = meshgrid(1:rho,-pi+2*pi/theta:2*pi/theta:pi); | 
 %[RHO,THETA] = meshgrid(1:rho,-pi+2*pi/theta:2*pi/theta:pi); | 
| 9 | 
 [Y,X] = meshgrid(-(x-1)/2:(x-1)/2,-(y-1)/2:(y-1)/2); | 
 %[Y,X] = meshgrid(-(x-1)/2:(x-1)/2,-(y-1)/2:(y-1)/2); | 
| 10 | 
  | 
 %stepx=(2*x+1)/(2*x); | 
| 11 | 
  | 
 %stepy=(2*y+1)/(2*y); | 
| 12 | 
  | 
 stepx=(x+1)/(x); | 
| 13 | 
  | 
 stepy=(y+1)/(y); | 
| 14 | 
  | 
 [Y,X] = meshgrid(-(x)/2:stepx:(x)/2,-(y)/2:stepy:(y)/2); | 
| 15 | 
  | 
 %[Y,X] = meshgrid(x,y); | 
| 16 | 
  | 
 %[Y,X] = meshgrid(-(x)/2:stepx:(x)/2+stepx,-(y)/2:stepy:(y)/2+stepy); | 
| 17 | 
 %[x,y] = pol2cart(THETA,RHO); | 
 %[x,y] = pol2cart(THETA,RHO); | 
| 18 | 
 [theta,rho] = cart2pol(X,Y); | 
 [theta,rho] = cart2pol(X,Y); | 
| 19 | 
 theta=(theta./(pi*2)+0.5).*size(thetai,2); | 
 %theta=(theta./(pi*2)+0.5).*size(thetai,2); | 
| 20 | 
 rho=max(rhoi)*rho/((x-1)/2); | 
 %theta=theta.*2*((size(thetai,2)+1)/size(thetai,2)); | 
| 21 | 
  | 
 %theta=(theta./(pi*2)+0.5).*(size(thetai,2)+1); | 
| 22 | 
  | 
 %theta=(theta./(pi*2)+0.5).*(size(thetai,2)); | 
| 23 | 
  | 
 theta=(theta./(pi*2)+0.5).*(size(thetai,2)); | 
| 24 | 
  | 
 %theta=(theta./pi).*size(thetai,2); | 
| 25 | 
  | 
 %theta=(theta./(pi*2)).*size(thetai,2); | 
| 26 | 
  | 
 %rho=max(rhoi)*rho/((x-1)/2); | 
| 27 | 
  | 
 rho=max(rhoi)*rho/((x)/2); | 
| 28 | 
 %theta=rot90(theta.*180./pi,-1); | 
 %theta=rot90(theta.*180./pi,-1); | 
| 29 | 
 %[nx ny nz]=size(c); | 
 %[nx ny nz]=size(c); | 
| 30 | 
 %nx=theta;ny=rho; | 
 %nx=theta;ny=rho; |