| 1 | % | 
| 2 | % Read in CS 510 input fields | 
| 3 | xc1 = zeros(511,511,6); | 
| 4 | yc1 = zeros(511,511,6); | 
| 5 | dxf1 = zeros(511,511,6); | 
| 6 | dyf1 = zeros(511,511,6); | 
| 7 | ra1 = zeros(511,511,6); | 
| 8 | xg1 = zeros(511,511,6); | 
| 9 | yg1 = zeros(511,511,6); | 
| 10 | dxv1 = zeros(511,511,6); | 
| 11 | dyu1 = zeros(511,511,6); | 
| 12 | raz1 = zeros(511,511,6); | 
| 13 | dxc1 = zeros(511,511,6); | 
| 14 | dyc1 = zeros(511,511,6); | 
| 15 | raw1 = zeros(511,511,6); | 
| 16 | ras1 = zeros(511,511,6); | 
| 17 | dxg1 = zeros(511,511,6); | 
| 18 | dyg1 = zeros(511,511,6); | 
| 19 | for iface=1:6 | 
| 20 | fid = fopen(['tile00' num2str(iface) '.mitgrid'],'r','b'); | 
| 21 | xc1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 22 | yc1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 23 | dxf1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 24 | dyf1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 25 | ra1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 26 | xg1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 27 | yg1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 28 | dxv1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 29 | dyu1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 30 | raz1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 31 | dxc1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 32 | dyc1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 33 | raw1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 34 | ras1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 35 | dxg1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 36 | dyg1(:,:,iface) = fread(fid,[511 511],'real*8'); | 
| 37 | end | 
| 38 | % | 
| 39 | % Now output (approx 1 deg) grid | 
| 40 | ratio = 5; | 
| 41 | xc2 = zeros(103,103,6); | 
| 42 | yc2 = zeros(103,103,6); | 
| 43 | dxf2 = zeros(103,103,6); | 
| 44 | dyf2 = zeros(103,103,6); | 
| 45 | ra2 = zeros(103,103,6); | 
| 46 | xg2 = zeros(103,103,6); | 
| 47 | yg2 = zeros(103,103,6); | 
| 48 | dxv2 = zeros(103,103,6); | 
| 49 | dyu2 = zeros(103,103,6); | 
| 50 | raz2 = zeros(103,103,6); | 
| 51 | dxc2 = zeros(103,103,6); | 
| 52 | dyc2 = zeros(103,103,6); | 
| 53 | raw2 = zeros(103,103,6); | 
| 54 | ras2 = zeros(103,103,6); | 
| 55 | dxg2 = zeros(103,103,6); | 
| 56 | anglecos2 = zeros(103,103,6); | 
| 57 | anglesin2 = zeros(103,103,6); | 
| 58 | dyg2 = zeros(103,103,6); | 
| 59 | % Create left, x-center, bottom and y-center indeces into 510 grid | 
| 60 | ileft=[1:5:510]; | 
| 61 | icent=ileft+2; | 
| 62 | jbott=[1:5:510]; | 
| 63 | jcent=jbott+2; | 
| 64 | % First do the interior of each face | 
| 65 | for iface=1:6 | 
| 66 | % lats and lons | 
| 67 | xc2(1:102,1:102,iface)=xc1(icent,jcent,iface); | 
| 68 | yc2(1:102,1:102,iface)=yc1(icent,jcent,iface); | 
| 69 | xg2(1:102,1:102,iface)=xg1(ileft,jbott,iface); | 
| 70 | yg2(1:102,1:102,iface)=yg1(ileft,jbott,iface); | 
| 71 | for ipnt=0:ratio-1 | 
| 72 | dxf2(1:102,1:102,iface)=dxf2(1:102,1:102,iface) + dxf1(ileft+ipnt,jcent,iface); | 
| 73 | dxg2(1:102,1:102,iface)=dxg2(1:102,1:102,iface) + dxg1(ileft+ipnt,jbott,iface); | 
| 74 | dxv2(2:102,1:102,iface)=dxv2(2:102,1:102,iface) + dxv1(icent(1:101)+ipnt+1,jbott(1:102),iface); | 
| 75 | dxc2(2:102,1:102,iface)=dxc2(2:102,1:102,iface) + dxc1(icent(1:101)+ipnt+1,jcent(1:102),iface); | 
| 76 | end | 
| 77 | % dx's and dy's | 
| 78 | for jpnt=0:ratio-1 | 
| 79 | dyf2(1:102,1:102,iface)=dyf2(1:102,1:102,iface) + dyf1(icent,jbott+jpnt,iface); | 
| 80 | dyg2(1:102,1:102,iface)=dyg2(1:102,1:102,iface) + dyg1(ileft,jbott+jpnt,iface); | 
| 81 | dyu2(1:102,2:102,iface)=dyu2(1:102,2:102,iface) + dyu1(ileft(1:102),jcent(1:101)+jpnt+1,iface); | 
| 82 | dyc2(1:102,2:102,iface)=dyc2(1:102,2:102,iface) + dyc1(icent(1:102),jcent(1:101)+jpnt+1,iface); | 
| 83 | end | 
| 84 | % Construct values that we don't know yet - use grid symmetries for edge dx's and dy's | 
| 85 | dxc2(1,1:102,iface)=dxc1(1,jcent(1:102),iface) + 2.*dxc1(2,jcent(1:102),iface) + 2.*dxc1(3,jcent(1:102),iface); | 
| 86 | dxv2(1,1:102,iface)=dxv1(1,jbott(1:102),iface) + 2.*dxv1(2,jbott(1:102),iface) + 2.*dxv1(3,jbott(1:102),iface); | 
| 87 | dyc2(1:102,1,iface)=dyc1(icent(1:102),1,iface) + 2.*dyc1(icent(1:102),2,iface) + 2.*dyc1(icent(1:102),3,iface); | 
| 88 | dyu2(1:102,1,iface)=dyu1(ileft(1:102),1,iface) + 2.*dyu1(ileft(1:102),2,iface) + 2.*dyu1(ileft(1:102),3,iface); | 
| 89 | % Areas | 
| 90 | for ipnt=0:ratio-1 | 
| 91 | for jpnt=0:ratio-1 | 
| 92 | ra2(1:102,1:102,iface)=ra2(1:102,1:102,iface) + ra1(ileft+ipnt,jbott+jpnt,iface); | 
| 93 | ras2(1:102,2:102,iface)=ras2(1:102,2:102,iface) + ras1(ileft(1:102)+ipnt,jcent(1:101)+jpnt+1,iface); | 
| 94 | raw2(2:102,1:102,iface)=raw2(2:102,1:102,iface) + raw1(icent(1:101)+ipnt+1,jbott(1:102)+jpnt,iface); | 
| 95 | raz2(2:102,2:102,iface)=raz2(2:102,2:102,iface) + raz1(icent(1:101)+ipnt+1,jcent(1:101)+jpnt+1,iface); | 
| 96 | end | 
| 97 | end | 
| 98 | % Construct values that we don't know yet - use grid symmetries for edge areas | 
| 99 | for ipnt=0:ratio-1 | 
| 100 | ras2(1:102,1,iface) = ras2(1:102,1,iface) + ... | 
| 101 | ras1(ileft(1:102)+ipnt,1,iface) + 2.*ras1(ileft(1:102)+ipnt,2,iface) + 2.*ras1(ileft(1:102)+ipnt,3,iface); | 
| 102 | end | 
| 103 | for jpnt=0:ratio-1 | 
| 104 | raw2(1,1:102,iface) = raw2(1,1:102,iface) + ... | 
| 105 | raw1(1,jbott(1:102)+jpnt,iface) + 2.*raw1(2,jbott(1:102)+jpnt,iface) + 2.*raw1(3,jbott(1:102)+jpnt,iface); | 
| 106 | end | 
| 107 | % Construct values that we don't know yet - vorticity point area, along face edges than at face corner | 
| 108 | for jpnt=0:ratio-1 | 
| 109 | raz2(1,2:102,iface) = raz2(1,2:102,iface) + ... | 
| 110 | raz1(1,jcent(1:101)+jpnt+1,iface) + 2.*raz1(2,jcent(1:101)+jpnt+1,iface) + 2.*raz1(3,jcent(1:101)+jpnt+1,iface); | 
| 111 | end | 
| 112 | for ipnt=0:ratio-1 | 
| 113 | raz2(2:102,1,iface) = raz2(2:102,1,iface) + ... | 
| 114 | raz1(icent(1:101)+ipnt+1,1,iface) + 2.*raz1(icent(1:101)+1+ipnt,2,iface) + 2.*raz1(icent(1:101)+1+ipnt,3,iface); | 
| 115 | end | 
| 116 | raz2(1,1,iface) = sum(raz1(1:3,1,iface),1) + 2.*sum(raz1(1,2:3,iface),2) + ... | 
| 117 | 3.*sum(raz1(2:3,3,iface),1) + sum(raz1(2:3,2,iface),1); | 
| 118 | end | 
| 119 | % Now the exchanges to fill up the extra column and row | 
| 120 | % Exchange for lon and lat's at center and corners - no directions (xc is always xc) | 
| 121 | xc2(1:102,103,[1 3 5])=xc2(1,102:-1:1,[3 5 1]); | 
| 122 | xc2(103,1:102,[1 3 5])=xc2(1,1:102,[2 4 6]); | 
| 123 | xc2(1:102,103,[2 4 6])=xc2(1:102,1,[3 5 1]); | 
| 124 | xc2(103,1:102,[2 4 6])=xc2(102:-1:1,1,[4 6 2]); | 
| 125 | xc2(103,103,[1 2 3 4 5 6])=xc2(1,1,[3 4 5 6 1 2]); | 
| 126 | yc2(1:102,103,[1 3 5])=yc2(1,102:-1:1,[3 5 1]); | 
| 127 | yc2(103,1:102,[1 3 5])=yc2(1,1:102,[2 4 6]); | 
| 128 | yc2(1:102,103,[2 4 6])=yc2(1:102,1,[3 5 1]); | 
| 129 | yc2(103,1:102,[2 4 6])=yc2(102:-1:1,1,[4 6 2]); | 
| 130 | yc2(103,103,[1 2 3 4 5 6])=yc2(1,1,[3 4 5 6 1 2]); | 
| 131 | xg2(1:102,103,[1 3 5])=xg2(1,102:-1:1,[3 5 1]); | 
| 132 | xg2(103,1:102,[1 3 5])=xg2(1,1:102,[2 4 6]); | 
| 133 | xg2(1:102,103,[2 4 6])=xg2(1:102,1,[3 5 1]); | 
| 134 | xg2(103,1:102,[2 4 6])=xg2(102:-1:1,1,[4 6 2]); | 
| 135 | xg2(103,103,[1 2 3 4 5 6])=xg2(1,1,[3 4 5 6 1 2]); | 
| 136 | yg2(1:102,103,[1 3 5])=yg2(1,102:-1:1,[3 5 1]); | 
| 137 | yg2(103,1:102,[1 3 5])=yg2(1,1:102,[2 4 6]); | 
| 138 | yg2(1:102,103,[2 4 6])=yg2(1:102,1,[3 5 1]); | 
| 139 | yg2(103,1:102,[2 4 6])=yg2(102:-1:1,1,[4 6 2]); | 
| 140 | yg2(103,103,[1 2 3 4 5 6])=yg2(1,1,[3 4 5 6 1 2]); | 
| 141 | % Exchange for areas at center - no directions | 
| 142 | ra2(1:102,103,[1 3 5])=ra2(1,102:-1:1,[3 5 1]); | 
| 143 | ra2(103,1:102,[1 3 5])=ra2(1,1:102,[2 4 6]); | 
| 144 | ra2(1:102,103,[2 4 6])=ra2(1:102,1,[3 5 1]); | 
| 145 | ra2(103,1:102,[2 4 6])=ra2(102:-1:1,1,[4 6 2]); | 
| 146 | ra2(103,103,[1 2 3 4 5 6])=ra2(1,1,[3 4 5 6 1 2]); | 
| 147 | % Exchange for areas at south and west edges - no directions | 
| 148 | ras2(1:102,103,[1 3 5])=raw2(1,102:-1:1,[3 5 1]); | 
| 149 | ras2(103,1:102,[1 3 5])=ras2(1,1:102,[2 4 6]); | 
| 150 | ras2(1:102,103,[2 4 6])=ras2(1:102,1,[3 5 1]); | 
| 151 | ras2(103,1:102,[2 4 6])=raw2(102:-1:1,1,[4 6 2]); | 
| 152 | ras2(103,103,[1 2 3 4 5 6])=ras2(1,1,[3 4 5 6 1 2]); | 
| 153 | raw2(1:102,103,[1 3 5])=ras2(1,102:-1:1,[3 5 1]); | 
| 154 | raw2(103,1:102,[1 3 5])=raw2(1,1:102,[2 4 6]); | 
| 155 | raw2(1:102,103,[2 4 6])=raw2(1:102,1,[3 5 1]); | 
| 156 | raw2(103,1:102,[2 4 6])=ras2(102:-1:1,1,[4 6 2]); | 
| 157 | raw2(103,103,[1 2 3 4 5 6])=raw2(1,1,[3 4 5 6 1 2]); | 
| 158 | % Exchange for areas at vorticity points - no directions | 
| 159 | % Special case: define upper edge assuming symmetry in y | 
| 160 | %   Done because the edge values are ambiguously defined | 
| 161 | %   for quantities defined on a corner | 
| 162 | %%%%raz2(1:102,103,[1 3 5])=raz2(1,102:-1:1,[3 5 1]); | 
| 163 | %%%%raz2(1:102,103,[2 4 6])=raz2(1:102,1,[3 5 1]); | 
| 164 | %%%%raz2(103,1:102,[1 3 5])=raz2(1,1:102,[2 4 6]); | 
| 165 | %%%%raz2(103,1:102,[2 4 6])=raz2(102:-1:1,1,[4 6 2]); | 
| 166 | raz2(1:102,103,:)=raz2(1:102,1,:); | 
| 167 | raz2(103,1:102,:)=raz2(1,1:102,:); | 
| 168 | raz2(103,103,[1 2 3 4 5 6])=raz2(1,1,[3 4 5 6 1 2]); | 
| 169 | % | 
| 170 | % Exchange for dx's and dy's at center - direction but no sign (dx is sometimes from dy) | 
| 171 | dxf2(1:102,103,[1 3 5])=dyf2(1,102:-1:1,[3 5 1]); | 
| 172 | dxf2(103,1:102,[1 3 5])=dxf2(1,1:102,[2 4 6]); | 
| 173 | dxf2(1:102,103,[2 4 6])=dxf2(1:102,1,[3 5 1]); | 
| 174 | dxf2(103,1:102,[2 4 6])=dyf2(102:-1:1,1,[4 6 2]); | 
| 175 | dxf2(103,103,[1 2 3 4 5 6])=dxf2(1,1,[3 4 5 6 1 2]); | 
| 176 | dyf2(1:102,103,[1 3 5])=dxf2(1,102:-1:1,[3 5 1]); | 
| 177 | dyf2(103,1:102,[1 3 5])=dyf2(1,1:102,[2 4 6]); | 
| 178 | dyf2(1:102,103,[2 4 6])=dyf2(1:102,1,[3 5 1]); | 
| 179 | dyf2(103,1:102,[2 4 6])=dxf2(102:-1:1,1,[4 6 2]); | 
| 180 | dyf2(103,103,[1 2 3 4 5 6])=dyf2(1,1,[3 4 5 6 1 2]); | 
| 181 | dxg2(1:102,103,[1 3 5])=dyg2(1,102:-1:1,[3 5 1]); | 
| 182 | dxg2(103,1:102,[1 3 5])=dxg2(1,1:102,[2 4 6]); | 
| 183 | dxg2(1:102,103,[2 4 6])=dxg2(1:102,1,[3 5 1]); | 
| 184 | dxg2(103,1:102,[2 4 6])=dyg2(102:-1:1,1,[4 6 2]); | 
| 185 | dxg2(103,103,[1 2 3 4 5 6])=dxg2(1,1,[3 4 5 6 1 2]); | 
| 186 | dyg2(1:102,103,[1 3 5])=dxg2(1,102:-1:1,[3 5 1]); | 
| 187 | dyg2(103,1:102,[1 3 5])=dyg2(1,1:102,[2 4 6]); | 
| 188 | dyg2(1:102,103,[2 4 6])=dyg2(1:102,1,[3 5 1]); | 
| 189 | dyg2(103,1:102,[2 4 6])=dxg2(102:-1:1,1,[4 6 2]); | 
| 190 | dyg2(103,103,[1 2 3 4 5 6])=dyg2(1,1,[3 4 5 6 1 2]); | 
| 191 | % Exchange for dx's and dy's at edges - direction but no sign (dx is sometimes from dy) | 
| 192 | dxc2(1:102,103,[1 3 5])=dyc2(1,102:-1:1,[3 5 1]); | 
| 193 | dxc2(103,1:102,[1 3 5])=dxc2(1,1:102,[2 4 6]); | 
| 194 | dxc2(1:102,103,[2 4 6])=dxc2(1:102,1,[3 5 1]); | 
| 195 | dxc2(103,1:102,[2 4 6])=dyc2(102:-1:1,1,[4 6 2]); | 
| 196 | dxc2(103,103,[1 2 3 4 5 6])=dxc2(1,1,[3 4 5 6 1 2]); | 
| 197 | dyc2(1:102,103,[1 3 5])=dxc2(1,102:-1:1,[3 5 1]); | 
| 198 | dyc2(103,1:102,[1 3 5])=dyc2(1,1:102,[2 4 6]); | 
| 199 | dyc2(1:102,103,[2 4 6])=dyc2(1:102,1,[3 5 1]); | 
| 200 | dyc2(103,1:102,[2 4 6])=dxc2(102:-1:1,1,[4 6 2]); | 
| 201 | dyc2(103,103,[1 2 3 4 5 6])=dyc2(1,1,[3 4 5 6 1 2]); | 
| 202 | % Special case: define upper edge assuming symmetry in y | 
| 203 | %   Done because the edge values are ambiguously defined | 
| 204 | %   for quantities defined on a corner | 
| 205 | %%%%dxv2(1:102,103,[1 3 5])=dyu2(1,102:-1:1,[3 5 1]); | 
| 206 | %%%%dxv2(103,1:102,[1 3 5])=dxv2(1,1:102,[2 4 6]); | 
| 207 | %%%%dxv2(1:102,103,[2 4 6])=dxv2(1:102,1,[3 5 1]); | 
| 208 | %%%%dxv2(103,1:102,[2 4 6])=dyu2(102:-1:1,1,[4 6 2]); | 
| 209 | %%%%dyu2(1:102,103,[1 3 5])=dxv2(1,102:-1:1,[3 5 1]); | 
| 210 | %%%%dyu2(103,1:102,[1 3 5])=dyu2(1,1:102,[2 4 6]); | 
| 211 | %%%%dyu2(1:102,103,[2 4 6])=dyu2(1:102,1,[3 5 1]); | 
| 212 | %%%%dyu2(103,1:102,[2 4 6])=dxv2(102:-1:1,1,[4 6 2]); | 
| 213 | dxv2(1:102,103,:)=dxv2(1:102,1,:); | 
| 214 | dxv2(103,1:102,:)=dxv2(1,1:102,:); | 
| 215 | dxv2(103,103,[1 2 3 4 5 6])=dxv2(1,1,[3 4 5 6 1 2]); | 
| 216 | dyu2(1:102,103,:)=dyu2(1:102,1,:); | 
| 217 | dyu2(103,1:102,:)=dyu2(1,1:102,:); | 
| 218 | dyu2(103,103,[1 2 3 4 5 6])=dyu2(1,1,[3 4 5 6 1 2]); | 
| 219 | % | 
| 220 | % All done with grid values - now compute angles | 
| 221 | ygarg1=reshape(permute(yg2(1:102,1:102,:),[1 3 2]),[612 102]); | 
| 222 | racarg2=reshape(permute(ra2(1:102,1:102,:),[1 3 2]),[612 102]); | 
| 223 | dxgarg3=reshape(permute(dxg2(1:102,1:102,:),[1 3 2]),[612 102]); | 
| 224 | dygarg4=reshape(permute(dyg2(1:102,1:102,:),[1 3 2]),[612 102]); | 
| 225 | [AngleCS,AngleSN] = cubeCalcAngle(ygarg1,racarg2,dxgarg3,dygarg4); | 
| 226 | anglecos2(1:102,1:102,:)=permute(reshape(AngleCS,[102 6 102]),[1 3 2]); | 
| 227 | anglesin2(1:102,1:102,:)=permute(reshape(AngleSN,[102 6 102]),[1 3 2]); | 
| 228 | % | 
| 229 | % And now write it all out | 
| 230 | for iface=1:6 | 
| 231 | fid = fopen(['onedegcube.face00' num2str(iface) '.bin'],'w','b'); | 
| 232 | fwrite(fid,xc2(:,:,iface),'real*8'); | 
| 233 | fwrite(fid,yc2(:,:,iface),'real*8'); | 
| 234 | fwrite(fid,dxf2(:,:,iface),'real*8'); | 
| 235 | fwrite(fid,dyf2(:,:,iface),'real*8'); | 
| 236 | fwrite(fid,ra2(:,:,iface),'real*8'); | 
| 237 | fwrite(fid,xg2(:,:,iface),'real*8'); | 
| 238 | fwrite(fid,yg2(:,:,iface),'real*8'); | 
| 239 | fwrite(fid,dxv2(:,:,iface),'real*8'); | 
| 240 | fwrite(fid,dyu2(:,:,iface),'real*8'); | 
| 241 | fwrite(fid,raz2(:,:,iface),'real*8'); | 
| 242 | fwrite(fid,dxc2(:,:,iface),'real*8'); | 
| 243 | fwrite(fid,dyc2(:,:,iface),'real*8'); | 
| 244 | fwrite(fid,raw2(:,:,iface),'real*8'); | 
| 245 | fwrite(fid,ras2(:,:,iface),'real*8'); | 
| 246 | fwrite(fid,dxg2(:,:,iface),'real*8'); | 
| 247 | fwrite(fid,dyg2(:,:,iface),'real*8'); | 
| 248 | fwrite(fid,anglecos2(:,:,iface),'real*8'); | 
| 249 | fwrite(fid,anglesin2(:,:,iface),'real*8'); | 
| 250 | fclose(fid); | 
| 251 | end |