1 |
subroutine spoco(a,lda,n,rcond,z,info) |
2 |
integer lda,n,info |
3 |
real a(lda,1),z(1) |
4 |
real rcond |
5 |
c |
6 |
c spoco factors a real symmetric positive definite matrix |
7 |
c and estimates the condition of the matrix. |
8 |
c |
9 |
c if rcond is not needed, spofa is slightly faster. |
10 |
c to solve a*x = b , follow spoco by sposl. |
11 |
c to compute inverse(a)*c , follow spoco by sposl. |
12 |
c to compute determinant(a) , follow spoco by spodi. |
13 |
c to compute inverse(a) , follow spoco by spodi. |
14 |
c |
15 |
c on entry |
16 |
c |
17 |
c a real(lda, n) |
18 |
c the symmetric matrix to be factored. only the |
19 |
c diagonal and upper triangle are used. |
20 |
c |
21 |
c lda integer |
22 |
c the leading dimension of the array a . |
23 |
c |
24 |
c n integer |
25 |
c the order of the matrix a . |
26 |
c |
27 |
c on return |
28 |
c |
29 |
c a an upper triangular matrix r so that a = trans(r)*r |
30 |
c where trans(r) is the transpose. |
31 |
c the strict lower triangle is unaltered. |
32 |
c if info .ne. 0 , the factorization is not complete. |
33 |
c |
34 |
c rcond real |
35 |
c an estimate of the reciprocal condition of a . |
36 |
c for the system a*x = b , relative perturbations |
37 |
c in a and b of size epsilon may cause |
38 |
c relative perturbations in x of size epsilon/rcond . |
39 |
c if rcond is so small that the logical expression |
40 |
c 1.0 + rcond .eq. 1.0 |
41 |
c is true, then a may be singular to working |
42 |
c precision. in particular, rcond is zero if |
43 |
c exact singularity is detected or the estimate |
44 |
c underflows. if info .ne. 0 , rcond is unchanged. |
45 |
c |
46 |
c z real(n) |
47 |
c a work vector whose contents are usually unimportant. |
48 |
c if a is close to a singular matrix, then z is |
49 |
c an approximate null vector in the sense that |
50 |
c norm(a*z) = rcond*norm(a)*norm(z) . |
51 |
c if info .ne. 0 , z is unchanged. |
52 |
c |
53 |
c info integer |
54 |
c = 0 for normal return. |
55 |
c = k signals an error condition. the leading minor |
56 |
c of order k is not positive definite. |
57 |
c |
58 |
c linpack. this version dated 08/14/78 . |
59 |
c cleve moler, university of new mexico, argonne national lab. |
60 |
c |
61 |
c subroutines and functions |
62 |
c |
63 |
c linpack spofa |
64 |
c blas saxpy,sdot,sscal,sasum |
65 |
c fortran abs,amax1,real,sign |
66 |
c |
67 |
c internal variables |
68 |
c |
69 |
real sdot,ek,t,wk,wkm |
70 |
real anorm,s,sasum,sm,ynorm |
71 |
integer i,j,jm1,k,kb,kp1 |
72 |
c |
73 |
c |
74 |
c find norm of a using only upper half |
75 |
c |
76 |
do 30 j = 1, n |
77 |
z(j) = sasum(j,a(1,j),1) |
78 |
jm1 = j - 1 |
79 |
if (jm1 .lt. 1) go to 20 |
80 |
do 10 i = 1, jm1 |
81 |
z(i) = z(i) + abs(a(i,j)) |
82 |
10 continue |
83 |
20 continue |
84 |
30 continue |
85 |
anorm = 0.00 |
86 |
do 40 j = 1, n |
87 |
anorm = amax1(anorm,z(j)) |
88 |
40 continue |
89 |
c |
90 |
c factor |
91 |
c |
92 |
call spofa(a,lda,n,info) |
93 |
if (info .ne. 0) go to 180 |
94 |
c |
95 |
c rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) . |
96 |
c estimate = norm(z)/norm(y) where a*z = y and a*y = e . |
97 |
c the components of e are chosen to cause maximum local |
98 |
c growth in the elements of w where trans(r)*w = e . |
99 |
c the vectors are frequently rescaled to avoid overflow. |
100 |
c |
101 |
c solve trans(r)*w = e |
102 |
c |
103 |
ek = 1.00 |
104 |
do 50 j = 1, n |
105 |
z(j) = 0.00 |
106 |
50 continue |
107 |
do 110 k = 1, n |
108 |
if (z(k) .ne. 0.00) ek = sign(ek,-z(k)) |
109 |
if (abs(ek-z(k)) .le. a(k,k)) go to 60 |
110 |
s = a(k,k)/abs(ek-z(k)) |
111 |
call sscal(n,s,z,1) |
112 |
ek = s*ek |
113 |
60 continue |
114 |
wk = ek - z(k) |
115 |
wkm = -ek - z(k) |
116 |
s = abs(wk) |
117 |
sm = abs(wkm) |
118 |
wk = wk/a(k,k) |
119 |
wkm = wkm/a(k,k) |
120 |
kp1 = k + 1 |
121 |
if (kp1 .gt. n) go to 100 |
122 |
do 70 j = kp1, n |
123 |
sm = sm + abs(z(j)+wkm*a(k,j)) |
124 |
z(j) = z(j) + wk*a(k,j) |
125 |
s = s + abs(z(j)) |
126 |
70 continue |
127 |
if (s .ge. sm) go to 90 |
128 |
t = wkm - wk |
129 |
wk = wkm |
130 |
do 80 j = kp1, n |
131 |
z(j) = z(j) + t*a(k,j) |
132 |
80 continue |
133 |
90 continue |
134 |
100 continue |
135 |
z(k) = wk |
136 |
110 continue |
137 |
s = 1.00/sasum(n,z,1) |
138 |
call sscal(n,s,z,1) |
139 |
c |
140 |
c solve r*y = w |
141 |
c |
142 |
do 130 kb = 1, n |
143 |
k = n + 1 - kb |
144 |
if (abs(z(k)) .le. a(k,k)) go to 120 |
145 |
s = a(k,k)/abs(z(k)) |
146 |
call sscal(n,s,z,1) |
147 |
120 continue |
148 |
z(k) = z(k)/a(k,k) |
149 |
t = -z(k) |
150 |
call saxpy(k-1,t,a(1,k),1,z(1),1) |
151 |
130 continue |
152 |
s = 1.00/sasum(n,z,1) |
153 |
call sscal(n,s,z,1) |
154 |
c |
155 |
ynorm = 1.00 |
156 |
c |
157 |
c solve trans(r)*v = y |
158 |
c |
159 |
do 150 k = 1, n |
160 |
z(k) = z(k) - sdot(k-1,a(1,k),1,z(1),1) |
161 |
if (abs(z(k)) .le. a(k,k)) go to 140 |
162 |
s = a(k,k)/abs(z(k)) |
163 |
call sscal(n,s,z,1) |
164 |
ynorm = s*ynorm |
165 |
140 continue |
166 |
z(k) = z(k)/a(k,k) |
167 |
150 continue |
168 |
s = 1.00/sasum(n,z,1) |
169 |
call sscal(n,s,z,1) |
170 |
ynorm = s*ynorm |
171 |
c |
172 |
c solve r*z = v |
173 |
c |
174 |
do 170 kb = 1, n |
175 |
k = n + 1 - kb |
176 |
if (abs(z(k)) .le. a(k,k)) go to 160 |
177 |
s = a(k,k)/abs(z(k)) |
178 |
call sscal(n,s,z,1) |
179 |
ynorm = s*ynorm |
180 |
160 continue |
181 |
z(k) = z(k)/a(k,k) |
182 |
t = -z(k) |
183 |
call saxpy(k-1,t,a(1,k),1,z(1),1) |
184 |
170 continue |
185 |
c make znorm = 1.0 |
186 |
s = 1.00/sasum(n,z,1) |
187 |
call sscal(n,s,z,1) |
188 |
ynorm = s*ynorm |
189 |
c |
190 |
if (anorm .ne. 0.00) rcond = ynorm/anorm |
191 |
if (anorm .eq. 0.00) rcond = 0.00 |
192 |
180 continue |
193 |
return |
194 |
end |