1 |
afe |
1.1 |
c*** 4th order runge-kutta, more or less straight out of |
2 |
|
|
c*** numerical recipes |
3 |
|
|
|
4 |
|
|
subroutine rk4(y,dydx,par,n,x,h,yout,derivs) |
5 |
|
|
|
6 |
|
|
implicit none |
7 |
|
|
|
8 |
|
|
integer i, n |
9 |
|
|
real y(n),dydx(n),yout(n) |
10 |
|
|
real yt(n), par(n), dyt(n) |
11 |
|
|
real dym(n) |
12 |
|
|
real h, hh, x, xh, h6 |
13 |
|
|
external derivs |
14 |
|
|
|
15 |
|
|
hh=h*0.5 |
16 |
|
|
h6=h/6. |
17 |
|
|
xh=x+hh |
18 |
|
|
|
19 |
|
|
do i=1,n |
20 |
|
|
yt(i)=y(i)+hh*dydx(i) |
21 |
|
|
enddo |
22 |
|
|
call derivs(xh,yt,dyt,par,n) |
23 |
|
|
do i=1,n |
24 |
|
|
yt(i)=y(i)+hh*dyt(i) |
25 |
|
|
enddo |
26 |
|
|
call derivs(xh,yt,dym,par,n) |
27 |
|
|
do i=1,n |
28 |
|
|
yt(i)=y(i)+h*dym(i) |
29 |
|
|
dym(i)=dyt(i)+dym(i) |
30 |
|
|
enddo |
31 |
|
|
call derivs(x+h,yt,dyt,par,n) |
32 |
|
|
do i=1,n |
33 |
|
|
yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.*dym(i)) |
34 |
|
|
enddo |
35 |
|
|
|
36 |
|
|
return |
37 |
|
|
end |
38 |
|
|
|