1 |
dimitri |
1.1 |
C program to generate netcdf output files for Gruber's |
2 |
|
|
C ocean inversion project |
3 |
|
|
|
4 |
|
|
C note that ECCO_MaskAreaBathy.nc is generated directly |
5 |
|
|
C from the model |
6 |
|
|
|
7 |
|
|
C to compile on nireas: |
8 |
|
|
C f77 mk_output.F write_nc_phys.F nc_util.F \ |
9 |
|
|
C handle_errors.F write_nc_basisfnctns.F \ |
10 |
|
|
C write_nc_diag_0D.F write_nc_diag_2D.F \ |
11 |
|
|
C -I/home/dimitri/software/netcdf/netcdf-3.5.0/include \ |
12 |
|
|
C -L/home/dimitri/software/netcdf/netcdf-3.5.0/lib -lnetcdf |
13 |
|
|
|
14 |
|
|
C to compile on orion: |
15 |
|
|
C setenv F_UFMTENDIAN big |
16 |
|
|
C efc -W0 -WB mk_output.F write_nc_phys.F nc_util.F \ |
17 |
|
|
C handle_errors.F write_nc_basisfnctns.F \ |
18 |
|
|
C write_nc_diag_0D.F write_nc_diag_2D.F \ |
19 |
|
|
C -I/u2/dmenem/software/netcdf-3.5.0/include \ |
20 |
|
|
C -L/u2/dmenem/software/netcdf-3.5.0/lib -lnetcdf |
21 |
|
|
|
22 |
|
|
C=========================================================== |
23 |
|
|
C Constants that depend on model configuration |
24 |
|
|
C=========================================================== |
25 |
|
|
|
26 |
|
|
C nx, ny, nz :: model domain dimensions |
27 |
|
|
C nb_seconds_per_year :: following your model year [s] |
28 |
|
|
C nb_timesteps_per_year:: following your model timestep |
29 |
|
|
C StationaryYears :: total number of years for |
30 |
|
|
C quasi-stationary integration |
31 |
|
|
C delz :: model thicknesses |
32 |
|
|
C p1 :: path for quasi-stationary integration model output |
33 |
|
|
C p2 :: path for time-dependent integration model output |
34 |
|
|
|
35 |
|
|
INTEGER nx , ny , nz |
36 |
dimitri |
1.4 |
PARAMETER(nx=360, ny=160, nz=23) |
37 |
dimitri |
1.1 |
INTEGER nb_seconds_per_year |
38 |
dimitri |
1.4 |
PARAMETER(nb_seconds_per_year=31536000) |
39 |
dimitri |
1.1 |
INTEGER nb_timesteps_per_year |
40 |
dimitri |
1.4 |
PARAMETER(nb_timesteps_per_year=8760) |
41 |
dimitri |
1.1 |
INTEGER StationaryYears |
42 |
|
|
PARAMETER(StationaryYears=3001) |
43 |
|
|
REAL delz(nz) |
44 |
dimitri |
1.4 |
DATA delz /10.,10.,15.,20.,20.,25.,35.,50.,75.,100.,150.,200., |
45 |
|
|
& 275.,350.,415.,450.,500.,500.,500.,500.,500.,500.,500./ |
46 |
dimitri |
1.5 |
CHARACTER*(1) p1 |
47 |
|
|
C 12345678911234567892123456789312345678941234567895123456789 |
48 |
dimitri |
1.1 |
PARAMETER( p1= |
49 |
dimitri |
1.4 |
& ' ') |
50 |
dimitri |
1.5 |
CHARACTER*(45) p2 |
51 |
dimitri |
1.1 |
PARAMETER( p2= |
52 |
dimitri |
1.4 |
& '/nobackup19/menemenl/ocmip/MITgcm/exe_freeze/') |
53 |
dimitri |
1.1 |
|
54 |
|
|
C=========================================================== |
55 |
|
|
C Other constants and variables |
56 |
|
|
C=========================================================== |
57 |
|
|
|
58 |
|
|
C ndyetrac :: number of dye tracers |
59 |
dimitri |
1.4 |
C nrec :: number of records for time-dependent output |
60 |
dimitri |
1.1 |
|
61 |
|
|
INTEGER ndyetrac |
62 |
|
|
PARAMETER(ndyetrac=30) |
63 |
|
|
INTEGER nrec |
64 |
|
|
PARAMETER(nrec =56) |
65 |
|
|
|
66 |
|
|
C secs_per_month = number of seconds in each model month |
67 |
|
|
C PT = monthly potential temperature [C] |
68 |
|
|
C SAL = monthly salinity [psu] |
69 |
|
|
C TFLX = monthly net surface heat flux [W/m^2] |
70 |
|
|
C H2OFLX = monthly net surface freshwater flux [m/y] |
71 |
|
|
C Eul_U = monthly Eulerian Zonal Velocity [m/s] |
72 |
|
|
C WS_x = monthly Zonal Wind Stress [N/m^2] |
73 |
|
|
C Eul_V = monthly Eulerian Meridional Velocity [m/s] |
74 |
|
|
C WS_y = monthly Meridional Wind Stress [N/m^2] |
75 |
|
|
C has_eddy = logical flag, true if model has eddy induced velocities |
76 |
|
|
C Eddy_U = monthly Eddy Induced Zonal Velocity [m/s] |
77 |
|
|
C Eddy_V = monthly Eddy Induced Meridional Velocity [m/s] |
78 |
|
|
C dye_arr= Concentration of dye tracer [mol/cm^3] |
79 |
|
|
C time=time expressed as decimal years |
80 |
|
|
C dye_flux=dye flux for each tracer (mol/m2/s) |
81 |
|
|
C cum_dye_flux=cumulative dye flux for each tracer (mol/m2) |
82 |
|
|
C global_time=time expressed as decimal years |
83 |
|
|
C global_tot_dye=global total dye flux for this year for each tracer (mol) |
84 |
|
|
C global_cum_dye=global cumulative dye flux for each tracer (mol) |
85 |
|
|
C global_mean_conc= global mean dye concentration (mol/m-3) |
86 |
|
|
C year= year of simulation [years] |
87 |
|
|
C RAC = model area |
88 |
|
|
C hFacC = model mask |
89 |
|
|
|
90 |
|
|
REAL secs_per_month ( 12) |
91 |
|
|
REAL PT (nx, ny, nz, 12) |
92 |
|
|
REAL SAL (nx, ny, nz, 12) |
93 |
|
|
REAL TFLX (nx, ny, 12) |
94 |
|
|
REAL H2OFLX (nx, ny, 12) |
95 |
|
|
REAL Eul_U (nx, ny, nz, 12) |
96 |
|
|
REAL WS_x (nx, ny, 12) |
97 |
|
|
REAL Eul_V (nx, ny, nz, 12) |
98 |
|
|
REAL WS_y (nx, ny, 12) |
99 |
|
|
LOGICAL has_eddy |
100 |
|
|
REAL Eddy_U (nx, ny, nz, 12) |
101 |
|
|
REAL Eddy_V (nx, ny, nz, 12) |
102 |
|
|
REAL dye_arr (nx, ny, nz, ndyetrac) |
103 |
|
|
REAL time(nrec) |
104 |
|
|
REAL dye_flux (nx, ny, ndyetrac, nrec) |
105 |
|
|
REAL cum_dye_flux (nx, ny, ndyetrac, nrec) |
106 |
|
|
REAL global_time ( StationaryYears) |
107 |
|
|
REAL global_tot_dye (ndyetrac,StationaryYears) |
108 |
|
|
REAL global_cum_dye (ndyetrac,StationaryYears) |
109 |
|
|
REAL global_mean_conc(ndyetrac,StationaryYears) |
110 |
|
|
INTEGER year |
111 |
|
|
REAL RAC(nx, ny), hFacC(nx, ny, nz) |
112 |
|
|
|
113 |
|
|
INTEGER i, j, k, m, n, step, year, irec, start_step, end_step |
114 |
|
|
CHARACTER*(80) fn |
115 |
|
|
REAL tmp(nx, ny), tmp3D(nx, ny, nz) |
116 |
|
|
|
117 |
|
|
C=========================================================== |
118 |
|
|
print*,'generate ECCO_*_phys.nc files' |
119 |
|
|
C=========================================================== |
120 |
|
|
|
121 |
|
|
do m=1,12 |
122 |
|
|
secs_per_month(m)=nb_seconds_per_year/12 |
123 |
|
|
enddo |
124 |
|
|
|
125 |
|
|
C== Eddy velocity is not computed |
126 |
|
|
has_eddy = .FALSE. |
127 |
|
|
do m=1,12 |
128 |
|
|
do i=1,nx |
129 |
|
|
do j=1,ny |
130 |
|
|
do k=1,nz |
131 |
|
|
Eddy_U(i,j,k,m)=0 |
132 |
|
|
enddo |
133 |
|
|
enddo |
134 |
|
|
enddo |
135 |
|
|
do i=1,nx |
136 |
|
|
do j=1,ny |
137 |
|
|
do k=1,nz |
138 |
|
|
Eddy_V(i,j,k,m)=0 |
139 |
|
|
enddo |
140 |
|
|
enddo |
141 |
|
|
enddo |
142 |
|
|
enddo |
143 |
|
|
|
144 |
|
|
C=========================================================== |
145 |
|
|
print*,'Quasi-stationary, 1st year' |
146 |
|
|
C=========================================================== |
147 |
|
|
|
148 |
dimitri |
1.4 |
IF ( p1 .NE. ' ' ) THEN |
149 |
|
|
|
150 |
|
|
do m=1,12 |
151 |
|
|
step=m*(nb_timesteps_per_year/12) |
152 |
dimitri |
1.1 |
|
153 |
|
|
C== PT = monthly potential temperature [C] |
154 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'Ttave.', step, '.data' |
155 |
|
|
open(100,file=fn,status='old',access='direct', |
156 |
|
|
& recl=nx*ny*4) |
157 |
|
|
do k=1,nz |
158 |
|
|
read(100,rec=k) tmp |
159 |
|
|
do i=1,nx |
160 |
|
|
do j=1,ny |
161 |
|
|
PT (i,j,k,m)=tmp(i,j) |
162 |
|
|
enddo |
163 |
|
|
enddo |
164 |
|
|
enddo |
165 |
|
|
close(100) |
166 |
|
|
|
167 |
|
|
C== SAL = monthly salinity [psu] |
168 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'Stave.', step, '.data' |
169 |
|
|
open(100,file=fn,status='old',access='direct', |
170 |
|
|
& recl=nx*ny*4) |
171 |
|
|
do k=1,nz |
172 |
|
|
read(100,rec=k) tmp |
173 |
|
|
do i=1,nx |
174 |
|
|
do j=1,ny |
175 |
|
|
SAL(i,j,k,m)=tmp(i,j) |
176 |
|
|
enddo |
177 |
|
|
enddo |
178 |
|
|
enddo |
179 |
|
|
close(100) |
180 |
|
|
|
181 |
|
|
C== TFLX = monthly net surface heat flux [W/m^2] |
182 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'tFluxtave.', step, '.data' |
183 |
|
|
open(100,file=fn,status='old',access='direct', |
184 |
|
|
& recl=nx*ny*4) |
185 |
|
|
read(100,rec=1) tmp |
186 |
|
|
do i=1,nx |
187 |
|
|
do j=1,ny |
188 |
|
|
TFLX(i,j,m)=-tmp(i,j) |
189 |
|
|
enddo |
190 |
|
|
enddo |
191 |
|
|
close(100) |
192 |
|
|
|
193 |
|
|
C== H2OFLX = monthly net surface freshwater flux [m/y] |
194 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'sFluxtave.', step, '.data' |
195 |
|
|
open(100,file=fn,status='old',access='direct', |
196 |
|
|
& recl=nx*ny*4) |
197 |
|
|
read(100,rec=1) tmp |
198 |
|
|
do i=1,nx |
199 |
dimitri |
1.3 |
do j=1,ny |
200 |
dimitri |
1.1 |
C-- convert from PSU.kg/m^2/s to m/yr |
201 |
dimitri |
1.3 |
H2OFLX(i,j,m)=-tmp(i,j)*nb_seconds_per_year/999.8/SAL(i,j,1,m) |
202 |
|
|
enddo |
203 |
dimitri |
1.1 |
enddo |
204 |
|
|
close(100) |
205 |
|
|
|
206 |
|
|
C== Eul_U = monthly Eulerian Zonal Velocity [m/s] |
207 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'uVeltave.', step, '.data' |
208 |
|
|
open(100,file=fn,status='old',access='direct', |
209 |
|
|
& recl=nx*ny*4) |
210 |
|
|
do k=1,nz |
211 |
|
|
read(100,rec=k) tmp |
212 |
|
|
do i=1,nx |
213 |
|
|
do j=1,ny |
214 |
|
|
Eul_U(i,j,k,m)=tmp(i,j) |
215 |
|
|
enddo |
216 |
|
|
enddo |
217 |
|
|
enddo |
218 |
|
|
close(100) |
219 |
|
|
|
220 |
|
|
C== WS_x = monthly Zonal Wind Stress [N/m^2] |
221 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'uFluxtave.', step, '.data' |
222 |
|
|
open(100,file=fn,status='old',access='direct', |
223 |
|
|
& recl=nx*ny*4) |
224 |
|
|
read(100,rec=1) tmp |
225 |
|
|
do i=1,nx |
226 |
|
|
do j=1,ny |
227 |
|
|
WS_x(i,j,m)=tmp(i,j) |
228 |
|
|
enddo |
229 |
|
|
enddo |
230 |
|
|
close(100) |
231 |
|
|
|
232 |
|
|
C== Eul_V = monthly Eulerian Meridional Velocity [m/s] |
233 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'vVeltave.', step, '.data' |
234 |
|
|
open(100,file=fn,status='old',access='direct', |
235 |
|
|
& recl=nx*ny*4) |
236 |
|
|
do k=1,nz |
237 |
|
|
read(100,rec=k) tmp |
238 |
|
|
do i=1,nx |
239 |
|
|
do j=1,ny |
240 |
|
|
Eul_V(i,j,k,m)=tmp(i,j) |
241 |
|
|
enddo |
242 |
|
|
enddo |
243 |
|
|
enddo |
244 |
|
|
close(100) |
245 |
|
|
|
246 |
|
|
C== WS_y = monthly Meridional Wind Stress [N/m^2] |
247 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'vFluxtave.', step, '.data' |
248 |
|
|
open(100,file=fn,status='old',access='direct', |
249 |
|
|
& recl=nx*ny*4) |
250 |
|
|
read(100,rec=1) tmp |
251 |
|
|
do i=1,nx |
252 |
|
|
do j=1,ny |
253 |
|
|
WS_y(i,j,m)=tmp(i,j) |
254 |
|
|
enddo |
255 |
|
|
enddo |
256 |
|
|
close(100) |
257 |
dimitri |
1.4 |
enddo |
258 |
dimitri |
1.1 |
|
259 |
dimitri |
1.4 |
call write_nc_phys( |
260 |
|
|
& 'ECCO1_Stationary_1','MITgcm_checkpoint51n_post', |
261 |
dimitri |
1.1 |
& secs_per_month, |
262 |
|
|
& nx, ny, nz, |
263 |
|
|
& PT, SAL, TFLX, H2OFLX, |
264 |
|
|
& nz, |
265 |
|
|
& nx, ny, Eul_U, WS_x, |
266 |
|
|
& nx, ny, Eul_V, WS_y, |
267 |
|
|
& has_eddy, |
268 |
|
|
& nx, ny, Eddy_U, |
269 |
|
|
& nx, ny, Eddy_V) |
270 |
|
|
|
271 |
|
|
C=========================================================== |
272 |
|
|
print*,'Quasi-stationary, last year' |
273 |
|
|
C=========================================================== |
274 |
|
|
|
275 |
dimitri |
1.4 |
do m=1,12 |
276 |
|
|
step=(StationaryYears-1)*nb_timesteps_per_year+ |
277 |
|
|
& m*(nb_timesteps_per_year/12) |
278 |
dimitri |
1.1 |
|
279 |
|
|
C== PT = monthly potential temperature [C] |
280 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'Ttave.', step, '.data' |
281 |
|
|
open(100,file=fn,status='old',access='direct', |
282 |
|
|
& recl=nx*ny*4) |
283 |
|
|
do k=1,nz |
284 |
|
|
read(100,rec=k) tmp |
285 |
|
|
do i=1,nx |
286 |
|
|
do j=1,ny |
287 |
|
|
PT (i,j,k,m)=tmp(i,j) |
288 |
|
|
enddo |
289 |
|
|
enddo |
290 |
|
|
enddo |
291 |
|
|
close(100) |
292 |
|
|
|
293 |
|
|
C== SAL = monthly salinity [psu] |
294 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'Stave.', step, '.data' |
295 |
|
|
open(100,file=fn,status='old',access='direct', |
296 |
|
|
& recl=nx*ny*4) |
297 |
|
|
do k=1,nz |
298 |
|
|
read(100,rec=k) tmp |
299 |
|
|
do i=1,nx |
300 |
|
|
do j=1,ny |
301 |
|
|
SAL(i,j,k,m)=tmp(i,j) |
302 |
|
|
enddo |
303 |
|
|
enddo |
304 |
|
|
enddo |
305 |
|
|
close(100) |
306 |
|
|
|
307 |
|
|
C== TFLX = monthly net surface heat flux [W/m^2] |
308 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'tFluxtave.', step, '.data' |
309 |
|
|
open(100,file=fn,status='old',access='direct', |
310 |
|
|
& recl=nx*ny*4) |
311 |
|
|
read(100,rec=1) tmp |
312 |
|
|
do i=1,nx |
313 |
|
|
do j=1,ny |
314 |
|
|
TFLX(i,j,m)=-tmp(i,j) |
315 |
|
|
enddo |
316 |
|
|
enddo |
317 |
|
|
close(100) |
318 |
|
|
|
319 |
|
|
C== H2OFLX = monthly net surface freshwater flux [m/y] |
320 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'sFluxtave.', step, '.data' |
321 |
|
|
open(100,file=fn,status='old',access='direct', |
322 |
|
|
& recl=nx*ny*4) |
323 |
|
|
read(100,rec=1) tmp |
324 |
|
|
do i=1,nx |
325 |
dimitri |
1.3 |
do j=1,ny |
326 |
dimitri |
1.1 |
C-- convert from PSU.kg/m^2/s to m/yr |
327 |
dimitri |
1.3 |
H2OFLX(i,j,m)=-tmp(i,j)*nb_seconds_per_year/999.8/SAL(i,j,1,m) |
328 |
|
|
enddo |
329 |
dimitri |
1.1 |
enddo |
330 |
|
|
close(100) |
331 |
|
|
|
332 |
|
|
C== Eul_U = monthly Eulerian Zonal Velocity [m/s] |
333 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'uVeltave.', step, '.data' |
334 |
|
|
open(100,file=fn,status='old',access='direct', |
335 |
|
|
& recl=nx*ny*4) |
336 |
|
|
do k=1,nz |
337 |
|
|
read(100,rec=k) tmp |
338 |
|
|
do i=1,nx |
339 |
|
|
do j=1,ny |
340 |
|
|
Eul_U(i,j,k,m)=tmp(i,j) |
341 |
|
|
enddo |
342 |
|
|
enddo |
343 |
|
|
enddo |
344 |
|
|
close(100) |
345 |
|
|
|
346 |
|
|
C== WS_x = monthly Zonal Wind Stress [N/m^2] |
347 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'uFluxtave.', step, '.data' |
348 |
|
|
open(100,file=fn,status='old',access='direct', |
349 |
|
|
& recl=nx*ny*4) |
350 |
|
|
read(100,rec=1) tmp |
351 |
|
|
do i=1,nx |
352 |
|
|
do j=1,ny |
353 |
|
|
WS_x(i,j,m)=tmp(i,j) |
354 |
|
|
enddo |
355 |
|
|
enddo |
356 |
|
|
close(100) |
357 |
|
|
|
358 |
|
|
C== Eul_V = monthly Eulerian Meridional Velocity [m/s] |
359 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'vVeltave.', step, '.data' |
360 |
|
|
open(100,file=fn,status='old',access='direct', |
361 |
|
|
& recl=nx*ny*4) |
362 |
|
|
do k=1,nz |
363 |
|
|
read(100,rec=k) tmp |
364 |
|
|
do i=1,nx |
365 |
|
|
do j=1,ny |
366 |
|
|
Eul_V(i,j,k,m)=tmp(i,j) |
367 |
|
|
enddo |
368 |
|
|
enddo |
369 |
|
|
enddo |
370 |
|
|
close(100) |
371 |
|
|
|
372 |
|
|
C== WS_y = monthly Meridional Wind Stress [N/m^2] |
373 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p1, 'vFluxtave.', step, '.data' |
374 |
|
|
open(100,file=fn,status='old',access='direct', |
375 |
|
|
& recl=nx*ny*4) |
376 |
|
|
read(100,rec=1) tmp |
377 |
|
|
do i=1,nx |
378 |
|
|
do j=1,ny |
379 |
|
|
WS_y(i,j,m)=tmp(i,j) |
380 |
|
|
enddo |
381 |
|
|
enddo |
382 |
|
|
close(100) |
383 |
dimitri |
1.4 |
enddo |
384 |
dimitri |
1.1 |
|
385 |
dimitri |
1.4 |
call write_nc_phys( |
386 |
|
|
& 'ECCO1_Stationary_3001','MITgcm_checkpoint51n_post', |
387 |
dimitri |
1.1 |
& secs_per_month, |
388 |
|
|
& nx, ny, nz, |
389 |
|
|
& PT, SAL, TFLX, H2OFLX, |
390 |
|
|
& nz, |
391 |
|
|
& nx, ny, Eul_U, WS_x, |
392 |
|
|
& nx, ny, Eul_V, WS_y, |
393 |
|
|
& has_eddy, |
394 |
|
|
& nx, ny, Eddy_U, |
395 |
|
|
& nx, ny, Eddy_V) |
396 |
|
|
|
397 |
dimitri |
1.4 |
C IF ( p1 .NE. ' ' ) THEN |
398 |
|
|
ENDIF |
399 |
|
|
|
400 |
dimitri |
1.1 |
C=========================================================== |
401 |
|
|
print*,'Time-dependent average of last 10 years (232-241)' |
402 |
|
|
C=========================================================== |
403 |
|
|
|
404 |
dimitri |
1.4 |
IF ( p2 .NE. ' ' ) THEN |
405 |
|
|
|
406 |
|
|
do m=1,12 |
407 |
dimitri |
1.1 |
|
408 |
|
|
C== initialize to zero |
409 |
|
|
do i=1,nx |
410 |
|
|
do j=1,ny |
411 |
|
|
do k=1,nz |
412 |
|
|
PT (i,j,k,m)=0 |
413 |
|
|
SAL(i,j,k,m)=0 |
414 |
|
|
enddo |
415 |
|
|
TFLX (i,j,m)=0 |
416 |
|
|
H2OFLX(i,j,m)=0 |
417 |
|
|
enddo |
418 |
|
|
enddo |
419 |
|
|
do i=1,nx |
420 |
|
|
do j=1,ny |
421 |
|
|
do k=1,nz |
422 |
|
|
Eul_U(i,j,k,m)=0 |
423 |
|
|
enddo |
424 |
|
|
WS_x(i,j,m)=0 |
425 |
|
|
enddo |
426 |
|
|
enddo |
427 |
|
|
do i=1,nx |
428 |
|
|
do j=1,ny |
429 |
|
|
do k=1,nz |
430 |
|
|
Eul_V(i,j,k,m)=0 |
431 |
|
|
enddo |
432 |
|
|
WS_y(i,j,m)=0 |
433 |
|
|
enddo |
434 |
|
|
enddo |
435 |
|
|
|
436 |
|
|
n=0 |
437 |
|
|
do year=231,240 |
438 |
|
|
n=n+1 |
439 |
dimitri |
1.4 |
step=year*nb_timesteps_per_year+m*(nb_timesteps_per_year/12) |
440 |
dimitri |
1.1 |
|
441 |
|
|
C== PT = monthly potential temperature [C] |
442 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p2, 'Ttave.', step, '.data' |
443 |
|
|
open(100,file=fn,status='old',access='direct', |
444 |
|
|
& recl=nx*ny*4) |
445 |
|
|
do k=1,nz |
446 |
|
|
read(100,rec=k) tmp |
447 |
|
|
do i=1,nx |
448 |
|
|
do j=1,ny |
449 |
|
|
PT(i,j,k,m)=PT(i,j,k,m)+tmp(i,j) |
450 |
|
|
enddo |
451 |
|
|
enddo |
452 |
|
|
enddo |
453 |
|
|
close(100) |
454 |
|
|
|
455 |
|
|
C== SAL = monthly salinity [psu] |
456 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p2, 'Stave.', step, '.data' |
457 |
|
|
open(100,file=fn,status='old',access='direct', |
458 |
|
|
& recl=nx*ny*4) |
459 |
|
|
do k=1,nz |
460 |
|
|
read(100,rec=k) tmp |
461 |
|
|
do i=1,nx |
462 |
|
|
do j=1,ny |
463 |
|
|
SAL(i,j,k,m)=SAL(i,j,k,m)+tmp(i,j) |
464 |
|
|
enddo |
465 |
|
|
enddo |
466 |
|
|
enddo |
467 |
|
|
close(100) |
468 |
|
|
|
469 |
|
|
C== TFLX = monthly net surface heat flux [W/m^2] |
470 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p2, 'tFluxtave.', step, '.data' |
471 |
|
|
open(100,file=fn,status='old',access='direct', |
472 |
|
|
& recl=nx*ny*4) |
473 |
|
|
read(100,rec=1) tmp |
474 |
|
|
do i=1,nx |
475 |
|
|
do j=1,ny |
476 |
|
|
TFLX(i,j,m)=TFLX(i,j,m)-tmp(i,j) |
477 |
|
|
enddo |
478 |
|
|
enddo |
479 |
|
|
close(100) |
480 |
|
|
|
481 |
|
|
C== H2OFLX = monthly net surface freshwater flux [m/y] |
482 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p2, 'sFluxtave.', step, '.data' |
483 |
|
|
open(100,file=fn,status='old',access='direct', |
484 |
|
|
& recl=nx*ny*4) |
485 |
|
|
read(100,rec=1) tmp |
486 |
|
|
do i=1,nx |
487 |
|
|
do j=1,ny |
488 |
|
|
C-- convert from PSU.kg/m^2/s to m/yr |
489 |
|
|
H2OFLX(i,j,m)=H2OFLX(i,j,m)- |
490 |
dimitri |
1.3 |
& tmp(i,j)*nb_seconds_per_year/999.8/SAL(i,j,1,m) |
491 |
dimitri |
1.1 |
enddo |
492 |
|
|
enddo |
493 |
|
|
close(100) |
494 |
|
|
|
495 |
|
|
C== Eul_U = monthly Eulerian Zonal Velocity [m/s] |
496 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p2, 'uVeltave.', step, '.data' |
497 |
|
|
open(100,file=fn,status='old',access='direct', |
498 |
|
|
& recl=nx*ny*4) |
499 |
|
|
do k=1,nz |
500 |
|
|
read(100,rec=k) tmp |
501 |
|
|
do i=1,nx |
502 |
|
|
do j=1,ny |
503 |
|
|
Eul_U(i,j,k,m)=Eul_U(i,j,k,m)+tmp(i,j) |
504 |
|
|
enddo |
505 |
|
|
enddo |
506 |
|
|
enddo |
507 |
|
|
close(100) |
508 |
|
|
|
509 |
|
|
C== WS_x = monthly Zonal Wind Stress [N/m^2] |
510 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p2, 'uFluxtave.', step, '.data' |
511 |
|
|
open(100,file=fn,status='old',access='direct', |
512 |
|
|
& recl=nx*ny*4) |
513 |
|
|
read(100,rec=1) tmp |
514 |
|
|
do i=1,nx |
515 |
|
|
do j=1,ny |
516 |
|
|
WS_x(i,j,m)=WS_x(i,j,m)+tmp(i,j) |
517 |
|
|
enddo |
518 |
|
|
enddo |
519 |
|
|
close(100) |
520 |
|
|
|
521 |
|
|
C== Eul_V = monthly Eulerian Meridional Velocity [m/s] |
522 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p2, 'vVeltave.', step, '.data' |
523 |
|
|
open(100,file=fn,status='old',access='direct', |
524 |
|
|
& recl=nx*ny*4) |
525 |
|
|
do k=1,nz |
526 |
|
|
read(100,rec=k) tmp |
527 |
|
|
do i=1,nx |
528 |
|
|
do j=1,ny |
529 |
|
|
Eul_V(i,j,k,m)=Eul_V(i,j,k,m)+tmp(i,j) |
530 |
|
|
enddo |
531 |
|
|
enddo |
532 |
|
|
enddo |
533 |
|
|
close(100) |
534 |
|
|
|
535 |
|
|
C== WS_y = monthly Meridional Wind Stress [N/m^2] |
536 |
|
|
WRITE(fn,'(A,A,I10.10,A)') p2, 'vFluxtave.', step, '.data' |
537 |
|
|
open(100,file=fn,status='old',access='direct', |
538 |
|
|
& recl=nx*ny*4) |
539 |
|
|
read(100,rec=1) tmp |
540 |
|
|
do i=1,nx |
541 |
|
|
do j=1,ny |
542 |
|
|
WS_y(i,j,m)=WS_y(i,j,m)+tmp(i,j) |
543 |
|
|
enddo |
544 |
|
|
enddo |
545 |
|
|
close(100) |
546 |
|
|
enddo |
547 |
|
|
|
548 |
|
|
C== normalize |
549 |
|
|
do i=1,nx |
550 |
|
|
do j=1,ny |
551 |
|
|
do k=1,nz |
552 |
|
|
PT (i,j,k,m)=PT (i,j,k,m)/n |
553 |
|
|
SAL(i,j,k,m)=SAL(i,j,k,m)/n |
554 |
|
|
enddo |
555 |
|
|
TFLX (i,j,m)=TFLX (i,j,m)/n |
556 |
|
|
H2OFLX(i,j,m)=H2OFLX(i,j,m)/n |
557 |
|
|
enddo |
558 |
|
|
enddo |
559 |
|
|
do i=1,nx |
560 |
|
|
do j=1,ny |
561 |
|
|
do k=1,nz |
562 |
|
|
Eul_U(i,j,k,m)=Eul_U(i,j,k,m)/n |
563 |
|
|
enddo |
564 |
|
|
WS_x(i,j,m)=WS_x(i,j,m)/n |
565 |
|
|
enddo |
566 |
|
|
enddo |
567 |
|
|
do i=1,nx |
568 |
|
|
do j=1,ny |
569 |
|
|
do k=1,nz |
570 |
|
|
Eul_V(i,j,k,m)=Eul_V(i,j,k,m)/n |
571 |
|
|
enddo |
572 |
|
|
WS_y(i,j,m)=WS_y(i,j,m)/n |
573 |
|
|
enddo |
574 |
|
|
enddo |
575 |
dimitri |
1.4 |
enddo |
576 |
dimitri |
1.1 |
|
577 |
dimitri |
1.4 |
call write_nc_phys( |
578 |
dimitri |
1.5 |
& 'ECCO_Timedep','MITgcm_checkpoint51n_post', |
579 |
dimitri |
1.1 |
& secs_per_month, |
580 |
|
|
& nx, ny, nz, |
581 |
|
|
& PT, SAL, TFLX, H2OFLX, |
582 |
|
|
& nz, |
583 |
|
|
& nx, ny, Eul_U, WS_x, |
584 |
|
|
& nx, ny, Eul_V, WS_y, |
585 |
|
|
& has_eddy, |
586 |
|
|
& nx, ny, Eddy_U, |
587 |
|
|
& nx, ny, Eddy_V) |
588 |
|
|
|
589 |
dimitri |
1.4 |
C IF ( p2 .NE. ' ' ) THEN |
590 |
|
|
ENDIF |
591 |
|
|
|
592 |
dimitri |
1.1 |
C=========================================================== |
593 |
|
|
print*,'generate ECCO_*_BasisFNCTNS_*.nc and diag_2D files' |
594 |
|
|
C=========================================================== |
595 |
|
|
|
596 |
|
|
C=========================================================== |
597 |
|
|
print*,'Quasi-stationary annual mean basis functions' |
598 |
|
|
C== dye_arr= Concentration of dye tracer [mol/cm^3] |
599 |
|
|
C=========================================================== |
600 |
|
|
|
601 |
dimitri |
1.4 |
IF ( p1 .NE. ' ' ) THEN |
602 |
|
|
|
603 |
|
|
year = StationaryYears |
604 |
|
|
step = year * nb_timesteps_per_year |
605 |
|
|
do n=1,ndyetrac |
606 |
dimitri |
1.1 |
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
607 |
|
|
& p1, 'PTRtave', n, '.', step, '.data' |
608 |
|
|
open(100,file=fn,status='old',access='direct', |
609 |
|
|
& recl=nx*ny*4) |
610 |
|
|
do k=1,nz |
611 |
|
|
read(100,rec=k) tmp |
612 |
|
|
do i=1,nx |
613 |
|
|
do j=1,ny |
614 |
|
|
dye_arr(i,j,k,n)=100*100*100*tmp(i,j) |
615 |
|
|
enddo |
616 |
|
|
enddo |
617 |
|
|
enddo |
618 |
|
|
close(100) |
619 |
dimitri |
1.4 |
enddo |
620 |
|
|
call write_nc_basisfnctns( |
621 |
dimitri |
1.5 |
& 'ECCO','MITgcm_checkpoint51n_post','Stationary', |
622 |
dimitri |
1.1 |
& nx,ny,nz,ndyetrac, |
623 |
|
|
& year,nb_seconds_per_year,nb_timesteps_per_year, |
624 |
|
|
& dye_arr) |
625 |
|
|
|
626 |
|
|
C== 2-D diagnostics |
627 |
|
|
|
628 |
|
|
C dye_flux=dye flux for each tracer (mol/m2/s) |
629 |
dimitri |
1.4 |
time(1)=year |
630 |
|
|
do n=1,ndyetrac |
631 |
dimitri |
1.1 |
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
632 |
|
|
& p1, 'PtrFlux', n, '.', step, '.data' |
633 |
|
|
open(100,file=fn,status='old',access='direct', |
634 |
|
|
& recl=nx*ny*4) |
635 |
|
|
read(100,rec=1) tmp |
636 |
|
|
do i=1,nx |
637 |
|
|
do j=1,ny |
638 |
|
|
dye_flux(i,j,n,1)=tmp(i,j) |
639 |
|
|
enddo |
640 |
|
|
enddo |
641 |
|
|
close(100) |
642 |
dimitri |
1.4 |
enddo |
643 |
dimitri |
1.1 |
|
644 |
|
|
C cum_dye_flux=cumulative dye flux for each tracer (mol/m2) |
645 |
dimitri |
1.4 |
do n=1,ndyetrac |
646 |
dimitri |
1.1 |
do i=1,nx |
647 |
|
|
do j=1,ny |
648 |
|
|
cum_dye_flux(i,j,n,1)=0. |
649 |
|
|
enddo |
650 |
|
|
enddo |
651 |
dimitri |
1.4 |
enddo |
652 |
|
|
do step=nb_timesteps_per_year, |
653 |
|
|
& (StationaryYears*nb_timesteps_per_year), |
654 |
|
|
& nb_timesteps_per_year |
655 |
dimitri |
1.1 |
do n=1,ndyetrac |
656 |
|
|
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
657 |
|
|
& p1, 'PtrFlux', n, '.', step, '.data' |
658 |
|
|
open(100,file=fn,status='old',access='direct', |
659 |
|
|
& recl=nx*ny*4) |
660 |
|
|
read(100,rec=1) tmp |
661 |
|
|
do i=1,nx |
662 |
|
|
do j=1,ny |
663 |
|
|
cum_dye_flux(i,j,n,1)=cum_dye_flux(i,j,n,1)+ |
664 |
|
|
& tmp(i,j)*nb_seconds_per_year |
665 |
|
|
enddo |
666 |
|
|
enddo |
667 |
|
|
close(100) |
668 |
|
|
enddo |
669 |
dimitri |
1.4 |
enddo |
670 |
dimitri |
1.1 |
|
671 |
dimitri |
1.4 |
call write_nc_diag_2D( |
672 |
dimitri |
1.5 |
& 'ECCO','MITgcm_checkpoint51n_post','Stationary', |
673 |
dimitri |
1.1 |
& nx,ny,ndyetrac, |
674 |
|
|
& 1, time, dye_flux,cum_dye_flux) |
675 |
|
|
|
676 |
dimitri |
1.4 |
C IF ( p1 .NE. ' ' ) THEN |
677 |
|
|
ENDIF |
678 |
|
|
|
679 |
dimitri |
1.1 |
C=========================================================== |
680 |
|
|
print*,'Time-dependent annual mean basis functions' |
681 |
|
|
C== 1/10-years for 1775-1965, 1/year for 1970-2005 |
682 |
|
|
C== dye_arr= Concentration of dye tracer [mol/cm^3] |
683 |
|
|
C=========================================================== |
684 |
|
|
|
685 |
dimitri |
1.4 |
IF ( p2 .NE. ' ' ) THEN |
686 |
|
|
|
687 |
|
|
n=0 |
688 |
|
|
do year=1775,1965,10 |
689 |
dimitri |
1.1 |
n=n+1 |
690 |
|
|
time(n)=year |
691 |
dimitri |
1.4 |
enddo |
692 |
|
|
do year=1970,2005 |
693 |
dimitri |
1.1 |
n=n+1 |
694 |
|
|
time(n)=year |
695 |
dimitri |
1.4 |
enddo |
696 |
dimitri |
1.1 |
|
697 |
dimitri |
1.4 |
do irec=1,nrec |
698 |
dimitri |
1.1 |
year=time(irec) |
699 |
|
|
step = (year-1764) * nb_timesteps_per_year |
700 |
|
|
do n=1,ndyetrac |
701 |
|
|
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
702 |
|
|
& p2, 'PTRtave', n, '.', step, '.data' |
703 |
|
|
open(100,file=fn,status='old',access='direct', |
704 |
|
|
& recl=nx*ny*4) |
705 |
|
|
do k=1,nz |
706 |
|
|
read(100,rec=k) tmp |
707 |
|
|
do i=1,nx |
708 |
|
|
do j=1,ny |
709 |
|
|
dye_arr(i,j,k,n)=100*100*100*tmp(i,j) |
710 |
|
|
enddo |
711 |
|
|
enddo |
712 |
|
|
enddo |
713 |
|
|
close(100) |
714 |
|
|
enddo |
715 |
|
|
call write_nc_basisfnctns( |
716 |
dimitri |
1.5 |
& 'ECCO','MITgcm_checkpoint51n_post','Timedep', |
717 |
dimitri |
1.1 |
& nx,ny,nz,ndyetrac, |
718 |
|
|
& year,nb_seconds_per_year,nb_timesteps_per_year, |
719 |
|
|
& dye_arr) |
720 |
|
|
|
721 |
|
|
C== 2-D diagnostics |
722 |
|
|
|
723 |
|
|
C dye_flux=dye flux for each tracer (mol/m2/s) |
724 |
|
|
do n=1,ndyetrac |
725 |
|
|
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
726 |
|
|
& p2, 'PtrFlux', n, '.', step, '.data' |
727 |
|
|
open(100,file=fn,status='old',access='direct', |
728 |
|
|
& recl=nx*ny*4) |
729 |
|
|
read(100,rec=1) tmp |
730 |
|
|
do i=1,nx |
731 |
|
|
do j=1,ny |
732 |
dimitri |
1.2 |
dye_flux(i,j,n,irec)=tmp(i,j) |
733 |
dimitri |
1.1 |
enddo |
734 |
|
|
enddo |
735 |
|
|
close(100) |
736 |
|
|
enddo |
737 |
|
|
|
738 |
|
|
C cum_dye_flux=cumulative dye flux for each tracer (mol/m2) |
739 |
|
|
do n=1,ndyetrac |
740 |
|
|
do i=1,nx |
741 |
|
|
do j=1,ny |
742 |
|
|
if (irec.eq.1) then |
743 |
|
|
cum_dye_flux(i,j,n,irec)=0. |
744 |
|
|
else |
745 |
|
|
cum_dye_flux(i,j,n,irec)=cum_dye_flux(i,j,n,irec-1) |
746 |
|
|
endif |
747 |
|
|
enddo |
748 |
|
|
enddo |
749 |
|
|
enddo |
750 |
|
|
start_step=nb_timesteps_per_year |
751 |
|
|
if (irec.gt.1) |
752 |
|
|
& start_step=nb_timesteps_per_year+ |
753 |
|
|
& (time(irec-1)-1764)*nb_timesteps_per_year |
754 |
dimitri |
1.2 |
end_step= (year-1764) * nb_timesteps_per_year |
755 |
dimitri |
1.1 |
do step=start_step,end_step,nb_timesteps_per_year |
756 |
|
|
do n=1,ndyetrac |
757 |
|
|
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
758 |
|
|
& p2, 'PtrFlux', n, '.', step, '.data' |
759 |
|
|
open(100,file=fn,status='old',access='direct', |
760 |
|
|
& recl=nx*ny*4) |
761 |
|
|
read(100,rec=1) tmp |
762 |
|
|
do i=1,nx |
763 |
|
|
do j=1,ny |
764 |
dimitri |
1.2 |
cum_dye_flux(i,j,n,irec)=cum_dye_flux(i,j,n,irec)+ |
765 |
dimitri |
1.1 |
& tmp(i,j)*nb_seconds_per_year |
766 |
|
|
enddo |
767 |
|
|
enddo |
768 |
|
|
close(100) |
769 |
|
|
enddo |
770 |
|
|
enddo |
771 |
dimitri |
1.4 |
enddo |
772 |
dimitri |
1.1 |
|
773 |
dimitri |
1.4 |
call write_nc_diag_2D( |
774 |
dimitri |
1.5 |
& 'ECCO','MITgcm_checkpoint51n_post','Timedep', |
775 |
dimitri |
1.1 |
& nx,ny,ndyetrac, |
776 |
|
|
& nrec, time, dye_flux,cum_dye_flux) |
777 |
|
|
|
778 |
dimitri |
1.4 |
C IF ( p2 .NE. ' ' ) THEN |
779 |
|
|
ENDIF |
780 |
|
|
|
781 |
dimitri |
1.1 |
C=========================================================== |
782 |
|
|
print*,'write_nc_diag_0D quasi-stationary diagnostics' |
783 |
|
|
C=========================================================== |
784 |
|
|
|
785 |
dimitri |
1.4 |
IF ( p1 .NE. ' ' ) THEN |
786 |
|
|
|
787 |
|
|
WRITE(fn,'(A,A)') p1, 'RAC.data' |
788 |
|
|
open(100,file=fn,status='old',access='direct', |
789 |
dimitri |
1.1 |
& recl=nx*ny*4) |
790 |
dimitri |
1.4 |
read(100,rec=1) RAC |
791 |
|
|
close(100) |
792 |
|
|
WRITE(fn,'(A,A)') p1, 'hFacC.data' |
793 |
|
|
open(100,file=fn,status='old',access='direct', |
794 |
dimitri |
1.1 |
& recl=nx*ny*nz*4) |
795 |
dimitri |
1.4 |
read(100,rec=1) hFacC |
796 |
|
|
close(100) |
797 |
dimitri |
1.1 |
|
798 |
dimitri |
1.4 |
irec=0 |
799 |
|
|
do year=1,StationaryYears |
800 |
dimitri |
1.1 |
irec=irec+1 |
801 |
|
|
global_time(irec)=year |
802 |
|
|
step=year*nb_timesteps_per_year |
803 |
|
|
do n=1,ndyetrac |
804 |
|
|
|
805 |
|
|
C global_tot_dye=global total dye flux for this year for each tracer (mol) |
806 |
|
|
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
807 |
|
|
& p1, 'PtrFlux', n, '.', step, '.data' |
808 |
|
|
open(100,file=fn,status='old',access='direct', |
809 |
|
|
& recl=nx*ny*4) |
810 |
|
|
read(100,rec=1) tmp |
811 |
|
|
close(100) |
812 |
|
|
global_tot_dye(n,irec)=0. |
813 |
|
|
do i=1,nx |
814 |
|
|
do j=1,ny |
815 |
|
|
global_tot_dye(n,irec)=global_tot_dye(n,irec)+ |
816 |
|
|
& RAC(i,j)*hFacC(i,j,1)*tmp(i,j)*nb_seconds_per_year |
817 |
|
|
enddo |
818 |
|
|
enddo |
819 |
|
|
|
820 |
|
|
C global_cum_dye=global cumulative dye flux for each tracer (mol) |
821 |
|
|
global_cum_dye(n,irec)=global_tot_dye(n,irec) |
822 |
|
|
if (irec.gt.1) global_cum_dye(n,irec) = |
823 |
|
|
& global_cum_dye(n,irec) + global_cum_dye(n,irec-1) |
824 |
|
|
|
825 |
|
|
C global_mean_conc= global mean dye concentration (mol/m-3) |
826 |
|
|
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
827 |
|
|
& p1, 'PTRtave', n, '.', step, '.data' |
828 |
|
|
open(100,file=fn,status='old',access='direct', |
829 |
|
|
& recl=nx*ny*nz*4) |
830 |
|
|
read(100,rec=1) tmp3D |
831 |
|
|
close(100) |
832 |
|
|
global_mean_conc(n,irec)=0. |
833 |
|
|
do i=1,nx |
834 |
|
|
do j=1,ny |
835 |
|
|
do k=1,nz |
836 |
|
|
global_mean_conc(n,irec)=global_mean_conc(n,irec)+ |
837 |
|
|
& RAC(i,j)*hFacC(i,j,k)*tmp3D(i,j,k) |
838 |
|
|
enddo |
839 |
|
|
enddo |
840 |
|
|
enddo |
841 |
|
|
enddo |
842 |
dimitri |
1.4 |
enddo |
843 |
dimitri |
1.1 |
|
844 |
dimitri |
1.4 |
call write_nc_diag_0D( |
845 |
dimitri |
1.5 |
& 'ECCO','MITgcm_checkpoint51n_post','Stationary', |
846 |
dimitri |
1.1 |
& StationaryYears, global_time, ndyetrac, |
847 |
|
|
& global_tot_dye, global_cum_dye, global_mean_conc) |
848 |
|
|
|
849 |
dimitri |
1.4 |
C IF ( p1 .NE. ' ' ) THEN |
850 |
|
|
ENDIF |
851 |
|
|
|
852 |
dimitri |
1.1 |
C=========================================================== |
853 |
|
|
print*,'write_nc_diag_0D time-dependent diagnostics' |
854 |
|
|
C=========================================================== |
855 |
|
|
|
856 |
dimitri |
1.4 |
IF ( p2 .NE. ' ' ) THEN |
857 |
|
|
|
858 |
|
|
irec=0 |
859 |
|
|
do year=1765,2005 |
860 |
dimitri |
1.1 |
irec=irec+1 |
861 |
|
|
global_time(irec)=year |
862 |
|
|
step=(year-1764)*nb_timesteps_per_year |
863 |
|
|
do n=1,ndyetrac |
864 |
|
|
|
865 |
|
|
C global_tot_dye=global total dye flux for this year for each tracer (mol) |
866 |
|
|
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
867 |
|
|
& p2, 'PtrFlux', n, '.', step, '.data' |
868 |
|
|
open(100,file=fn,status='old',access='direct', |
869 |
|
|
& recl=nx*ny*4) |
870 |
|
|
read(100,rec=1) tmp |
871 |
|
|
close(100) |
872 |
|
|
global_tot_dye(n,irec)=0. |
873 |
|
|
do i=1,nx |
874 |
|
|
do j=1,ny |
875 |
|
|
global_tot_dye(n,irec)=global_tot_dye(n,irec)+ |
876 |
|
|
& RAC(i,j)*hFacC(i,j,1)*tmp(i,j)*nb_seconds_per_year |
877 |
|
|
enddo |
878 |
|
|
enddo |
879 |
|
|
|
880 |
|
|
C global_cum_dye=global cumulative dye flux for each tracer (mol) |
881 |
|
|
global_cum_dye(n,irec)=global_tot_dye(n,irec) |
882 |
|
|
if (irec.gt.1) global_cum_dye(n,irec) = |
883 |
|
|
& global_cum_dye(n,irec) + global_cum_dye(n,irec-1) |
884 |
|
|
|
885 |
|
|
C global_mean_conc= global mean dye concentration (mol/m-3) |
886 |
|
|
WRITE(fn,'(A,A,I2.2,A,I10.10,A)') |
887 |
|
|
& p2, 'PTRtave', n, '.', step, '.data' |
888 |
|
|
open(100,file=fn,status='old',access='direct', |
889 |
|
|
& recl=nx*ny*nz*4) |
890 |
|
|
read(100,rec=1) tmp3D |
891 |
|
|
close(100) |
892 |
|
|
global_mean_conc(n,irec)=0. |
893 |
|
|
do i=1,nx |
894 |
|
|
do j=1,ny |
895 |
|
|
do k=1,nz |
896 |
|
|
global_mean_conc(n,irec)=global_mean_conc(n,irec)+ |
897 |
|
|
& RAC(i,j)*hFacC(i,j,k)*tmp3D(i,j,k) |
898 |
|
|
enddo |
899 |
|
|
enddo |
900 |
|
|
enddo |
901 |
|
|
enddo |
902 |
dimitri |
1.4 |
enddo |
903 |
dimitri |
1.1 |
|
904 |
dimitri |
1.4 |
call write_nc_diag_0D( |
905 |
dimitri |
1.5 |
& 'ECCO','MITgcm_checkpoint51n_post','Timedep', |
906 |
dimitri |
1.1 |
& irec, global_time, ndyetrac, |
907 |
|
|
& global_tot_dye, global_cum_dye, global_mean_conc) |
908 |
|
|
|
909 |
dimitri |
1.4 |
C IF ( p2 .NE. ' ' ) THEN |
910 |
|
|
ENDIF |
911 |
|
|
|
912 |
dimitri |
1.1 |
stop |
913 |
|
|
end |