| 1 |
jmc |
1.1 |
C $Header: $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
C-- File interpolation_p2c.F: Routines for interpolation |
| 5 |
|
|
C-- Contents |
| 6 |
|
|
C-- o INTERPOLATION_P2C :: Interpolate from Parent to Child |
| 7 |
|
|
C-- o BLINT :: Bilinear interpolation subroutine. |
| 8 |
|
|
|
| 9 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 10 |
|
|
|
| 11 |
|
|
SUBROUTINE INTERPOLATION_P2C ( |
| 12 |
|
|
& globalP1,globalP2,globalP3,globalP4,globalP5, |
| 13 |
|
|
& NxP,NyP,NrP, |
| 14 |
|
|
& NxC,NyC,NrC, |
| 15 |
|
|
$ WesternB,EasternB, |
| 16 |
|
|
$ P2C_U,P2C_V,P2C_o,P2C1_V,P2C2_V,P2C1_o,P2C2_o, |
| 17 |
|
|
$ P2C_linU,WO3_linU,P2C_linV,WO3_linV, |
| 18 |
|
|
$ Xv_F,Yv_F,Xv_P,Yv_P, |
| 19 |
|
|
$ T_F,S_F,U_F,V_F,ETA_F, |
| 20 |
|
|
$ DEEP_F,DEEP_P |
| 21 |
|
|
& ) |
| 22 |
|
|
C---------------------------------------------------- |
| 23 |
|
|
IMPLICIT NONE |
| 24 |
|
|
C---------------------------------------------------- |
| 25 |
|
|
INTEGER :: I,J,K,II,JJ |
| 26 |
|
|
INTEGER :: WesternB,EasternB |
| 27 |
|
|
INTEGER :: NrP,NxP,NyP |
| 28 |
|
|
INTEGER :: NrC,NxC,NyC |
| 29 |
|
|
C---------------------------------------------------- |
| 30 |
|
|
REAL*8 :: Fp,Fm,Fo,VEL_MEMO |
| 31 |
|
|
INTEGER :: INDC |
| 32 |
|
|
C---------------------------------------------------- |
| 33 |
|
|
C Define Global Variables to Exchange |
| 34 |
|
|
C---------------------------------------------------- |
| 35 |
|
|
REAL*8 :: globalP1(6,NyP,NrP) |
| 36 |
|
|
REAL*8 :: globalP2(6,NyP,NrP) |
| 37 |
|
|
REAL*8 :: globalP3(6,NyP,NrP) |
| 38 |
|
|
REAL*8 :: globalP4(6,NyP,NrP) |
| 39 |
|
|
REAL*8 :: globalP5(6,NyP,NrP) |
| 40 |
|
|
C---------------------------------------------------- |
| 41 |
|
|
C Define CHILD Model Geometry |
| 42 |
|
|
C---------------------------------------------------- |
| 43 |
|
|
REAL*4 :: Xu_F(NxC,NyC) |
| 44 |
|
|
REAL*4 :: Yu_F(NxC,NyC) |
| 45 |
|
|
REAL*4 :: Xv_F(NxC,NyC) |
| 46 |
|
|
REAL*4 :: Yv_F(NxC,NyC) |
| 47 |
|
|
REAL*4 :: Xo_F(NxC,NyC) |
| 48 |
|
|
REAL*4 :: Yo_F(NxC,NyC) |
| 49 |
|
|
REAL*4 :: Xg_F(NxC,NyC) |
| 50 |
|
|
REAL*4 :: Yg_F(NxC,NyC) |
| 51 |
|
|
REAL*4 :: DEEP_F(NxC,NyC,NrC) |
| 52 |
|
|
C---------------------------------------------------- |
| 53 |
|
|
C Define PARENT Model Geometry |
| 54 |
|
|
C---------------------------------------------------- |
| 55 |
|
|
c REAL*4 :: Xu_P(NxP,NyP) |
| 56 |
|
|
REAL*4 :: Yu_P(NxP,NyP) |
| 57 |
|
|
REAL*4 :: Xv_P(NxP,NyP) |
| 58 |
|
|
REAL*4 :: Yv_P(NxP,NyP) |
| 59 |
|
|
REAL*4 :: Xo_P(NxP,NyP) |
| 60 |
|
|
REAL*4 :: Yo_P(NxP,NyP) |
| 61 |
|
|
REAL*4 :: Xg_P(NxP,NyP) |
| 62 |
|
|
REAL*4 :: Yg_P(NxP,NyP) |
| 63 |
|
|
REAL*4 :: DEEP_P(NxP,NyP,NrP) |
| 64 |
|
|
REAL*4 :: DEPDEP |
| 65 |
|
|
C----------------------------------------------------- |
| 66 |
|
|
REAL*4 :: X1,X2,X3,X4,Y1,Y2,Y3,Y4 |
| 67 |
|
|
REAL*4 :: f1,f2,f3,f4,f,x,y |
| 68 |
|
|
REAL*4 :: gammaT,gammaS,terzo,dueterzi |
| 69 |
|
|
REAL*4 :: gammaEta |
| 70 |
|
|
REAL*4 :: gammaV |
| 71 |
|
|
C---------------------------------------------------- |
| 72 |
|
|
C Define INDICIES MATRIX |
| 73 |
|
|
C---------------------------------------------------- |
| 74 |
|
|
INTEGER :: P2C_U(NyC) !x imposizione NETTA |
| 75 |
|
|
INTEGER :: P2C_linU(NyC) !x Lineare |
| 76 |
|
|
INTEGER :: WO3_linU(NyC) !x Lineare !Which Of 3 |
| 77 |
|
|
|
| 78 |
|
|
INTEGER :: P2C_linV(NyC) !x Lineare |
| 79 |
|
|
INTEGER :: WO3_linV(NyC) !x Lineare !Which Of 3 |
| 80 |
|
|
|
| 81 |
|
|
INTEGER :: P2C_V(NyC) !x Lineare |
| 82 |
|
|
INTEGER :: P2C_o(NyC) !x Lineare |
| 83 |
|
|
|
| 84 |
|
|
INTEGER :: P2C1_V(NyC) !x BiLineare |
| 85 |
|
|
INTEGER :: P2C2_V(NyC) !x BiLineare |
| 86 |
|
|
INTEGER :: P2C1_o(NyC) !x BiLineare |
| 87 |
|
|
INTEGER :: P2C2_o(NyC) !x BiLineare |
| 88 |
|
|
|
| 89 |
|
|
REAL*8 :: diff(NrC) |
| 90 |
|
|
REAL*8 :: DEPDEP_F_WesternB(NrC) |
| 91 |
|
|
REAL*8 :: DEPDEP_F_EasternB(NrC) |
| 92 |
|
|
C---------------------------------------------------- |
| 93 |
|
|
C Define CHILD model variable |
| 94 |
|
|
C---------------------------------------------------- |
| 95 |
|
|
C _____________ (1) WesternB (2) EasternB |
| 96 |
|
|
C | |
| 97 |
|
|
REAL*8 :: U_F(NyC,NrC,2) |
| 98 |
|
|
REAL*8 :: V_F(NyC,NrC,2) |
| 99 |
|
|
REAL*8 :: T_F(NyC,NrC,2) |
| 100 |
|
|
REAL*8 :: S_F(NyC,NrC,2) |
| 101 |
|
|
REAL*8 :: ETA_F(NyC,NrC,2) |
| 102 |
|
|
C---------------------------------------------------- |
| 103 |
|
|
PARAMETER ( terzo = 1./3.) |
| 104 |
|
|
PARAMETER (dueterzi = 2./3.) |
| 105 |
|
|
C======================================================= |
| 106 |
|
|
C (2) INTERPOLATIONS |
| 107 |
|
|
C======================================================= |
| 108 |
|
|
C (2.1) Linear for normal velocity component (u in this case) |
| 109 |
|
|
C------------------------------------------------------- |
| 110 |
|
|
DO K = 1,NrP |
| 111 |
|
|
DO J = 1,NyP-1 |
| 112 |
|
|
IF (globalP4(2,J,K).eq.0.) THEN !uso la salinite come discriminante |
| 113 |
|
|
globalP1 (2,J,K) = globalP1 (2,J+1,K) |
| 114 |
|
|
ENDIF |
| 115 |
|
|
ENDDO |
| 116 |
|
|
|
| 117 |
|
|
DO J = NyP,2,-1 |
| 118 |
|
|
IF (globalP4(2,J,K).eq.0.) THEN !uso la salinite come discriminante |
| 119 |
|
|
globalP1 (2,J,K) = globalP1 (2,J-1,K) |
| 120 |
|
|
ENDIF |
| 121 |
|
|
ENDDO |
| 122 |
|
|
ENDDO |
| 123 |
|
|
C======================================================= |
| 124 |
|
|
C (2.1) NOT Linear but simply imposed |
| 125 |
|
|
C------------------------------------------------------- |
| 126 |
|
|
DO J = 1,3 |
| 127 |
|
|
U_F(J,:,1) = globalP1(2,P2C_U(J),:) |
| 128 |
|
|
U_F(J,:,2) = globalP1(6,P2C_U(J),:) |
| 129 |
|
|
ENDDO |
| 130 |
|
|
|
| 131 |
|
|
DO J = NyC-2,NyC |
| 132 |
|
|
U_F(J,:,1) = globalP1(2,P2C_U(J),:) |
| 133 |
|
|
U_F(J,:,2) = globalP1(6,P2C_U(J),:) |
| 134 |
|
|
ENDDO |
| 135 |
|
|
C================================================= |
| 136 |
|
|
DO J = 4,NyC-3,3 |
| 137 |
|
|
INDC = P2C_U(J) |
| 138 |
|
|
DO K = 1,NrC |
| 139 |
|
|
C-------- WesternB ---------------------- |
| 140 |
|
|
Fp = globalP1(2,INDC+1,K) |
| 141 |
|
|
Fo = globalP1(2,INDC,K) |
| 142 |
|
|
Fm = globalP1(2,INDC-1,K) |
| 143 |
|
|
|
| 144 |
|
|
VEL_MEMO = 0. |
| 145 |
|
|
DO I = -1,1 |
| 146 |
|
|
U_F(J+1+i,K,1) = ((Fp-2.*Fo+Fm)/24.)* |
| 147 |
|
|
& ((12.*float(i)**2+1.)/9.)+ |
| 148 |
|
|
& ((float(i)/6.)*(Fp-Fm))+(26.*Fo-Fp-Fm)/24. |
| 149 |
|
|
VEL_MEMO = VEL_MEMO + U_F(J+1+i,K,1) |
| 150 |
|
|
ENDDO |
| 151 |
|
|
|
| 152 |
|
|
VEL_MEMO = ((3.*Fo) - VEL_MEMO)/3. |
| 153 |
|
|
|
| 154 |
|
|
DO I = -1,1 |
| 155 |
|
|
U_F(J+1+i,K,1) = U_F(J+1+i,K,1) + VEL_MEMO |
| 156 |
|
|
ENDDO |
| 157 |
|
|
|
| 158 |
|
|
C-------- EasternB ---------------------- |
| 159 |
|
|
Fp = globalP1(6,INDC+1,K) |
| 160 |
|
|
Fo = globalP1(6,INDC,K) |
| 161 |
|
|
Fm = globalP1(6,INDC-1,K) |
| 162 |
|
|
|
| 163 |
|
|
VEL_MEMO = 0. |
| 164 |
|
|
DO I = -1,1 |
| 165 |
|
|
U_F(J+1+i,K,2) = ((Fp-2.*Fo+Fm)/24.)* |
| 166 |
|
|
& ((12.*float(i)**2+1.)/9.)+ |
| 167 |
|
|
& ((float(i)/6.)*(Fp-Fm))+(26.*Fo-Fp-Fm)/24. |
| 168 |
|
|
VEL_MEMO = VEL_MEMO + U_F(J+1+i,K,2) |
| 169 |
|
|
ENDDO |
| 170 |
|
|
|
| 171 |
|
|
VEL_MEMO = ((3.*Fo) - VEL_MEMO)/3. |
| 172 |
|
|
|
| 173 |
|
|
DO I = -1,1 |
| 174 |
|
|
U_F(J+1+i,K,2) = U_F(J+1+i,K,2) + VEL_MEMO |
| 175 |
|
|
ENDDO |
| 176 |
|
|
C------------------------------------------------------ |
| 177 |
|
|
ENDDO |
| 178 |
|
|
ENDDO |
| 179 |
|
|
C------------------------------------------------------- |
| 180 |
|
|
C (2.2) BiLinear for tangent velocity component (v in this case) |
| 181 |
|
|
C------------------------------------------------------- |
| 182 |
|
|
I = 1 |
| 183 |
|
|
II = WesternB |
| 184 |
|
|
|
| 185 |
|
|
V_F(:,:,:) = 0. |
| 186 |
|
|
|
| 187 |
|
|
DO K = 1,NrC |
| 188 |
|
|
DO J = 1,NyC |
| 189 |
|
|
x1 = Xv_P(II,P2C1_V(J)) |
| 190 |
|
|
x2 = Xv_P(II,P2C2_V(J)) |
| 191 |
|
|
|
| 192 |
|
|
x3 = Xv_P(II+1,P2C1_V(J)) |
| 193 |
|
|
x4 = Xv_P(II+1,P2C2_V(J)) |
| 194 |
|
|
|
| 195 |
|
|
y1 = Yv_P(II,P2C1_V(J)) |
| 196 |
|
|
y2 = Yv_P(II,P2C2_V(J)) |
| 197 |
|
|
|
| 198 |
|
|
y3 = Yv_P(II+1,P2C1_V(J)) |
| 199 |
|
|
y4 = Yv_P(II+1,P2C2_V(J)) |
| 200 |
|
|
|
| 201 |
|
|
x = Xv_F(I,J) |
| 202 |
|
|
y = Yv_F(I,J) |
| 203 |
|
|
|
| 204 |
|
|
f1 = globalP2(1,P2C1_V(J),K) |
| 205 |
|
|
f2 = globalP2(1,P2C2_V(J),K) |
| 206 |
|
|
f3 = globalP2(2,P2C1_V(J),K) |
| 207 |
|
|
f4 = globalP2(2,P2C2_V(J),K) |
| 208 |
|
|
|
| 209 |
|
|
call blint(x1,x2,x3,x4,y1,y2,y3,y4,f1,f2,f3,f4,x,y,f) |
| 210 |
|
|
V_F(J,K,1) = f |
| 211 |
|
|
ENDDO |
| 212 |
|
|
ENDDO |
| 213 |
|
|
C.............................................. |
| 214 |
|
|
I = NxC |
| 215 |
|
|
II = EasternB |
| 216 |
|
|
|
| 217 |
|
|
DO K = 1,NrC |
| 218 |
|
|
DO J = 1,NyC |
| 219 |
|
|
x1 = Xv_P(II,P2C1_V(J)) |
| 220 |
|
|
x2 = Xv_P(II,P2C2_V(J)) |
| 221 |
|
|
|
| 222 |
|
|
x3 = Xv_P(II-1,P2C1_V(J)) |
| 223 |
|
|
x4 = Xv_P(II-1,P2C2_V(J)) |
| 224 |
|
|
|
| 225 |
|
|
y1 = Yv_P(II,P2C1_V(J)) |
| 226 |
|
|
y2 = Yv_P(II,P2C2_V(J)) |
| 227 |
|
|
|
| 228 |
|
|
y3 = Yv_P(II-1,P2C1_V(J)) |
| 229 |
|
|
y4 = Yv_P(II-1,P2C2_V(J)) |
| 230 |
|
|
|
| 231 |
|
|
x = Xv_F(I,J) |
| 232 |
|
|
y = Yv_F(I,J) |
| 233 |
|
|
|
| 234 |
|
|
f1 = globalP2(6,P2C1_V(J),K) |
| 235 |
|
|
f2 = globalP2(6,P2C2_V(J),K) |
| 236 |
|
|
f3 = globalP2(5,P2C1_V(J),K) |
| 237 |
|
|
f4 = globalP2(5,P2C2_V(J),K) |
| 238 |
|
|
|
| 239 |
|
|
call blint(x1,x2,x3,x4,y1,y2,y3,y4,f1,f2,f3,f4,x,y,f) |
| 240 |
|
|
V_F(J,K,2) = f |
| 241 |
|
|
ENDDO |
| 242 |
|
|
ENDDO |
| 243 |
|
|
C------------------------------------------------------- |
| 244 |
|
|
C (2.3.1) Linear |
| 245 |
|
|
C------------------------------------------------------- |
| 246 |
|
|
|
| 247 |
|
|
C-- WesternB |
| 248 |
|
|
|
| 249 |
|
|
DO K = 1,NrP |
| 250 |
|
|
DO J = 1,NyP |
| 251 |
|
|
|
| 252 |
|
|
DEPDEP = DEEP_P(WesternB,J,K) * DEEP_P(WesternB+1,J,K) |
| 253 |
|
|
|
| 254 |
|
|
gammaT =(globalP3(2,J,K)-globalP3(1,J,K))*DEPDEP |
| 255 |
|
|
gammaS =(globalP4(2,J,K)-globalP4(1,J,K))*DEPDEP |
| 256 |
|
|
gammaeta =(globalP5(2,J,K)-globalP5(1,J,K))*DEPDEP |
| 257 |
|
|
Cgm------- |
| 258 |
|
|
c gammaV =(globalP2(2,J,K)-globalP2(1,J,K))*DEPDEP |
| 259 |
|
|
Cgm--------- |
| 260 |
|
|
globalP3(1,J,K) = globalP3(1,J,K) + terzo* gammaT |
| 261 |
|
|
globalP4(1,J,K) = globalP4(1,J,K) + terzo* gammaS |
| 262 |
|
|
globalP5(1,J,K) = globalP5(1,J,K) + terzo* gammaeta |
| 263 |
|
|
Cgm------- |
| 264 |
|
|
c globalP2(1,J,K) = globalP2(1,J,K) + terzo* gammaV |
| 265 |
|
|
Cgm--------- |
| 266 |
|
|
ENDDO |
| 267 |
|
|
C-------------------------------------------------------------- |
| 268 |
|
|
DO J = 1,NyP-1 |
| 269 |
|
|
IF (globalP4(1,J,K).eq.0.) THEN !uso la salinità come discriminante |
| 270 |
|
|
globalP3(1,J,K) = globalP3(1,J+1,K) |
| 271 |
|
|
globalP4(1,J,K) = globalP4(1,J+1,K) |
| 272 |
|
|
globalP5(1,J,K) = globalP5(1,J+1,K) |
| 273 |
|
|
ENDIF |
| 274 |
|
|
ENDDO |
| 275 |
|
|
|
| 276 |
|
|
DO J = NyP,2,-1 |
| 277 |
|
|
IF (globalP4(1,J,K).eq.0.) THEN !uso la salinità come discriminante |
| 278 |
|
|
globalP3(1,J,K) = globalP3(1,J-1,K) |
| 279 |
|
|
globalP4(1,J,K) = globalP4(1,J-1,K) |
| 280 |
|
|
globalP5(1,J,K) = globalP5(1,J-1,K) |
| 281 |
|
|
Cgm--------- |
| 282 |
|
|
c globalP2(1,J,K) = globalP2(1,J-1,K) |
| 283 |
|
|
Cgm------------- |
| 284 |
|
|
ENDIF |
| 285 |
|
|
ENDDO |
| 286 |
|
|
C--------------------------------------------------------------- |
| 287 |
|
|
ENDDO |
| 288 |
|
|
|
| 289 |
|
|
C-- EasternB |
| 290 |
|
|
|
| 291 |
|
|
DO K = 1,NrP |
| 292 |
|
|
DO J = 1,NyP |
| 293 |
|
|
|
| 294 |
|
|
DEPDEP = DEEP_P(EasternB,J,K) * DEEP_P(EasternB-1,J,K) |
| 295 |
|
|
|
| 296 |
|
|
gammaT =(globalP3(5,J,K)-globalP3(6,J,K))*DEPDEP |
| 297 |
|
|
gammaS =(globalP4(5,J,K)-globalP4(6,J,K))*DEPDEP |
| 298 |
|
|
gammaeta =(globalP5(5,J,K)-globalP5(6,J,K))*DEPDEP |
| 299 |
|
|
Cgm------------- |
| 300 |
|
|
c gammaV =(globalP2(5,J,K)-globalP2(6,J,K))*DEPDEP |
| 301 |
|
|
Cgm---------------- |
| 302 |
|
|
globalP3(6,J,K) = globalP3(6,J,K) + terzo* gammaT |
| 303 |
|
|
globalP4(6,J,K) = globalP4(6,J,K) + terzo* gammaS |
| 304 |
|
|
globalP5(6,J,K) = globalP5(6,J,K) + terzo* gammaeta |
| 305 |
|
|
Cgm---------------- |
| 306 |
|
|
c globalP2(6,J,K) = globalP2(6,J,K) + terzo* gammaV |
| 307 |
|
|
Cgm---------------- |
| 308 |
|
|
ENDDO |
| 309 |
|
|
C-------------------------------------------------------------- |
| 310 |
|
|
DO J = 1,NyP-1 |
| 311 |
|
|
IF (globalP4(6,J,K).eq.0.) THEN !uso la salinità come discriminante |
| 312 |
|
|
globalP3(6,J,K) = globalP3(6,J+1,K) |
| 313 |
|
|
globalP4(6,J,K) = globalP4(6,J+1,K) |
| 314 |
|
|
globalP5(6,J,K) = globalP5(6,J+1,K) |
| 315 |
|
|
Cgm---------------- |
| 316 |
|
|
c globalP2(6,J,K) = globalP2(6,J+1,K) |
| 317 |
|
|
Cgm---------------- |
| 318 |
|
|
ENDIF |
| 319 |
|
|
ENDDO |
| 320 |
|
|
|
| 321 |
|
|
DO J = NyP,2,-1 |
| 322 |
|
|
IF (globalP4(6,J,K).eq.0.) THEN !uso la salinità come discriminante |
| 323 |
|
|
globalP3(6,J,K) = globalP3(6,J-1,K) |
| 324 |
|
|
globalP4(6,J,K) = globalP4(6,J-1,K) |
| 325 |
|
|
globalP5(6,J,K) = globalP5(6,J-1,K) |
| 326 |
|
|
Cgm---------------- |
| 327 |
|
|
c globalP2(6,J,K) = globalP2(6,J-1,K) |
| 328 |
|
|
Cgm---------------- |
| 329 |
|
|
ENDIF |
| 330 |
|
|
ENDDO |
| 331 |
|
|
C--------------------------------------------------------------- |
| 332 |
|
|
ENDDO |
| 333 |
|
|
C------------------------------------------------------- |
| 334 |
|
|
C (2.3.2) Linear |
| 335 |
|
|
C------------------------------------------------------- |
| 336 |
|
|
DO J = 1,NyC |
| 337 |
|
|
C....MASK DEEP_F |
| 338 |
|
|
IF (J.EQ.NyC) THEN !EVITO ERRORI DI CHECK BOUND x Vittorio |
| 339 |
|
|
DEPDEP_F_WesternB (:) = DEEP_F(1 ,J,:)*DEEP_F(1 ,J,:) |
| 340 |
|
|
DEPDEP_F_EasternB(:) = DEEP_F(NxC,J,:)*DEEP_F(NxC,J,:) |
| 341 |
|
|
ELSE |
| 342 |
|
|
DEPDEP_F_WesternB (:) = DEEP_F(1 ,J,:)*DEEP_F(1 ,J+1,:) |
| 343 |
|
|
DEPDEP_F_EasternB(:) = DEEP_F(NxC,J,:)*DEEP_F(NxC,J+1,:) |
| 344 |
|
|
ENDIF |
| 345 |
|
|
|
| 346 |
|
|
C....WesternB...T..................... |
| 347 |
|
|
diff(:) = globalP3(1,P2C_linU(J)+1,:)- |
| 348 |
|
|
& globalP3(1,P2C_linU(J) ,:) |
| 349 |
|
|
|
| 350 |
|
|
T_F(J,:,1) = globalP3(1,P2C_linU(J) ,:)+ |
| 351 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
| 352 |
|
|
& *DEPDEP_F_WesternB(:) |
| 353 |
|
|
C.....EasternB..T..................... |
| 354 |
|
|
diff(:) = globalP3(6,P2C_linU(J)+1,:)- |
| 355 |
|
|
& globalP3(6,P2C_linU(J) ,:) |
| 356 |
|
|
|
| 357 |
|
|
T_F(J,:,2) = globalP3(6,P2C_linU(J) ,:)+ |
| 358 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
| 359 |
|
|
& *DEPDEP_F_EasternB(:) |
| 360 |
|
|
C.....WesternB...S..................... |
| 361 |
|
|
diff(:) = globalP4(1,P2C_linU(J)+1,:)- |
| 362 |
|
|
& globalP4 (1,P2C_linU(J) ,:) |
| 363 |
|
|
|
| 364 |
|
|
S_F(J,:,1) = globalP4(1,P2C_linU(J) ,:)+ |
| 365 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
| 366 |
|
|
& *DEPDEP_F_WesternB(:) |
| 367 |
|
|
C.... EasternB..S..................... |
| 368 |
|
|
diff(:) = (globalP4(6,P2C_linU(J)+1,:)- |
| 369 |
|
|
& globalP4 (6,P2C_linU(J) ,:)) |
| 370 |
|
|
|
| 371 |
|
|
S_F(J,:,2) = globalP4(6,P2C_linU(J) ,:)+ |
| 372 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
| 373 |
|
|
& *DEPDEP_F_EasternB(:) |
| 374 |
|
|
C.... WesternB...Eta..................... |
| 375 |
|
|
diff(:) = globalP5(1,P2C_linU(J)+1,:)- |
| 376 |
|
|
& globalP5(1,P2C_linU(J) ,:) |
| 377 |
|
|
|
| 378 |
|
|
eta_F(J,:,1) = globalP5(1,P2C_linU(J) ,:)+ |
| 379 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
| 380 |
|
|
& *DEPDEP_F_WesternB(:) |
| 381 |
|
|
C.... EasternB..Eta..................... |
| 382 |
|
|
diff(:) = globalP5(6,P2C_linU(J)+1,:)- |
| 383 |
|
|
& globalP5(6,P2C_linU(J) ,:) |
| 384 |
|
|
|
| 385 |
|
|
eta_F(J,:,2) = globalP5(6,P2C_linU(J) ,:)+ |
| 386 |
|
|
& (diff(:)/3.)*float(WO3_linU(J)) |
| 387 |
|
|
& *DEPDEP_F_EasternB(:) |
| 388 |
|
|
|
| 389 |
|
|
Cgm-------------------------- |
| 390 |
|
|
|
| 391 |
|
|
C.... WesternB...V..................... |
| 392 |
|
|
c diff(:) = globalP2(1,P2C_linU(J)+1,:)- |
| 393 |
|
|
c & globalP2(1,P2C_linU(J) ,:) |
| 394 |
|
|
C V_F(J,:,1) = globalP2(1,P2C_linU(J) ,:)+ |
| 395 |
|
|
C & (diff(:)/3.)*float((WO3_linU(J))) |
| 396 |
|
|
C & *DEPDEP_F_WesternB(:) |
| 397 |
|
|
C.... EasternB..V..................... |
| 398 |
|
|
C diff(:) = globalP2(6,P2C_linU(J)+1,:)- |
| 399 |
|
|
C & globalP2(6,P2C_linU(J) ,:) |
| 400 |
|
|
C V_F(J,:,2) = globalP2(6,P2C_linU(J) ,:)+ |
| 401 |
|
|
C & (diff(:)/3.)*float((WO3_linU(J))) |
| 402 |
|
|
C & *DEPDEP_F_EasternB(:) |
| 403 |
|
|
Cgm---------------------------- |
| 404 |
|
|
ENDDO |
| 405 |
|
|
|
| 406 |
|
|
8765 CONTINUE |
| 407 |
|
|
C=============== END INTERPOLAZIONI x CHILD ==================== |
| 408 |
|
|
|
| 409 |
|
|
RETURN |
| 410 |
|
|
END |
| 411 |
|
|
|
| 412 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 413 |
|
|
|
| 414 |
|
|
C================================================================ |
| 415 |
|
|
SUBROUTINE BLINT(x1,x2,x3,x4,y1,y2,y3,y4,f1,f2,f3,f4,x,y,f) |
| 416 |
|
|
C================================================================ |
| 417 |
|
|
C |
| 418 |
|
|
C Bilinear interpolation subroutine. |
| 419 |
|
|
C (Xi,Yi,fi) = data grid & values surounding model point (x,y) |
| 420 |
|
|
C f = interpolated value at the model grid point. |
| 421 |
|
|
IMPLICIT NONE |
| 422 |
|
|
real*4 a1,a2,a3,a4 |
| 423 |
|
|
real*4 b1,b2,b3,b4 |
| 424 |
|
|
real*4 x1,x2,x3,x4 |
| 425 |
|
|
real*4 y1,y2,y3,y4 |
| 426 |
|
|
real*4 f1,f2,f3,f4 |
| 427 |
|
|
real*4 x,y,A,B,C,t,f,s |
| 428 |
|
|
C |
| 429 |
|
|
a1=x1-x2+x3-x4 |
| 430 |
|
|
a2=-x1+x4 |
| 431 |
|
|
a3=-x1+x2 |
| 432 |
|
|
a4=x1-x |
| 433 |
|
|
b1=y1-y2+y3-y4 |
| 434 |
|
|
b2=-y1+y4 |
| 435 |
|
|
b3=-y1+y2 |
| 436 |
|
|
b4=y1-y |
| 437 |
|
|
A=a3*b1-a1*b3 |
| 438 |
|
|
B=b2*a3+b1*a4-a1*b4-a2*b3 |
| 439 |
|
|
C=-a2*b4+a4*b2 |
| 440 |
|
|
if(ABS(A*C).gt.0.002*B**2) then |
| 441 |
|
|
t=(-B-sqrt(B*B-4.*A*C))/(2.*A) |
| 442 |
|
|
else |
| 443 |
|
|
t=C/ABS(B) |
| 444 |
|
|
endif |
| 445 |
|
|
10 CONTINUE |
| 446 |
|
|
A=a2*b1-a1*b2 |
| 447 |
|
|
B=b3*a2+b1*a4-a1*b4-a3*b2 |
| 448 |
|
|
C=-a3*b4+a4*b3 |
| 449 |
|
|
if(ABS(A*C).gt.0.002*B**2) then |
| 450 |
|
|
s=(-B+sqrt(B*B-4.*A*C))/(2.*A) |
| 451 |
|
|
else |
| 452 |
|
|
s=-C/ABS(B) |
| 453 |
|
|
endif |
| 454 |
|
|
20 CONTINUE |
| 455 |
|
|
f=f1*(1.-t)*(1.-s)+f2*t*(1.-s)+f3*s*t+f4*(1.-t)*s |
| 456 |
|
|
return |
| 457 |
|
|
end |