| 1 |
C $Header: /u/gcmpack/MITgcm_contrib/osse/code/external_forcing.F,v 1.1 2004/04/26 14:08:04 afe Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "CPP_OPTIONS.h" |
| 5 |
|
| 6 |
CBOP |
| 7 |
C !ROUTINE: EXTERNAL_FORCING_U |
| 8 |
C !INTERFACE: |
| 9 |
SUBROUTINE EXTERNAL_FORCING_U( |
| 10 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 11 |
I myCurrentTime,myThid) |
| 12 |
C !DESCRIPTION: \bv |
| 13 |
C *==========================================================* |
| 14 |
C | S/R EXTERNAL_FORCING_U |
| 15 |
C | o Contains problem specific forcing for zonal velocity. |
| 16 |
C *==========================================================* |
| 17 |
C | Adds terms to gU for forcing by external sources |
| 18 |
C | e.g. wind stress, bottom friction etc.................. |
| 19 |
C *==========================================================* |
| 20 |
C \ev |
| 21 |
|
| 22 |
C !USES: |
| 23 |
IMPLICIT NONE |
| 24 |
C == Global data == |
| 25 |
#include "SIZE.h" |
| 26 |
#include "EEPARAMS.h" |
| 27 |
#include "PARAMS.h" |
| 28 |
#include "GRID.h" |
| 29 |
#include "DYNVARS.h" |
| 30 |
#include "FFIELDS.h" |
| 31 |
|
| 32 |
C !INPUT/OUTPUT PARAMETERS: |
| 33 |
C == Routine arguments == |
| 34 |
C iMin - Working range of tile for applying forcing. |
| 35 |
C iMax |
| 36 |
C jMin |
| 37 |
C jMax |
| 38 |
C kLev |
| 39 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
| 40 |
_RL myCurrentTime |
| 41 |
INTEGER myThid |
| 42 |
|
| 43 |
C !LOCAL VARIABLES: |
| 44 |
C == Local variables == |
| 45 |
C Loop counters |
| 46 |
INTEGER I, J |
| 47 |
CEOP |
| 48 |
|
| 49 |
C-- Forcing term |
| 50 |
C Add windstress momentum impulse into the top-layer |
| 51 |
IF ( kLev .EQ. 1 ) THEN |
| 52 |
DO j=jMin,jMax |
| 53 |
DO i=iMin,iMax |
| 54 |
gU(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
| 55 |
& +foFacMom*surfaceTendencyU(i,j,bi,bj) |
| 56 |
& *_maskW(i,j,kLev,bi,bj) |
| 57 |
ENDDO |
| 58 |
ENDDO |
| 59 |
ENDIF |
| 60 |
|
| 61 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
| 62 |
IF (useOBCS) THEN |
| 63 |
CALL OBCS_SPONGE_U( |
| 64 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 65 |
I myCurrentTime,myThid) |
| 66 |
ENDIF |
| 67 |
#endif |
| 68 |
|
| 69 |
RETURN |
| 70 |
END |
| 71 |
CBOP |
| 72 |
C !ROUTINE: EXTERNAL_FORCING_V |
| 73 |
C !INTERFACE: |
| 74 |
SUBROUTINE EXTERNAL_FORCING_V( |
| 75 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 76 |
I myCurrentTime,myThid) |
| 77 |
C !DESCRIPTION: \bv |
| 78 |
C *==========================================================* |
| 79 |
C | S/R EXTERNAL_FORCING_V |
| 80 |
C | o Contains problem specific forcing for merid velocity. |
| 81 |
C *==========================================================* |
| 82 |
C | Adds terms to gV for forcing by external sources |
| 83 |
C | e.g. wind stress, bottom friction etc.................. |
| 84 |
C *==========================================================* |
| 85 |
C \ev |
| 86 |
|
| 87 |
C !USES: |
| 88 |
IMPLICIT NONE |
| 89 |
C == Global data == |
| 90 |
#include "SIZE.h" |
| 91 |
#include "EEPARAMS.h" |
| 92 |
#include "PARAMS.h" |
| 93 |
#include "GRID.h" |
| 94 |
#include "DYNVARS.h" |
| 95 |
#include "FFIELDS.h" |
| 96 |
|
| 97 |
C !INPUT/OUTPUT PARAMETERS: |
| 98 |
C == Routine arguments == |
| 99 |
C iMin - Working range of tile for applying forcing. |
| 100 |
C iMax |
| 101 |
C jMin |
| 102 |
C jMax |
| 103 |
C kLev |
| 104 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
| 105 |
_RL myCurrentTime |
| 106 |
INTEGER myThid |
| 107 |
|
| 108 |
C !LOCAL VARIABLES: |
| 109 |
C == Local variables == |
| 110 |
C Loop counters |
| 111 |
INTEGER I, J |
| 112 |
CEOP |
| 113 |
|
| 114 |
C-- Forcing term |
| 115 |
C Add windstress momentum impulse into the top-layer |
| 116 |
IF ( kLev .EQ. 1 ) THEN |
| 117 |
DO j=jMin,jMax |
| 118 |
DO i=iMin,iMax |
| 119 |
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
| 120 |
& +foFacMom*surfaceTendencyV(i,j,bi,bj) |
| 121 |
& *_maskS(i,j,kLev,bi,bj) |
| 122 |
ENDDO |
| 123 |
ENDDO |
| 124 |
ENDIF |
| 125 |
|
| 126 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
| 127 |
IF (useOBCS) THEN |
| 128 |
CALL OBCS_SPONGE_V( |
| 129 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 130 |
I myCurrentTime,myThid) |
| 131 |
ENDIF |
| 132 |
#endif |
| 133 |
|
| 134 |
RETURN |
| 135 |
END |
| 136 |
CBOP |
| 137 |
C !ROUTINE: EXTERNAL_FORCING_T |
| 138 |
C !INTERFACE: |
| 139 |
SUBROUTINE EXTERNAL_FORCING_T( |
| 140 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 141 |
I myCurrentTime,myThid) |
| 142 |
C !DESCRIPTION: \bv |
| 143 |
C *==========================================================* |
| 144 |
C | S/R EXTERNAL_FORCING_T |
| 145 |
C | o Contains problem specific forcing for temperature. |
| 146 |
C *==========================================================* |
| 147 |
C | Adds terms to gT for forcing by external sources |
| 148 |
C | e.g. heat flux, climatalogical relaxation.............. |
| 149 |
C *==========================================================* |
| 150 |
C \ev |
| 151 |
|
| 152 |
C !USES: |
| 153 |
IMPLICIT NONE |
| 154 |
C == Global data == |
| 155 |
#include "SIZE.h" |
| 156 |
#include "EEPARAMS.h" |
| 157 |
#include "PARAMS.h" |
| 158 |
#include "GRID.h" |
| 159 |
#include "DYNVARS.h" |
| 160 |
#include "FFIELDS.h" |
| 161 |
#ifdef SHORTWAVE_HEATING |
| 162 |
integer two |
| 163 |
_RL minusone |
| 164 |
parameter (two=2,minusone=-1.) |
| 165 |
_RL swfracb(two) |
| 166 |
#endif |
| 167 |
|
| 168 |
C !INPUT/OUTPUT PARAMETERS: |
| 169 |
C == Routine arguments == |
| 170 |
C iMin - Working range of tile for applying forcing. |
| 171 |
C iMax |
| 172 |
C jMin |
| 173 |
C jMax |
| 174 |
C kLev |
| 175 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
| 176 |
_RL myCurrentTime |
| 177 |
INTEGER myThid |
| 178 |
CEndOfInterface |
| 179 |
|
| 180 |
C !LOCAL VARIABLES: |
| 181 |
C == Local variables == |
| 182 |
C Loop counters |
| 183 |
INTEGER I, J |
| 184 |
C iG, jG :: Global index temps. |
| 185 |
C hC, hW, hE, hN, hS :: Fractional vertical distance open to fluid temps. |
| 186 |
C dFlux[WENS] :: Diffusive flux normal to each cell face. |
| 187 |
C faceArea :: Temp. for holding area normal to tempurature gradient. |
| 188 |
INTEGER iG, jG |
| 189 |
_RL hC, hW, hE, hN, hS |
| 190 |
_RL dFluxW, dFluxE, dFluxN, dFluxS |
| 191 |
_RL faceArea |
| 192 |
CEOP |
| 193 |
|
| 194 |
C-- Forcing term |
| 195 |
C Add term which represents the diffusive flux from a circular cylinder of temperature tCyl in the |
| 196 |
C interior of the simulation domain. Result is a tendency which is determined from the finite |
| 197 |
C volume formulated divergence of the diffusive heat flux due to the local cylinder |
| 198 |
C temperature, fluid temperature difference. |
| 199 |
C kDiffCyl :: Diffusion coefficient |
| 200 |
C tCyl :: Temperature of the cylinder |
| 201 |
C iGSource :: Index space I (global) coordinate for source center. |
| 202 |
C jGSource :: Index space J (global) coordinate for source center. |
| 203 |
C rSource :: Extent of the source term region. Loop will skip checking points outside |
| 204 |
C :: this region. Within this region the source heating will be added |
| 205 |
C :: to any points that are at a land - fluid boundary. rSource is in grid |
| 206 |
C :: points, so that points checked are ophi(iGlobal,jGlobal) such that |
| 207 |
C :: iGlobal=iGsource +/- rSource, jGlobal = jGsource +/- rSource. |
| 208 |
C :: rSource, iGSource and jGSource only need to define a quadrilateral that |
| 209 |
C :: includes the cylinder and no other land, they do not need to be exact. |
| 210 |
_RL kDiffCyl |
| 211 |
INTEGER rSource |
| 212 |
INTEGER iGSource |
| 213 |
INTEGER jGSource |
| 214 |
CHARACTER*(MAX_LEN_MBUF+1000) msgBuf |
| 215 |
kDiffCyl = 3. _d -7 |
| 216 |
|
| 217 |
rSource = 3 |
| 218 |
iGSource = 30 |
| 219 |
jGSource = 8 |
| 220 |
DO j=jMin,jMax |
| 221 |
DO i=iMin,iMax |
| 222 |
dFluxW = 0. |
| 223 |
dFluxE = 0. |
| 224 |
dFluxN = 0. |
| 225 |
dFluxS = 0. |
| 226 |
jG = myYGlobalLo-1+(bj-1)*sNy+J |
| 227 |
iG = myXGlobalLo-1+(bi-1)*sNx+I |
| 228 |
c IF(jG .GE. jGSource-rSource .AND. jG .LE. jGSource+rSource) THEN |
| 229 |
IF(jG .LE. 10) THEN |
| 230 |
tCyl = 0 |
| 231 |
ELSE |
| 232 |
tCyl = 20 |
| 233 |
ENDIF |
| 234 |
c IF(iG .GE. iGSource-rSource .AND. iG .LE. iGSource+rSource) THEN |
| 235 |
hC = hFacC(i ,j ,kLev,bi,bj) |
| 236 |
hW = hFacW(i ,j ,kLev,bi,bj) |
| 237 |
hE = hFacW(i+1,j ,kLev,bi,bj) |
| 238 |
hN = hFacS(i ,j+1,kLev,bi,bj) |
| 239 |
hS = hFacS(i ,j ,kLev,bi,bj) |
| 240 |
IF ( hC .NE. 0. .AND .hW .EQ. 0. ) THEN |
| 241 |
C Cylinder to west |
| 242 |
faceArea = drF(kLev)*dyG(i,j,bi,bj) |
| 243 |
dFluxW = |
| 244 |
& -faceArea*kDiffCyl*(theta(i,j,kLev,bi,bj) - tCyl) |
| 245 |
& *recip_dxC(i,j,bi,bj) |
| 246 |
ENDIF |
| 247 |
IF ( hC .NE. 0. .AND .hE .EQ. 0. ) THEN |
| 248 |
C Cylinder to east |
| 249 |
faceArea = drF(kLev)*dyG(i+1,j,bi,bj) |
| 250 |
dFluxE = |
| 251 |
& -faceArea*kDiffCyl*(tCyl - theta(i,j,kLev,bi,bj)) |
| 252 |
& *recip_dxC(i,j,bi,bj) |
| 253 |
ENDIF |
| 254 |
IF ( hC .NE. 0. .AND .hN .EQ. 0. ) THEN |
| 255 |
C Cylinder to north |
| 256 |
faceArea = drF(kLev)*dxG(i,j+1,bi,bj) |
| 257 |
dFluxN = |
| 258 |
& -faceArea*kDiffCyl*(tCyl-theta(i,j,kLev,bi,bj)) |
| 259 |
& *recip_dyC(i,j,bi,bj) |
| 260 |
ENDIF |
| 261 |
IF ( hC .NE. 0. .AND .hS .EQ. 0. ) THEN |
| 262 |
C Cylinder to south |
| 263 |
faceArea = drF(kLev)*dxG(i,j,bi,bj) |
| 264 |
dFluxS = |
| 265 |
& -faceArea*kDiffCyl*(theta(i,j,kLev,bi,bj) - tCyl) |
| 266 |
& *recip_dyC(i,j,bi,bj) |
| 267 |
ENDIF |
| 268 |
c ENDIF |
| 269 |
c ENDIF |
| 270 |
C Net tendency term is minus flux divergence divided by the volume. |
| 271 |
gT(i,j,kLev,bi,bj) = gT(i,j,kLev,bi,bj) |
| 272 |
& -_recip_hFacC(i,j,kLev,bi,bj)*recip_drF(kLev) |
| 273 |
& *recip_rA(i,j,bi,bj) |
| 274 |
& *( |
| 275 |
& dFluxE-dFluxW |
| 276 |
& +dFluxN-dFluxS |
| 277 |
& ) |
| 278 |
|
| 279 |
ENDDO |
| 280 |
ENDDO |
| 281 |
|
| 282 |
RETURN |
| 283 |
END |
| 284 |
CBOP |
| 285 |
C !ROUTINE: EXTERNAL_FORCING_S |
| 286 |
C !INTERFACE: |
| 287 |
SUBROUTINE EXTERNAL_FORCING_S( |
| 288 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 289 |
I myCurrentTime,myThid) |
| 290 |
|
| 291 |
C !DESCRIPTION: \bv |
| 292 |
C *==========================================================* |
| 293 |
C | S/R EXTERNAL_FORCING_S |
| 294 |
C | o Contains problem specific forcing for merid velocity. |
| 295 |
C *==========================================================* |
| 296 |
C | Adds terms to gS for forcing by external sources |
| 297 |
C | e.g. fresh-water flux, climatalogical relaxation....... |
| 298 |
C *==========================================================* |
| 299 |
C \ev |
| 300 |
|
| 301 |
C !USES: |
| 302 |
IMPLICIT NONE |
| 303 |
C == Global data == |
| 304 |
#include "SIZE.h" |
| 305 |
#include "EEPARAMS.h" |
| 306 |
#include "PARAMS.h" |
| 307 |
#include "GRID.h" |
| 308 |
#include "DYNVARS.h" |
| 309 |
#include "FFIELDS.h" |
| 310 |
|
| 311 |
C !INPUT/OUTPUT PARAMETERS: |
| 312 |
C == Routine arguments == |
| 313 |
C iMin - Working range of tile for applying forcing. |
| 314 |
C iMax |
| 315 |
C jMin |
| 316 |
C jMax |
| 317 |
C kLev |
| 318 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
| 319 |
_RL myCurrentTime |
| 320 |
INTEGER myThid |
| 321 |
|
| 322 |
C !LOCAL VARIABLES: |
| 323 |
C == Local variables == |
| 324 |
C Loop counters |
| 325 |
INTEGER I, J |
| 326 |
CEOP |
| 327 |
|
| 328 |
C-- Forcing term |
| 329 |
C Add fresh-water in top-layer |
| 330 |
IF ( kLev .EQ. 1 ) THEN |
| 331 |
DO j=jMin,jMax |
| 332 |
DO i=iMin,iMax |
| 333 |
gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) |
| 334 |
& +maskC(i,j,kLev,bi,bj)*surfaceTendencyS(i,j,bi,bj) |
| 335 |
ENDDO |
| 336 |
ENDDO |
| 337 |
ENDIF |
| 338 |
|
| 339 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
| 340 |
IF (useOBCS) THEN |
| 341 |
CALL OBCS_SPONGE_S( |
| 342 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 343 |
I myCurrentTime,myThid) |
| 344 |
ENDIF |
| 345 |
#endif |
| 346 |
|
| 347 |
RETURN |
| 348 |
END |