/[MITgcm]/MITgcm_contrib/osse/EnKF/spoco.F
ViewVC logotype

Contents of /MITgcm_contrib/osse/EnKF/spoco.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download)
Wed May 19 15:43:11 2004 UTC (21 years, 2 months ago) by afe
Branch: MAIN
CVS Tags: HEAD
Changes since 1.1: +0 -0 lines
FILE REMOVED
o refining osse setup

1 subroutine spoco(a,lda,n,rcond,z,info)
2 integer lda,n,info
3 real a(lda,1),z(1)
4 real rcond
5 c
6 c spoco factors a real symmetric positive definite matrix
7 c and estimates the condition of the matrix.
8 c
9 c if rcond is not needed, spofa is slightly faster.
10 c to solve a*x = b , follow spoco by sposl.
11 c to compute inverse(a)*c , follow spoco by sposl.
12 c to compute determinant(a) , follow spoco by spodi.
13 c to compute inverse(a) , follow spoco by spodi.
14 c
15 c on entry
16 c
17 c a real(lda, n)
18 c the symmetric matrix to be factored. only the
19 c diagonal and upper triangle are used.
20 c
21 c lda integer
22 c the leading dimension of the array a .
23 c
24 c n integer
25 c the order of the matrix a .
26 c
27 c on return
28 c
29 c a an upper triangular matrix r so that a = trans(r)*r
30 c where trans(r) is the transpose.
31 c the strict lower triangle is unaltered.
32 c if info .ne. 0 , the factorization is not complete.
33 c
34 c rcond real
35 c an estimate of the reciprocal condition of a .
36 c for the system a*x = b , relative perturbations
37 c in a and b of size epsilon may cause
38 c relative perturbations in x of size epsilon/rcond .
39 c if rcond is so small that the logical expression
40 c 1.0 + rcond .eq. 1.0
41 c is true, then a may be singular to working
42 c precision. in particular, rcond is zero if
43 c exact singularity is detected or the estimate
44 c underflows. if info .ne. 0 , rcond is unchanged.
45 c
46 c z real(n)
47 c a work vector whose contents are usually unimportant.
48 c if a is close to a singular matrix, then z is
49 c an approximate null vector in the sense that
50 c norm(a*z) = rcond*norm(a)*norm(z) .
51 c if info .ne. 0 , z is unchanged.
52 c
53 c info integer
54 c = 0 for normal return.
55 c = k signals an error condition. the leading minor
56 c of order k is not positive definite.
57 c
58 c linpack. this version dated 08/14/78 .
59 c cleve moler, university of new mexico, argonne national lab.
60 c
61 c subroutines and functions
62 c
63 c linpack spofa
64 c blas saxpy,sdot,sscal,sasum
65 c fortran abs,amax1,real,sign
66 c
67 c internal variables
68 c
69 real sdot,ek,t,wk,wkm
70 real anorm,s,sasum,sm,ynorm
71 integer i,j,jm1,k,kb,kp1
72 c
73 c
74 c find norm of a using only upper half
75 c
76 do 30 j = 1, n
77 z(j) = sasum(j,a(1,j),1)
78 jm1 = j - 1
79 if (jm1 .lt. 1) go to 20
80 do 10 i = 1, jm1
81 z(i) = z(i) + abs(a(i,j))
82 10 continue
83 20 continue
84 30 continue
85 anorm = 0.00
86 do 40 j = 1, n
87 anorm = amax1(anorm,z(j))
88 40 continue
89 c
90 c factor
91 c
92 call spofa(a,lda,n,info)
93 if (info .ne. 0) go to 180
94 c
95 c rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) .
96 c estimate = norm(z)/norm(y) where a*z = y and a*y = e .
97 c the components of e are chosen to cause maximum local
98 c growth in the elements of w where trans(r)*w = e .
99 c the vectors are frequently rescaled to avoid overflow.
100 c
101 c solve trans(r)*w = e
102 c
103 ek = 1.00
104 do 50 j = 1, n
105 z(j) = 0.00
106 50 continue
107 do 110 k = 1, n
108 if (z(k) .ne. 0.00) ek = sign(ek,-z(k))
109 if (abs(ek-z(k)) .le. a(k,k)) go to 60
110 s = a(k,k)/abs(ek-z(k))
111 call sscal(n,s,z,1)
112 ek = s*ek
113 60 continue
114 wk = ek - z(k)
115 wkm = -ek - z(k)
116 s = abs(wk)
117 sm = abs(wkm)
118 wk = wk/a(k,k)
119 wkm = wkm/a(k,k)
120 kp1 = k + 1
121 if (kp1 .gt. n) go to 100
122 do 70 j = kp1, n
123 sm = sm + abs(z(j)+wkm*a(k,j))
124 z(j) = z(j) + wk*a(k,j)
125 s = s + abs(z(j))
126 70 continue
127 if (s .ge. sm) go to 90
128 t = wkm - wk
129 wk = wkm
130 do 80 j = kp1, n
131 z(j) = z(j) + t*a(k,j)
132 80 continue
133 90 continue
134 100 continue
135 z(k) = wk
136 110 continue
137 s = 1.00/sasum(n,z,1)
138 call sscal(n,s,z,1)
139 c
140 c solve r*y = w
141 c
142 do 130 kb = 1, n
143 k = n + 1 - kb
144 if (abs(z(k)) .le. a(k,k)) go to 120
145 s = a(k,k)/abs(z(k))
146 call sscal(n,s,z,1)
147 120 continue
148 z(k) = z(k)/a(k,k)
149 t = -z(k)
150 call saxpy(k-1,t,a(1,k),1,z(1),1)
151 130 continue
152 s = 1.00/sasum(n,z,1)
153 call sscal(n,s,z,1)
154 c
155 ynorm = 1.00
156 c
157 c solve trans(r)*v = y
158 c
159 do 150 k = 1, n
160 z(k) = z(k) - sdot(k-1,a(1,k),1,z(1),1)
161 if (abs(z(k)) .le. a(k,k)) go to 140
162 s = a(k,k)/abs(z(k))
163 call sscal(n,s,z,1)
164 ynorm = s*ynorm
165 140 continue
166 z(k) = z(k)/a(k,k)
167 150 continue
168 s = 1.00/sasum(n,z,1)
169 call sscal(n,s,z,1)
170 ynorm = s*ynorm
171 c
172 c solve r*z = v
173 c
174 do 170 kb = 1, n
175 k = n + 1 - kb
176 if (abs(z(k)) .le. a(k,k)) go to 160
177 s = a(k,k)/abs(z(k))
178 call sscal(n,s,z,1)
179 ynorm = s*ynorm
180 160 continue
181 z(k) = z(k)/a(k,k)
182 t = -z(k)
183 call saxpy(k-1,t,a(1,k),1,z(1),1)
184 170 continue
185 c make znorm = 1.0
186 s = 1.00/sasum(n,z,1)
187 call sscal(n,s,z,1)
188 ynorm = s*ynorm
189 c
190 if (anorm .ne. 0.00) rcond = ynorm/anorm
191 if (anorm .eq. 0.00) rcond = 0.00
192 180 continue
193 return
194 end

  ViewVC Help
Powered by ViewVC 1.1.22