| 1 | 
afe | 
1.1 | 
c***  ensemble square root filter that uses an optional cut-off | 
| 2 | 
  | 
  | 
c***  radius and boost factor. | 
| 3 | 
  | 
  | 
 | 
| 4 | 
  | 
  | 
      subroutine gregfilt_loc(xens,yo,iobsloc,ngp,mobs,Rs,nens,nx,ny) | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
      implicit none | 
| 7 | 
  | 
  | 
 | 
| 8 | 
  | 
  | 
! Arguments | 
| 9 | 
  | 
  | 
      integer, intent(in) :: nens, mobs, ngp, nx, ny | 
| 10 | 
  | 
  | 
      real*8, intent(inout) :: xens(ngp,nens) | 
| 11 | 
  | 
  | 
      real*8, intent(in)    :: yo(mobs), Rs(mobs) | 
| 12 | 
  | 
  | 
      real*8, intent(in)    :: iobsloc(mobs) | 
| 13 | 
  | 
  | 
 | 
| 14 | 
  | 
  | 
! Local Variables | 
| 15 | 
  | 
  | 
      integer :: xob(mobs), yob(mobs) | 
| 16 | 
  | 
  | 
      integer :: ind, k, j, i, r2, kk, jj, ko, jo, kj, g | 
| 17 | 
  | 
  | 
      real*8    :: PHT(ngp), Ks(ngp), Khat(ngp) | 
| 18 | 
  | 
  | 
      real*8    :: xp(ngp), xa(ngp), zp(ngp,nens), R(mobs) | 
| 19 | 
  | 
  | 
      real*8    :: HPHT, alpha, boost | 
| 20 | 
  | 
  | 
 | 
| 21 | 
  | 
  | 
! Filter Stuff | 
| 22 | 
  | 
  | 
      integer :: d, rad, rad2 | 
| 23 | 
  | 
  | 
      real*8    :: dr, rrad, filt | 
| 24 | 
  | 
  | 
      real*8, external :: cov_factor | 
| 25 | 
  | 
  | 
 | 
| 26 | 
  | 
  | 
c***  observational standard deviation | 
| 27 | 
  | 
  | 
      R = sqrt(Rs) | 
| 28 | 
  | 
  | 
 | 
| 29 | 
  | 
  | 
c***  set cutoff radius | 
| 30 | 
  | 
  | 
      rad = 100 | 
| 31 | 
  | 
  | 
      rad2 = 2*rad | 
| 32 | 
  | 
  | 
      r2 = rad*rad | 
| 33 | 
  | 
  | 
      rrad = float(rad) | 
| 34 | 
  | 
  | 
 | 
| 35 | 
  | 
  | 
c***  set inflation factor | 
| 36 | 
  | 
  | 
      boost = 1.00 | 
| 37 | 
  | 
  | 
!      boost = 1.05 | 
| 38 | 
  | 
  | 
!      boost = 1.10 | 
| 39 | 
  | 
  | 
 | 
| 40 | 
  | 
  | 
c***  rename ensemble matrix | 
| 41 | 
  | 
  | 
      zp = xens | 
| 42 | 
  | 
  | 
 | 
| 43 | 
  | 
  | 
!*** Find the initial ensemble mean | 
| 44 | 
  | 
  | 
      do j = 1, ngp | 
| 45 | 
  | 
  | 
         xp(j) = sum(zp(j,:))/float(nens)  | 
| 46 | 
  | 
  | 
      end do | 
| 47 | 
  | 
  | 
 | 
| 48 | 
  | 
  | 
!*** Apply inflation factor to initial ensemble | 
| 49 | 
  | 
  | 
      do k = 1, nens | 
| 50 | 
  | 
  | 
         zp(:,k) = boost*(zp(:,k) - xp) + xp | 
| 51 | 
  | 
  | 
      end do | 
| 52 | 
  | 
  | 
 | 
| 53 | 
  | 
  | 
!*** Find the xob and yob arrays from H | 
| 54 | 
  | 
  | 
c      do j = 1, ngp | 
| 55 | 
  | 
  | 
         do k = 1, mobs | 
| 56 | 
  | 
  | 
c            if ( H(k,j) == 1. ) then | 
| 57 | 
  | 
  | 
c               xob(k) = mod(j-1,nx) + 1 | 
| 58 | 
  | 
  | 
c               yob(k) = (j-1)/nx + 1 | 
| 59 | 
  | 
  | 
               xob(k) = mod(iobsloc(k)-1,nx) + 1 | 
| 60 | 
  | 
  | 
               yob(k) = (iobsloc(k)-1)/nx + 1 | 
| 61 | 
  | 
  | 
 c           end if | 
| 62 | 
  | 
  | 
         end do | 
| 63 | 
  | 
  | 
c      end do | 
| 64 | 
  | 
  | 
 | 
| 65 | 
  | 
  | 
!*** Now process each observation sequentially abiding by cut-off radius | 
| 66 | 
  | 
  | 
      do j = 1, mobs | 
| 67 | 
  | 
  | 
 | 
| 68 | 
  | 
  | 
         ind = nx*( yob(j) - 1 ) + xob(j) | 
| 69 | 
  | 
  | 
 | 
| 70 | 
  | 
  | 
!*** Find PH' first | 
| 71 | 
  | 
  | 
         PHT = 0. | 
| 72 | 
  | 
  | 
         do jj = yob(j)-rad2, yob(j)+rad2  | 
| 73 | 
  | 
  | 
            do kk = xob(j)-rad2, xob(j)+rad2  | 
| 74 | 
  | 
  | 
               jo = jj | 
| 75 | 
  | 
  | 
               ko = kk | 
| 76 | 
  | 
  | 
            | 
| 77 | 
  | 
  | 
!*** Point is within block of radius, but it may not be within the  | 
| 78 | 
  | 
  | 
!      basin boundaries | 
| 79 | 
  | 
  | 
               if ( ko>0 .and. ko<=nx .and. jo>0 .and. jo<=ny ) then | 
| 80 | 
  | 
  | 
 | 
| 81 | 
  | 
  | 
!*** Since we've sequestered a square of side 2*rad and the | 
| 82 | 
  | 
  | 
!      cut-off radius assumes a circle, we need to check to | 
| 83 | 
  | 
  | 
!      make sure the point we're considering is actually  | 
| 84 | 
  | 
  | 
!      within the circle. | 
| 85 | 
  | 
  | 
 | 
| 86 | 
  | 
  | 
                  d = (ko - xob(j))**2 + (jo - yob(j))**2    | 
| 87 | 
  | 
  | 
 | 
| 88 | 
  | 
  | 
                  dr = sqrt( float( d ) )  | 
| 89 | 
  | 
  | 
            | 
| 90 | 
  | 
  | 
!*** The element of interest in the 1D vector according to addresses  | 
| 91 | 
  | 
  | 
!      kk and jj is: | 
| 92 | 
  | 
  | 
                  kj = nx*(jo-1) + ko | 
| 93 | 
  | 
  | 
 | 
| 94 | 
  | 
  | 
!*** Evaluate the filter coefficient based on distance from center d | 
| 95 | 
  | 
  | 
!                 filt = cov_factor(dr,rrad) | 
| 96 | 
  | 
  | 
                  filt = 1. | 
| 97 | 
  | 
  | 
 | 
| 98 | 
  | 
  | 
!*** Now contribute to PHT sum | 
| 99 | 
  | 
  | 
                  do g = 1, nens | 
| 100 | 
  | 
  | 
                     PHT(kj) = PHT(kj) + filt*(zp(kj,g) - xp(kj))*   | 
| 101 | 
  | 
  | 
     &                  (zp(ind,g) - xp(ind)) | 
| 102 | 
  | 
  | 
                  end do | 
| 103 | 
  | 
  | 
               | 
| 104 | 
  | 
  | 
               end if | 
| 105 | 
  | 
  | 
            end do | 
| 106 | 
  | 
  | 
         end do | 
| 107 | 
  | 
  | 
         PHT = PHT/float(nens - 1) | 
| 108 | 
  | 
  | 
 | 
| 109 | 
  | 
  | 
!*** Now find HPH' from PH'.  Because of cut-off radius, there is a | 
| 110 | 
  | 
  | 
!      (good) chance that HPH' will be zero. | 
| 111 | 
  | 
  | 
         HPHT = PHT(ind) | 
| 112 | 
  | 
  | 
 | 
| 113 | 
  | 
  | 
!*** Evaluate Ks | 
| 114 | 
  | 
  | 
         Ks = PHT/( HPHT + Rs(j) ) | 
| 115 | 
  | 
  | 
 | 
| 116 | 
  | 
  | 
!*** Update all effected elements in the mean | 
| 117 | 
  | 
  | 
         xa = xp + Ks*( yo(j) - xp(ind) ) | 
| 118 | 
  | 
  | 
 | 
| 119 | 
  | 
  | 
!*** Now update all ensemble members as perturbations about mean | 
| 120 | 
  | 
  | 
         alpha = 1./( 1. + sqrt( Rs(j)/( HPHT + Rs(j) ) ) )  | 
| 121 | 
  | 
  | 
         Khat = alpha*Ks | 
| 122 | 
  | 
  | 
             | 
| 123 | 
  | 
  | 
         do g = 1, nens | 
| 124 | 
  | 
  | 
            zp(:,g) = ((zp(:,g) - xp) - Khat*( zp(ind,g) -  | 
| 125 | 
  | 
  | 
     &           xp(ind) )) + xa | 
| 126 | 
  | 
  | 
         end do | 
| 127 | 
  | 
  | 
 | 
| 128 | 
  | 
  | 
!*** Use analysis ensemble as the background for the next observation | 
| 129 | 
  | 
  | 
         xp = xa | 
| 130 | 
  | 
  | 
 | 
| 131 | 
  | 
  | 
      end do | 
| 132 | 
  | 
  | 
 | 
| 133 | 
  | 
  | 
c      print*, 'EnSRF:: Done Mobs Loop' | 
| 134 | 
  | 
  | 
 | 
| 135 | 
  | 
  | 
      xens = zp | 
| 136 | 
  | 
  | 
 | 
| 137 | 
  | 
  | 
      return | 
| 138 | 
  | 
  | 
   | 
| 139 | 
  | 
  | 
      end subroutine gregfilt_loc | 
| 140 | 
  | 
  | 
 | 
| 141 | 
  | 
  | 
!---------------------------------------------------------------------------- | 
| 142 | 
  | 
  | 
c***  distance filter | 
| 143 | 
  | 
  | 
      function cov_factor(z_in, c) | 
| 144 | 
  | 
  | 
 | 
| 145 | 
  | 
  | 
      implicit none | 
| 146 | 
  | 
  | 
 | 
| 147 | 
  | 
  | 
      double precision             :: cov_factor | 
| 148 | 
  | 
  | 
      double precision, intent(in) :: z_in, c | 
| 149 | 
  | 
  | 
      double precision             :: z, r | 
| 150 | 
  | 
  | 
 | 
| 151 | 
  | 
  | 
      z = abs(z_in) | 
| 152 | 
  | 
  | 
      r = z / c | 
| 153 | 
  | 
  | 
 | 
| 154 | 
  | 
  | 
      if ( z >= 2*c ) then | 
| 155 | 
  | 
  | 
         cov_factor = 0. | 
| 156 | 
  | 
  | 
      else if ( z >= c .and. z < 2*c ) then | 
| 157 | 
  | 
  | 
         cov_factor = r**5/12. - r**4/2. + r**3 * 5./8. +  | 
| 158 | 
  | 
  | 
     &      r**2 * 5./3. - 5*r + 4. - (2 * c) / (3 * z) | 
| 159 | 
  | 
  | 
      else | 
| 160 | 
  | 
  | 
         cov_factor = r**5 * (-1./4.) + r**4/2. + r**3 *  | 
| 161 | 
  | 
  | 
     &      5./8. - r**2 * 5./3. + 1. | 
| 162 | 
  | 
  | 
      end if | 
| 163 | 
  | 
  | 
 | 
| 164 | 
  | 
  | 
      end function cov_factor | 
| 165 | 
  | 
  | 
 | 
| 166 | 
  | 
  | 
 |