1 |
sannino |
1.1 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
2 |
|
|
C |
3 |
|
|
PROGRAM NEST_DRIVER |
4 |
|
|
C !DESCRIPTION: |
5 |
|
|
C Routine that manages the MPI communication between the CHILD |
6 |
|
|
C and PARENT models. It performs also the necessary |
7 |
|
|
C interpolations from PARENT2CHILD and CHILD2PARENT. |
8 |
|
|
C |
9 |
|
|
C ver 1.0 by G. Sannino, V. Ruggiero, A. Carillo, P. Heimbach |
10 |
|
|
C |
11 |
|
|
C First application described in: |
12 |
|
|
C Sannino G.,Herrmann, Carillo, Rupolo, Ruggiero, Artale, Heimbach, 2009: |
13 |
|
|
C An eddy-permitting model of the Mediterranean Sea with a two-way grid |
14 |
|
|
C refinement at Gibraltar. |
15 |
|
|
C Ocean Modelling, 30(1), 56-72, doi: 10.1016/j.ocemod.2009.06.002 |
16 |
|
|
|
17 |
|
|
C |
18 |
|
|
|
19 |
|
|
C !LOCAL INPUT VARIABLES: |
20 |
|
|
c --------------------------------------------------------------------------------- |
21 |
|
|
c NST_LEV_TOT :: Total nesting levels (1 for only one nesting) |
22 |
|
|
c NST_LEV :: Number of the actual nesting |
23 |
|
|
c NCPUs_CHLD :: Number of CPUs used for the CHILD model |
24 |
|
|
c at NST_LEV nesting level |
25 |
|
|
c NCPUs_PRNT :: Number of CPUs used for the PARENT model |
26 |
|
|
c at NST_LEV nesting level |
27 |
|
|
c nSxC,nSyF :: Domain decomposition used for CHILD |
28 |
|
|
c nSxP,nSyP :: Domain decomposition used for PARENT |
29 |
|
|
c OLX,OLY :: Domain dec. overlapping (same for both models) |
30 |
|
|
c NrC,NyC,NxC :: Dimension PARENT model |
31 |
|
|
c NrF,NyF,NxF :: Dimension CHILD model |
32 |
|
|
c WesterB :: Western (i) PARENT index where start the refinement |
33 |
|
|
c EasterB :: Eastern (i) PARENT index where finish the refinement |
34 |
|
|
c dirNEST :: Directory where are stored the geometry data of both models |
35 |
|
|
c --------------------------------------------------------------------------------- |
36 |
|
|
CEOP |
37 |
|
|
implicit none |
38 |
|
|
c-------------------------------------------------------- |
39 |
|
|
c INPUT VARIABLE DEFINITION |
40 |
|
|
c-------------------------------------------------------- |
41 |
|
|
INTEGER :: NST_LEV_TOT, NST_LEV, NCPUs_PRNT |
42 |
|
|
INTEGER :: Count_Lev |
43 |
|
|
PARAMETER (NST_LEV_TOT = 1) !Number of Total Nesting Levels |
44 |
|
|
PARAMETER (NST_LEV = 1) !Which level am I? |
45 |
|
|
|
46 |
|
|
INTEGER :: NCPUs_CHLD(NST_LEV_TOT) |
47 |
|
|
INTEGER :: MSTR_DRV(NST_LEV_TOT) |
48 |
|
|
INTEGER :: MSTR_PRNT(NST_LEV_TOT) |
49 |
|
|
INTEGER :: MSTR_CHLD(NST_LEV_TOT) |
50 |
|
|
|
51 |
|
|
PARAMETER (NCPUs_PRNT = 40) |
52 |
|
|
|
53 |
|
|
DATA NCPUs_CHLD / 20 / |
54 |
|
|
c-------------------------------------------------------- |
55 |
|
|
INTEGER :: nSxC,nSyC !Domain decomposition CHILD |
56 |
|
|
INTEGER :: nSxP,nSyP !Domain decomposition PARENT |
57 |
|
|
PARAMETER (nSxC = 4 , nSyC = 5) |
58 |
|
|
PARAMETER (nSxP = 8 , nSyP = 5) |
59 |
|
|
c-------------------------------------------------------- |
60 |
|
|
INTEGER :: OLY,OLX !Domain decomposition overlapping |
61 |
|
|
c !(the same for both models) |
62 |
|
|
PARAMETER (OLX = 3, OLY = 3) |
63 |
|
|
c-------------------------------------------------------- |
64 |
|
|
INTEGER :: NrP,NxP,NyP |
65 |
|
|
INTEGER :: NrC,NxC,NyC |
66 |
|
|
INTEGER :: IM_C,JM_C |
67 |
|
|
INTEGER :: IM_P,JM_P |
68 |
|
|
INTEGER :: IndI,IndJ |
69 |
|
|
INTEGER :: IndI_P(nSxP*nSyP),IndJ_P(nSxP*nSyP) |
70 |
|
|
INTEGER :: IndI_C(nSxC*nSyC),IndJ_C(nSxC*nSyC) |
71 |
|
|
|
72 |
|
|
INTEGER :: WesternB,EasternB |
73 |
|
|
c-------------------------------------------------------- |
74 |
|
|
PARAMETER (NrP=42, NyP=120,NxP = 400) !PARENT model |
75 |
|
|
PARAMETER (NrC=42, NyC=105,NxC = 140) !CHILD model |
76 |
|
|
c-------------------------------------------------------- |
77 |
|
|
PARAMETER (WesternB = 43,EasternB=90) |
78 |
|
|
c-------------------------------------------------------- |
79 |
|
|
CHARACTER :: dirNEST*80 |
80 |
|
|
c-------------------------------------------------------- |
81 |
|
|
PARAMETER (dirNEST ="/home/sannino/NESTING/") |
82 |
|
|
c-------------------------------------------------------- |
83 |
|
|
INCLUDE 'mpif.h' |
84 |
|
|
INTEGER :: ierr,rank,size,npd |
85 |
|
|
INTEGER :: irank,isize |
86 |
|
|
INTEGER :: color |
87 |
|
|
INTEGER :: istatus,NEST_comm |
88 |
|
|
INTEGER :: from,whm,status(MPI_STATUS_SIZE),st_count |
89 |
|
|
INTEGER :: I,J,K,II,JJ,Irec,III,JJJ,KK,ICONT |
90 |
|
|
INTEGER :: iVar,Indx,Jndx |
91 |
|
|
INTEGER :: J1,J2,JJ1,JJ2 |
92 |
|
|
INTEGER :: I_START,I_END,I_STEP |
93 |
|
|
REAL*4 :: XF,YF,XP1,YP1,XP2,YP2,YP3 |
94 |
|
|
REAL*8 :: TRANSPORT_WEST,TRANSPORT_EAST |
95 |
|
|
CHARACTER*10 :: c2i(30) |
96 |
|
|
c---------------------------------------------------- |
97 |
|
|
c Define PARENT Model Geometry |
98 |
|
|
c---------------------------------------------------- |
99 |
|
|
c REAL*4 Xu_P(NxP,NyP) |
100 |
|
|
REAL*4 :: Yu_P(NxP,NyP) |
101 |
|
|
REAL*4 :: Xv_P(NxP,NyP) |
102 |
|
|
REAL*4 :: Yv_P(NxP,NyP) |
103 |
|
|
REAL*4 :: Xo_P(NxP,NyP) |
104 |
|
|
REAL*4 :: Yo_P(NxP,NyP) |
105 |
|
|
REAL*4 :: Xg_P(NxP,NyP) |
106 |
|
|
REAL*4 :: Yg_P(NxP,NyP) |
107 |
|
|
REAL*4 :: hFacW_P(NxP,NyP,NrP) |
108 |
|
|
REAL*4 :: hFacS_P(NxP,NyP,NrP) |
109 |
|
|
REAL*4 :: RAC_P(NxP,NyP) |
110 |
|
|
REAL*4 :: RAW_P(NxP,NyP) |
111 |
|
|
REAL*4 :: RAS_P(NxP,NyP) |
112 |
|
|
REAL*4 :: hFacC_P(NxP,NyP,NrP) |
113 |
|
|
REAL*4 :: DEEP_P(NxP,NyP,NrP) |
114 |
|
|
REAL*4 :: INV_VOL_C_P(NxP,NyP,NrP) |
115 |
|
|
REAL*4 :: INV_VOL_S_P(NxP,NyP,NrP) |
116 |
|
|
REAL*4 :: INV_VOL_W_P(NxP,NyP,NrP) |
117 |
|
|
c---------------------------------------------------- |
118 |
|
|
c Define CHILD Model Geometry |
119 |
|
|
c---------------------------------------------------- |
120 |
|
|
REAL*4 :: Xu_C(NxC,NyC) |
121 |
|
|
REAL*4 :: Yu_C(NxC,NyC) |
122 |
|
|
REAL*4 :: Xv_C(NxC,NyC) |
123 |
|
|
REAL*4 :: Yv_C(NxC,NyC) |
124 |
|
|
REAL*4 :: Xo_C(NxC,NyC) |
125 |
|
|
REAL*4 :: Yo_C(NxC,NyC) |
126 |
|
|
REAL*4 :: Xg_C(NxC,NyC) |
127 |
|
|
REAL*4 :: Yg_C(NxC,NyC) |
128 |
|
|
REAL*4 :: hFacW_C(NxC,NyC,NrC) |
129 |
|
|
REAL*4 :: hFacS_C(NxC,NyC,NrC) |
130 |
|
|
REAL*4 :: RAC_C(NxC,NyC) |
131 |
|
|
REAL*4 :: RAW_C(NxC,NyC) |
132 |
|
|
REAL*4 :: RAS_C(NxC,NyC) |
133 |
|
|
REAL*4 :: hFacC_C(NxC,NyC,NrC) |
134 |
|
|
REAL*4 :: DEEP_C(NxC,NyC,NrC) |
135 |
|
|
c---------------------------------------------------- |
136 |
|
|
c Define relative (PARENT-->CHILD) indicies |
137 |
|
|
c---------------------------------------------------- |
138 |
|
|
INTEGER :: P2C_U(NyC) |
139 |
|
|
c |
140 |
|
|
INTEGER :: P2C_linU(NyC) !Linear interp. |
141 |
|
|
INTEGER :: WO3_linU(NyC) !Linear interp. !Which Of 3 |
142 |
|
|
c |
143 |
|
|
INTEGER :: P2C_linV(NyC) !Linear interp. |
144 |
|
|
INTEGER :: WO3_linV(NyC) !Linear interp. !Which Of 3 |
145 |
|
|
c |
146 |
|
|
INTEGER :: P2C_V(NyC) !Linear interp. |
147 |
|
|
INTEGER :: P2C_o(NyC) !Linear interp. |
148 |
|
|
INTEGER :: P2C1_V(NyC) !BiLinear interp. |
149 |
|
|
INTEGER :: P2C2_V(NyC) !BiLinear interp. |
150 |
|
|
INTEGER :: P2C1_o(NyC) !BiLinear interp. |
151 |
|
|
INTEGER :: P2C2_o(NyC) !BiLinear interp. |
152 |
|
|
c---------------------------------------------------- |
153 |
|
|
c Define relative (CHILD-->PARENT) indicies |
154 |
|
|
c---------------------------------------------------- |
155 |
|
|
INTEGER I_C2P(9,NxP,NyP) |
156 |
|
|
INTEGER J_C2P(9,NxP,NyP) |
157 |
|
|
c---------------------------------------------------- |
158 |
|
|
c Define CHILD model variable |
159 |
|
|
c---------------------------------------------------- |
160 |
|
|
c _____________ (1) WesternB (2) EasternB |
161 |
|
|
c | |
162 |
|
|
REAL*8 :: U_C1(NyC,NrC,2) |
163 |
|
|
REAL*8 :: V_C1(NyC,NrC,2) |
164 |
|
|
REAL*8 :: T_C1(NyC,NrC,2) |
165 |
|
|
REAL*8 :: S_C1(NyC,NrC,2) |
166 |
|
|
REAL*8 :: ETA_C1(NyC,NrC,2) |
167 |
|
|
INTEGER :: MSIZE |
168 |
|
|
c |
169 |
|
|
REAL*8 :: U_C2(NyC,NrC,2) |
170 |
|
|
REAL*8 :: V_C2(NyC,NrC,2) |
171 |
|
|
REAL*8 :: T_C2(NyC,NrC,2) |
172 |
|
|
REAL*8 :: S_C2(NyC,NrC,2) |
173 |
|
|
REAL*8 :: ETA_C2(NyC,NrC,2) |
174 |
|
|
c |
175 |
|
|
REAL*8,allocatable :: VAR_C1(:,:,:,:) |
176 |
|
|
c |
177 |
|
|
REAL*8 :: DIFF_U(NyC,NrC,2) |
178 |
|
|
REAL*8 :: DIFF_V(NyC,NrC,2) |
179 |
|
|
REAL*8 :: DIFF_T(NyC,NrC,2) |
180 |
|
|
REAL*8 :: DIFF_S(NyC,NrC,2) |
181 |
|
|
REAL*8 :: DIFF_ETA(NyC,NrC,2) |
182 |
|
|
c---------------------------------------------------- |
183 |
|
|
c Define PARENT model variable |
184 |
|
|
c---------------------------------------------------- |
185 |
|
|
REAL*8 :: VAR3D_P(NxP,NyP,NrP,15) |
186 |
|
|
REAL*8 :: VAR2D_P(NxP,NyP,4) |
187 |
|
|
|
188 |
|
|
INTEGER :: ONOFF |
189 |
|
|
INTEGER :: index_var3D,index_var2D |
190 |
|
|
c---------------------------------------------------------------| |
191 |
|
|
c (1) U || (2) V || (3) T || (4) S | |
192 |
|
|
c---------------------------------------------------------------| |
193 |
|
|
c (5) gU || (6) gV || (7) gT || (8) gS | |
194 |
|
|
c---------------------------------------------------------------| |
195 |
|
|
c (9) gUNm1 || (10) gVNm1 || (11) gTNm1 || (12) gSNm1 | |
196 |
|
|
c---------------------------------------------------------------| |
197 |
|
|
c (13) totPhiHyd || (14) IVDConvCount || | |
198 |
|
|
c---------------------------------------------------------------| |
199 |
|
|
c (15) etaN || (16) etaH || (17) phiHydLow | |
200 |
|
|
c---------------------------------------------------------------| |
201 |
|
|
c (18) etaNm1 || (19) etaHm1|| | |
202 |
|
|
c---------------------------------------------------------------| |
203 |
|
|
c---------------------------------------------------------------| |
204 |
|
|
c Define Global Variables to Exchange | |
205 |
|
|
c---------------------------------------------------------------| |
206 |
|
|
REAL*8,allocatable :: globalPA (:,:,:,:) !(6,NyP,NrP,5) |
207 |
|
|
REAL*8 :: globalP1(6,NyP,NrP) |
208 |
|
|
REAL*8 :: globalP2(6,NyP,NrP) |
209 |
|
|
REAL*8 :: globalP3(6,NyP,NrP) |
210 |
|
|
REAL*8 :: globalP4(6,NyP,NrP) |
211 |
|
|
REAL*8 :: globalP5(6,NyP,NrP) |
212 |
|
|
REAL*8 :: globalP6(6,NyP,NrP) |
213 |
|
|
REAL*8 :: globalP7(6,NyP,NrP) |
214 |
|
|
REAL*8 :: globalP8(6,NyP,NrP) |
215 |
|
|
REAL*8 :: globalP9(6,NyP,NrP) |
216 |
|
|
REAL*8 :: globalP10(6,NyP,NrP) |
217 |
|
|
REAL*8 :: globalP11(6,NyP,NrP) |
218 |
|
|
REAL*8 :: globalP12(6,NyP,NrP) |
219 |
|
|
REAL*8 :: globalP13(6,NyP,NrP) |
220 |
|
|
REAL*8 :: globalP14(6,NyP,NrP) |
221 |
|
|
c |
222 |
|
|
INTEGER :: index |
223 |
|
|
c---------------------------------------------------- |
224 |
|
|
c Define Global Variables to Exchange |
225 |
|
|
c---------------------------------------------------- |
226 |
|
|
REAL*8 :: globalC3D(NxC,NyC,NrC,15) |
227 |
|
|
c |___________ 15 fields |
228 |
|
|
c |
229 |
|
|
|
230 |
|
|
REAL*8 globalC2D(NxC,NyC,4) |
231 |
|
|
c |___________ 4 fields |
232 |
|
|
c |
233 |
|
|
c |
234 |
|
|
REAL*8,allocatable :: globalC3D_a(:,:,:,:),globalC2D_a(:,:,:) |
235 |
|
|
c |
236 |
|
|
INTEGER :: indexF,index1F |
237 |
|
|
REAL*4 :: AREA_VOL |
238 |
|
|
INTEGER :: vstart,vstop,VCONT,VCONTP(0:3) |
239 |
|
|
c---------------------------------------------------- |
240 |
|
|
c MPI starts here |
241 |
|
|
c---------------------------------------------------- |
242 |
|
|
call MPI_Init(ierr) |
243 |
|
|
call MPI_Comm_size(MPI_COMM_WORLD,size,ierr) |
244 |
|
|
call MPI_Comm_rank(MPI_COMM_WORLD,rank,ierr) |
245 |
|
|
npd=size-(NCPUs_PRNT+NCPUs_CHLD(1)) |
246 |
|
|
if(rank.lt.npd) color=0 |
247 |
|
|
call MPI_COMM_SPLIT (MPI_COMM_WORLD, color,0, |
248 |
|
|
& NEST_COMM,ierr) |
249 |
|
|
c |
250 |
|
|
call MPI_Comm_size(NEST_COMM,isize,ierr) |
251 |
|
|
call MPI_Comm_rank(NEST_COMM,irank,ierr) |
252 |
|
|
c-------------------------------------------------------- |
253 |
|
|
c COMPUTE MASTER VALUES |
254 |
|
|
c-------------------------------------------------------- |
255 |
|
|
MSTR_DRV(1) = 0 |
256 |
|
|
c |
257 |
|
|
MSTR_PRNT(1) = npd |
258 |
|
|
MSTR_CHLD(1) = NCPUs_PRNT + npd |
259 |
|
|
c |
260 |
|
|
DO Count_Lev = 2, NST_LEV_TOT |
261 |
|
|
MSTR_DRV(Count_Lev) = MSTR_CHLD(Count_Lev-1) + |
262 |
|
|
& NCPUs_CHLD(Count_Lev - 1) |
263 |
|
|
c |
264 |
|
|
MSTR_CHLD(Count_Lev) = MSTR_DRV(Count_Lev) + 1 |
265 |
|
|
MSTR_PRNT(Count_Lev) = MSTR_CHLD(Count_Lev-1) |
266 |
|
|
ENDDO |
267 |
|
|
c |
268 |
|
|
vstart = 1+rank*(nSxP/MSTR_PRNT(1)) |
269 |
|
|
vstop = (1+rank)*(nSxP/MSTR_PRNT(1)) |
270 |
|
|
VCONT = (nSxP/npd)*(nSyP)*rank-1 |
271 |
|
|
VCONTP(rank) = VCONT |
272 |
|
|
c-------------------------------------------------------- |
273 |
|
|
c COMPUTE DOMAIN DECOMPOSITION |
274 |
|
|
c-------------------------------------------------------- |
275 |
|
|
if(rank.eq.0) then |
276 |
|
|
c |
277 |
|
|
IM_C = int(NxC/nSxC) |
278 |
|
|
JM_C = int(NyC/nSyC) |
279 |
|
|
c |
280 |
|
|
IM_P = int(NxP/nSxP) |
281 |
|
|
JM_P = int(NyP/nSyP) |
282 |
|
|
c |
283 |
|
|
indexF = IM_C*JM_C*NrC*15 |
284 |
|
|
index1F = IM_C*JM_C*4 |
285 |
|
|
c |
286 |
|
|
indexF = (JM_C+OLY+OLY)*NrC*2*5 |
287 |
|
|
c |
288 |
|
|
index_var3D = IM_P*JM_P*NrP |
289 |
|
|
index_var2D = IM_P*JM_P |
290 |
|
|
c |
291 |
|
|
ICONT = 0 |
292 |
|
|
DO I = 1,nSxP |
293 |
|
|
DO J = 1,nSyP |
294 |
|
|
ICONT = ICONT + 1 |
295 |
|
|
IndI_P(ICONT) = IM_P*(I-1) |
296 |
|
|
IndJ_P(ICONT) = JM_P*(J-1) |
297 |
|
|
END DO |
298 |
|
|
END DO |
299 |
|
|
c |
300 |
|
|
ICONT = 0 |
301 |
|
|
DO I = 1,nSxC |
302 |
|
|
DO J = 1,nSyC |
303 |
|
|
ICONT = ICONT + 1 |
304 |
|
|
IndI_C(ICONT) = IM_C*(I-1) |
305 |
|
|
IndJ_C(ICONT) = JM_C*(J-1) |
306 |
|
|
END DO |
307 |
|
|
END DO |
308 |
|
|
c |
309 |
|
|
ALLOCATE (globalPA (6,JM_P,NrP,5)) |
310 |
|
|
index=6*JM_P*NrP*5 |
311 |
|
|
c |
312 |
|
|
ALLOCATE(globalC3D_a(IM_C,JM_C,NrC,15)) |
313 |
|
|
ALLOCATE(globalC2D_a(IM_C,JM_C,4)) |
314 |
|
|
c |
315 |
|
|
ALLOCATE (VAR_C1((JM_C+OLY+OLY),NrC,2,5)) |
316 |
|
|
c-------------------------------------------------------- |
317 |
|
|
c WARNING |
318 |
|
|
c-------------------------------------------------------- |
319 |
|
|
print*,'*************************************' |
320 |
|
|
print*,' have you update geometric files?' |
321 |
|
|
print*,' in ./CHILD e ./PARENT' |
322 |
|
|
print*,'*************************************' |
323 |
|
|
c-------------------------------------------------------- |
324 |
|
|
c PARENT MODEL |
325 |
|
|
c-------------------------------------------------------- |
326 |
|
|
print*,' [1] Read PARENT model geometry' |
327 |
|
|
c---------------------------------------------------- |
328 |
|
|
c XC & YC |
329 |
|
|
c---------------------------------------------------- |
330 |
|
|
MSIZE = NxP*NyP |
331 |
|
|
c |
332 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
333 |
|
|
& convert='big_endian', |
334 |
|
|
& file=trim(dirNEST)//'/PARENT/XC.data', |
335 |
|
|
& form='unformatted') |
336 |
|
|
c |
337 |
|
|
read (1,REC=1) Xo_P(:,:) |
338 |
|
|
close(1) |
339 |
|
|
c |
340 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
341 |
|
|
& convert='big_endian', |
342 |
|
|
& file=trim(dirNEST)//'/PARENT/YC.data', |
343 |
|
|
& form='unformatted') |
344 |
|
|
c |
345 |
|
|
read (1,REC=1) Yo_P(:,:) |
346 |
|
|
close(1) |
347 |
|
|
c---------------------------------------------------- |
348 |
|
|
c XG & YG |
349 |
|
|
c---------------------------------------------------- |
350 |
|
|
MSIZE = NxP*NyP |
351 |
|
|
c |
352 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
353 |
|
|
& convert='big_endian', |
354 |
|
|
& file=trim(dirNEST)//'/PARENT/XG.data', |
355 |
|
|
& form='unformatted') |
356 |
|
|
|
357 |
|
|
read (1,REC=1) Xg_P(:,:) |
358 |
|
|
close(1) |
359 |
|
|
c |
360 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
361 |
|
|
& convert='big_endian', |
362 |
|
|
& file=trim(dirNEST)//'/PARENT/YG.data', |
363 |
|
|
& form='unformatted') |
364 |
|
|
c |
365 |
|
|
read (1,REC=1) Yg_P(:,:) |
366 |
|
|
close(1) |
367 |
|
|
c---------------------------------------------------- |
368 |
|
|
c Yu |
369 |
|
|
c---------------------------------------------------- |
370 |
|
|
DO J = 1,NyP |
371 |
|
|
DO I = 1,NxP |
372 |
|
|
c Xu_P(I,J) = Xg_P(I,J) |
373 |
|
|
Yu_P(I,J) = Yo_P(I,J) |
374 |
|
|
ENDDO |
375 |
|
|
ENDDO |
376 |
|
|
c---------------------------------------------------- |
377 |
|
|
c Xv & Yv |
378 |
|
|
c---------------------------------------------------- |
379 |
|
|
DO J = 1,NyP |
380 |
|
|
DO I = 1,NxP |
381 |
|
|
Xv_P(I,J) = Xo_P(I,J) |
382 |
|
|
Yv_P(I,J) = Yg_P(I,J) |
383 |
|
|
ENDDO |
384 |
|
|
ENDDO |
385 |
|
|
c---------------------------------------------------- |
386 |
|
|
c hFacC |
387 |
|
|
c---------------------------------------------------- |
388 |
|
|
MSIZE = NxP*NyP*NrP |
389 |
|
|
c |
390 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
391 |
|
|
& convert='big_endian', |
392 |
|
|
& file=trim(dirNEST)//'/PARENT/hFacC.data', |
393 |
|
|
& form='unformatted') |
394 |
|
|
|
395 |
|
|
read (1,REC=1) hFacC_P(:,:,:) |
396 |
|
|
close(1) |
397 |
|
|
c---------------------------------------------------- |
398 |
|
|
c hFacW |
399 |
|
|
c---------------------------------------------------- |
400 |
|
|
MSIZE = NxP*NyP*NrP |
401 |
|
|
c |
402 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
403 |
|
|
& convert='big_endian', |
404 |
|
|
& file=trim(dirNEST)//'/PARENT/hFacW.data', |
405 |
|
|
& form='unformatted') |
406 |
|
|
|
407 |
|
|
read (1,REC=1) hFacW_P(:,:,:) |
408 |
|
|
close(1) |
409 |
|
|
c---------------------------------------------------- |
410 |
|
|
c hFacS |
411 |
|
|
c---------------------------------------------------- |
412 |
|
|
MSIZE = NxP*NyP*NrP |
413 |
|
|
c |
414 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
415 |
|
|
& convert='big_endian', |
416 |
|
|
& file=trim(dirNEST)//'/PARENT/hFacS.data', |
417 |
|
|
& form='unformatted') |
418 |
|
|
|
419 |
|
|
read (1,REC=1) hFacS_P(:,:,:) |
420 |
|
|
close(1) |
421 |
|
|
c---------------------------------------------------- |
422 |
|
|
c RAC |
423 |
|
|
c---------------------------------------------------- |
424 |
|
|
MSIZE = NxP*NyP |
425 |
|
|
c |
426 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
427 |
|
|
& convert='big_endian', |
428 |
|
|
& file=trim(dirNEST)//'/PARENT/RAC.data', |
429 |
|
|
& form='unformatted') |
430 |
|
|
|
431 |
|
|
read (1,REC=1) RAC_P(:,:) |
432 |
|
|
close(1) |
433 |
|
|
c---------------------------------------------------- |
434 |
|
|
c RAW |
435 |
|
|
c---------------------------------------------------- |
436 |
|
|
MSIZE = NxP*NyP |
437 |
|
|
c |
438 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
439 |
|
|
& convert='big_endian', |
440 |
|
|
& file=trim(dirNEST)//'/PARENT/RAW.data', |
441 |
|
|
& form='unformatted') |
442 |
|
|
|
443 |
|
|
read (1,REC=1) RAW_P(:,:) |
444 |
|
|
close(1) |
445 |
|
|
c---------------------------------------------------- |
446 |
|
|
c RAS |
447 |
|
|
c---------------------------------------------------- |
448 |
|
|
MSIZE = NxP*NyP |
449 |
|
|
c |
450 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
451 |
|
|
& convert='big_endian', |
452 |
|
|
& file=trim(dirNEST)//'/PARENT/RAS.data', |
453 |
|
|
& form='unformatted') |
454 |
|
|
|
455 |
|
|
read (1,REC=1) RAS_P(:,:) |
456 |
|
|
close(1) |
457 |
|
|
c---------------------------------------------------- |
458 |
|
|
c MASK x PARENT |
459 |
|
|
c---------------------------------------------------- |
460 |
|
|
DO K = 1,NrP |
461 |
|
|
DO J = 1,NyP |
462 |
|
|
DO I = 1,NxP |
463 |
|
|
DEEP_P(i,j,k) = 0. |
464 |
|
|
IF (hFacC_P(i,j,k).ne.0) then |
465 |
|
|
DEEP_P(I,J,K) = 1. |
466 |
|
|
ENDIF |
467 |
|
|
ENDDO |
468 |
|
|
ENDDO |
469 |
|
|
ENDDO |
470 |
|
|
c---------------------------------------------------- |
471 |
|
|
c 1/Volume (C) |
472 |
|
|
c---------------------------------------------------- |
473 |
|
|
DO K = 1,NrP |
474 |
|
|
DO J = 1,NyP |
475 |
|
|
DO I = 1,NxP |
476 |
|
|
INV_VOL_C_P(I,J,K) = 1. |
477 |
|
|
IF ((RAC_P(I,J)*hFacC_P(I,J,K)).ne.0.) THEN |
478 |
|
|
INV_VOL_C_P(I,J,K) = 1./(RAC_P(I,J)*hFacC_P(I,J,K)) |
479 |
|
|
ENDIF |
480 |
|
|
ENDDO |
481 |
|
|
ENDDO |
482 |
|
|
ENDDO |
483 |
|
|
c---------------------------------------------------- |
484 |
|
|
c 1/Volume (W) |
485 |
|
|
c---------------------------------------------------- |
486 |
|
|
DO K = 1,NrP |
487 |
|
|
DO J = 1,NyP |
488 |
|
|
DO I = 1,NxP |
489 |
|
|
INV_VOL_W_P(I,J,K) = 1. |
490 |
|
|
IF ((RAW_P(I,J)*hFacW_P(I,J,K)).ne.0.) THEN |
491 |
|
|
INV_VOL_W_P(I,J,K) = 1./(RAW_P(I,J)*hFacW_P(I,J,K)) |
492 |
|
|
ENDIF |
493 |
|
|
ENDDO |
494 |
|
|
ENDDO |
495 |
|
|
ENDDO |
496 |
|
|
c---------------------------------------------------- |
497 |
|
|
c 1/Volume (S) |
498 |
|
|
c---------------------------------------------------- |
499 |
|
|
DO K = 1,NrP |
500 |
|
|
DO J = 1,NyP |
501 |
|
|
DO I = 1,NxP |
502 |
|
|
INV_VOL_S_P(I,J,K) = 1. |
503 |
|
|
IF ((RAS_P(I,J)*hFacS_P(I,J,K)).ne.0.) THEN |
504 |
|
|
INV_VOL_S_P(I,J,K) = 1./(RAS_P(I,J)*hFacS_P(I,J,K)) |
505 |
|
|
ENDIF |
506 |
|
|
ENDDO |
507 |
|
|
ENDDO |
508 |
|
|
ENDDO |
509 |
|
|
c-------------------------------------------------------- |
510 |
|
|
c CHILD MODEL |
511 |
|
|
c-------------------------------------------------------- |
512 |
|
|
print*,' [2] Read CHILD model geometry' |
513 |
|
|
c---------------------------------------------------- |
514 |
|
|
c XC & YC |
515 |
|
|
c---------------------------------------------------- |
516 |
|
|
MSIZE = NxC*NyC |
517 |
|
|
c |
518 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
519 |
|
|
& convert='big_endian', |
520 |
|
|
& file=trim(dirNEST)//'/CHILD/XC.data', |
521 |
|
|
& form='unformatted') |
522 |
|
|
|
523 |
|
|
read (1,REC=1) Xo_C(:,:) |
524 |
|
|
close(1) |
525 |
|
|
c |
526 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
527 |
|
|
& convert='big_endian', |
528 |
|
|
& file=trim(dirNEST)//'/CHILD/YC.data', |
529 |
|
|
& form='unformatted') |
530 |
|
|
c |
531 |
|
|
read (1,REC=1) Yo_C(:,:) |
532 |
|
|
close(1) |
533 |
|
|
c---------------------------------------------------- |
534 |
|
|
c XG & YG |
535 |
|
|
c---------------------------------------------------- |
536 |
|
|
MSIZE = NxC*NyC |
537 |
|
|
c |
538 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
539 |
|
|
& convert='big_endian', |
540 |
|
|
& file=trim(dirNEST)//'/CHILD/XG.data', |
541 |
|
|
& form='unformatted') |
542 |
|
|
|
543 |
|
|
read (1,REC=1) Xg_C(:,:) |
544 |
|
|
close(1) |
545 |
|
|
c |
546 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
547 |
|
|
& convert='big_endian', |
548 |
|
|
& file=trim(dirNEST)//'/CHILD/YG.data', |
549 |
|
|
& form='unformatted') |
550 |
|
|
|
551 |
|
|
read (1,REC=1) Yg_C(:,:) |
552 |
|
|
close(1) |
553 |
|
|
c---------------------------------------------------- |
554 |
|
|
c Xu & Yu |
555 |
|
|
c---------------------------------------------------- |
556 |
|
|
DO J = 1,NyC |
557 |
|
|
DO I = 1,NxC |
558 |
|
|
Xu_C(I,J) = Xg_C(I,J) |
559 |
|
|
Yu_C(I,J) = Yo_C(I,J) |
560 |
|
|
ENDDO |
561 |
|
|
ENDDO |
562 |
|
|
c---------------------------------------------------- |
563 |
|
|
c Xv & Yv |
564 |
|
|
c---------------------------------------------------- |
565 |
|
|
DO J = 1,NyC |
566 |
|
|
DO I = 1,NxC |
567 |
|
|
Xv_C(I,J) = Xo_C(I,J) |
568 |
|
|
Yv_C(I,J) = Yg_C(I,J) |
569 |
|
|
ENDDO |
570 |
|
|
ENDDO |
571 |
|
|
c---------------------------------------------------- |
572 |
|
|
c hFacC |
573 |
|
|
c---------------------------------------------------- |
574 |
|
|
MSIZE = NxC*NyC*NrC |
575 |
|
|
c |
576 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
577 |
|
|
& convert='big_endian', |
578 |
|
|
& file=trim(dirNEST)//'/CHILD/hFacC.data', |
579 |
|
|
& form='unformatted') |
580 |
|
|
|
581 |
|
|
read (1,REC=1) hFacC_C(:,:,:) |
582 |
|
|
close(1) |
583 |
|
|
c---------------------------------------------------- |
584 |
|
|
c hFacW |
585 |
|
|
c---------------------------------------------------- |
586 |
|
|
MSIZE = NxC*NyC*NrC |
587 |
|
|
c |
588 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
589 |
|
|
& convert='big_endian', |
590 |
|
|
& file=trim(dirNEST)//'/CHILD/hFacW.data', |
591 |
|
|
& form='unformatted') |
592 |
|
|
|
593 |
|
|
read (1,REC=1) hFacW_C(:,:,:) |
594 |
|
|
close(1) |
595 |
|
|
c---------------------------------------------------- |
596 |
|
|
c hFacC |
597 |
|
|
c---------------------------------------------------- |
598 |
|
|
MSIZE = NxC*NyC*NrC |
599 |
|
|
c |
600 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
601 |
|
|
& convert='big_endian', |
602 |
|
|
& file=trim(dirNEST)//'/CHILD/hFacS.data', |
603 |
|
|
& form='unformatted') |
604 |
|
|
|
605 |
|
|
read (1,REC=1) hFacS_C(:,:,:) |
606 |
|
|
close(1) |
607 |
|
|
c---------------------------------------------------- |
608 |
|
|
c RAC |
609 |
|
|
c---------------------------------------------------- |
610 |
|
|
MSIZE = NxC*NyC |
611 |
|
|
c |
612 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
613 |
|
|
& convert='big_endian', |
614 |
|
|
& file=trim(dirNEST)//'/CHILD/RAC.data', |
615 |
|
|
& form='unformatted') |
616 |
|
|
|
617 |
|
|
read (1,REC=1) RAC_C(:,:) |
618 |
|
|
close(1) |
619 |
|
|
c---------------------------------------------------- |
620 |
|
|
c RAW |
621 |
|
|
c---------------------------------------------------- |
622 |
|
|
MSIZE = NxC*NyC |
623 |
|
|
c |
624 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
625 |
|
|
& convert='big_endian', |
626 |
|
|
& file=trim(dirNEST)//'/CHILD/RAW.data', |
627 |
|
|
& form='unformatted') |
628 |
|
|
|
629 |
|
|
read (1,REC=1) RAW_C(:,:) |
630 |
|
|
close(1) |
631 |
|
|
c---------------------------------------------------- |
632 |
|
|
c RAS |
633 |
|
|
c---------------------------------------------------- |
634 |
|
|
MSIZE = NxC*NyC |
635 |
|
|
c |
636 |
|
|
open(unit=1,ACCESS='direct',RECL=MSIZE,STATUS='OLD', |
637 |
|
|
& convert='big_endian', |
638 |
|
|
& file=trim(dirNEST)//'/CHILD/RAS.data', |
639 |
|
|
& form='unformatted') |
640 |
|
|
|
641 |
|
|
read (1,REC=1) RAS_C(:,:) |
642 |
|
|
close(1) |
643 |
|
|
c---------------------------------------------------- |
644 |
|
|
c MASK x CHILD |
645 |
|
|
c---------------------------------------------------- |
646 |
|
|
DO K = 1,NrC |
647 |
|
|
DO J = 1,NyC |
648 |
|
|
DO I = 1,NxC |
649 |
|
|
DEEP_C(i,j,k) = 0. |
650 |
|
|
IF (hFacC_C(i,j,k).ne.0) then |
651 |
|
|
DEEP_C(I,J,K) = 1. |
652 |
|
|
ENDIF |
653 |
|
|
ENDDO |
654 |
|
|
ENDDO |
655 |
|
|
ENDDO |
656 |
|
|
c---------------------------------------------------- |
657 |
|
|
c |
658 |
|
|
c __/________ ___________ |
659 |
|
|
c | | | | || |
660 |
|
|
c > o > | | | |
661 |
|
|
c |__/__|_____| |
662 |
|
|
c | | | |
663 |
|
|
c > o > | |
664 |
|
|
c |_____|_____|_____|_____| |
665 |
|
|
c |
666 |
|
|
c |
667 |
|
|
c---------------------------------------------------- |
668 |
|
|
print*,' [3] Compute J index P-->C' |
669 |
|
|
c-------------------------------------------------------- |
670 |
|
|
c Compute J indicies for mapping P->C (I) |
671 |
|
|
c-------------------------------------------------------- |
672 |
|
|
I = 1 |
673 |
|
|
II = WesternB |
674 |
|
|
c |
675 |
|
|
DO J = 1,NyC |
676 |
|
|
P2C_U(J) = 0. |
677 |
|
|
DO JJ = 1,NyP-1 |
678 |
|
|
YF = Yg_C(I,J) |
679 |
|
|
YP1 = Yg_P(II,JJ) |
680 |
|
|
YP2 = Yg_P(II,JJ+1) |
681 |
|
|
IF (YF.ge.YP1.and.YF.lt.YP2) THEN |
682 |
|
|
P2C_U(J) = JJ |
683 |
|
|
ENDIF |
684 |
|
|
ENDDO |
685 |
|
|
ENDDO |
686 |
|
|
c-------------------------------------------------------- |
687 |
|
|
c Compute J indicies for mapping P->C (II) |
688 |
|
|
c-------------------------------------------------------- |
689 |
|
|
I = 1 |
690 |
|
|
II = WesternB |
691 |
|
|
c |
692 |
|
|
DO J = 1,NyC |
693 |
|
|
P2C_linU(J) = 0. |
694 |
|
|
DO JJ = 1,NyP-1 |
695 |
|
|
YF = Yu_C(I,J) |
696 |
|
|
YP1 = Yu_P(II,JJ) |
697 |
|
|
YP2 = Yu_P(II,JJ+1) |
698 |
|
|
IF (YF.ge.YP1.and.YF.lt.YP2) THEN |
699 |
|
|
P2C_linU(J) = JJ |
700 |
|
|
ENDIF |
701 |
|
|
ENDDO |
702 |
|
|
ENDDO |
703 |
|
|
c-------------------------------------------------------- |
704 |
|
|
c Compute J indicies for mapping P->C (III) |
705 |
|
|
c-------------------------------------------------------- |
706 |
|
|
I = 1 |
707 |
|
|
II = WesternB |
708 |
|
|
c |
709 |
|
|
DO J = 1,NyC |
710 |
|
|
DO JJ = 1,NyP-1 |
711 |
|
|
YF = Yu_C(I,J) |
712 |
|
|
YP1 = Yu_P(II,JJ) |
713 |
|
|
IF (YF.eq.YP1) THEN |
714 |
|
|
WO3_linU(J) = 0 |
715 |
|
|
if (J+1.le.NyC) WO3_linU(J+1) = 1 |
716 |
|
|
if (J+2.le.NyC) WO3_linU(J+2) = 2 |
717 |
|
|
ENDIF |
718 |
|
|
ENDDO |
719 |
|
|
ENDDO |
720 |
|
|
c--------------------Lower bound |
721 |
|
|
DO J = 1,NyC |
722 |
|
|
DO JJ = 1,NyP-1 |
723 |
|
|
YF = Yu_C(I,J) |
724 |
|
|
YP1 = Yu_P(II,JJ) |
725 |
|
|
IF (YF.eq.YP1) THEN |
726 |
|
|
WO3_linU(J) = 0 |
727 |
|
|
if (J-1.gt.0) WO3_linU(J-1) = 2 |
728 |
|
|
if (J-2.gt.0) WO3_linU(J-2) = 1 |
729 |
|
|
GOTO 2345 |
730 |
|
|
ENDIF |
731 |
|
|
ENDDO |
732 |
|
|
ENDDO |
733 |
|
|
2345 CONTINUE |
734 |
|
|
c--------------------Upper bound |
735 |
|
|
DO J = NyC,1,-1 |
736 |
|
|
DO JJ = 1,NyP-1 |
737 |
|
|
YF = Yu_C(I,J) |
738 |
|
|
YP1 = Yu_P(II,JJ) |
739 |
|
|
IF (YF.eq.YP1) THEN |
740 |
|
|
WO3_linU(J) = 0 |
741 |
|
|
if (J+1.le.NyC) WO3_linU(J+1) = 1 |
742 |
|
|
if (J+2.le.NyC) WO3_linU(J+2) = 2 |
743 |
|
|
GOTO 2346 |
744 |
|
|
ENDIF |
745 |
|
|
ENDDO |
746 |
|
|
ENDDO |
747 |
|
|
2346 CONTINUE |
748 |
|
|
c-------------------------------------------------------- |
749 |
|
|
c Compute J indicies for mapping P->C (IV) |
750 |
|
|
c-------------------------------------------------------- |
751 |
|
|
I = 1 |
752 |
|
|
II = WesternB |
753 |
|
|
c |
754 |
|
|
DO J = 1,NyC |
755 |
|
|
P2C_linV(J) = 0. |
756 |
|
|
DO JJ = 1,NyP-1 |
757 |
|
|
YF = Yv_C(I,J) |
758 |
|
|
YP1 = Yv_P(II,JJ) |
759 |
|
|
YP2 = Yv_P(II,JJ+1) |
760 |
|
|
IF (YF.ge.YP1.and.YF.lt.YP2) THEN |
761 |
|
|
P2C_linV(J) = JJ |
762 |
|
|
ENDIF |
763 |
|
|
ENDDO |
764 |
|
|
ENDDO |
765 |
|
|
c-------------------------------------------------------- |
766 |
|
|
c Compute J indicies for mapping P->C (V) |
767 |
|
|
c-------------------------------------------------------- |
768 |
|
|
I = 1 |
769 |
|
|
II = WesternB |
770 |
|
|
c |
771 |
|
|
DO J = 1,NyC |
772 |
|
|
DO JJ = 1,NyP-1 |
773 |
|
|
YF = Yv_C(I,J) |
774 |
|
|
YP1 = Yv_P(II,JJ) |
775 |
|
|
IF (YF.eq.YP1) THEN |
776 |
|
|
WO3_linV(J) = 0 |
777 |
|
|
if (J+1.le.NyC) WO3_linV(J+1) = 1 |
778 |
|
|
if (J+2.le.NyC) WO3_linV(J+2) = 2 |
779 |
|
|
ENDIF |
780 |
|
|
ENDDO |
781 |
|
|
ENDDO |
782 |
|
|
c--------------------Lower bound |
783 |
|
|
DO J = 1,NyC |
784 |
|
|
DO JJ = 1,NyP-1 |
785 |
|
|
YF = Yv_C(I,J) |
786 |
|
|
YP1 = Yv_P(II,JJ) |
787 |
|
|
IF (YF.eq.YP1) THEN |
788 |
|
|
WO3_linV(J) = 0 |
789 |
|
|
if (J-1.gt.0) WO3_linV(J-1) = 2 |
790 |
|
|
if (J-2.gt.0) WO3_linV(J-2) = 1 |
791 |
|
|
GOTO 23451 |
792 |
|
|
ENDIF |
793 |
|
|
ENDDO |
794 |
|
|
ENDDO |
795 |
|
|
23451 CONTINUE |
796 |
|
|
c--------------------Upper bound |
797 |
|
|
DO J = NyC,1,-1 |
798 |
|
|
DO JJ = 1,NyP-1 |
799 |
|
|
YF = Yv_C(I,J) |
800 |
|
|
YP1 = Yv_P(II,JJ) |
801 |
|
|
IF (YF.eq.YP1) THEN |
802 |
|
|
WO3_linV(J) = 0 |
803 |
|
|
if (J+1.le.NyC) WO3_linV(J+1) = 1 |
804 |
|
|
if (J+2.le.NyC) WO3_linV(J+2) = 2 |
805 |
|
|
GOTO 23461 |
806 |
|
|
ENDIF |
807 |
|
|
ENDDO |
808 |
|
|
ENDDO |
809 |
|
|
23461 CONTINUE |
810 |
|
|
c-------------------------------------------------------- |
811 |
|
|
c Compute J indicies for mapping P->C (V) |
812 |
|
|
c-------------------------------------------------------- |
813 |
|
|
print*,' [5] Compute J index P-->C for (o)' |
814 |
|
|
I = 1 |
815 |
|
|
II = WesternB |
816 |
|
|
c |
817 |
|
|
DO J = 1,NyC |
818 |
|
|
P2C_o(J) = 0. |
819 |
|
|
DO JJ = 1,NyP-1 |
820 |
|
|
YF = Yo_C(I,J) |
821 |
|
|
YP1 = Yg_P(II,JJ) |
822 |
|
|
YP2 = Yg_P(II,JJ+1) |
823 |
|
|
IF (YF.gt.YP1.and.YF.lt.YP2) THEN |
824 |
|
|
P2C_o(J) = JJ |
825 |
|
|
ENDIF |
826 |
|
|
ENDDO |
827 |
|
|
ENDDO |
828 |
|
|
c-------------------------------------------------------- |
829 |
|
|
c Compute J indicies for mapping P->C (VI) |
830 |
|
|
c-------------------------------------------------------- |
831 |
|
|
print*,' [6] Compute J index P-->C for (v bilinear)' |
832 |
|
|
I = 1 |
833 |
|
|
II = WesternB |
834 |
|
|
c |
835 |
|
|
DO J = 1,NyC |
836 |
|
|
DO JJ = 2,NyP-1 |
837 |
|
|
YF = Yv_C(I,J) |
838 |
|
|
YP1 = Yv_P(II,JJ) |
839 |
|
|
YP2 = Yv_P(II,JJ+1) |
840 |
|
|
YP3 = Yv_P(II,JJ-1) |
841 |
|
|
c |
842 |
|
|
IF (YF.ge.YP1.and.YF.lt.YP2) THEN |
843 |
|
|
P2C1_V(J) = JJ |
844 |
|
|
P2C2_V(J) = JJ+1 |
845 |
|
|
ENDIF |
846 |
|
|
ENDDO |
847 |
|
|
ENDDO |
848 |
|
|
c-------------------------------------------------------- |
849 |
|
|
c Look for the 9 CHILD indicies in PARENT grid cell |
850 |
|
|
c-------------------------------------------------------- |
851 |
|
|
print*,' [8] Compute I J index C-->P for (o)' |
852 |
|
|
c |
853 |
|
|
DO J = 1,NyP |
854 |
|
|
DO I = 1,NxP |
855 |
|
|
I_C2P(:,I,J) = 0 |
856 |
|
|
J_C2P(:,I,J) = 0 |
857 |
|
|
c |
858 |
|
|
DO JJ = 1,NyC |
859 |
|
|
DO II = 1,NxC |
860 |
|
|
IF (Xo_C(II,JJ).eq.Xo_P(I,J).and. |
861 |
|
|
& Yo_C(II,JJ).eq.Yo_P(I,J)) then |
862 |
|
|
|
863 |
|
|
KK = 0 |
864 |
|
|
DO JJJ = JJ-1,JJ+1 |
865 |
|
|
DO III = II-1,II+1 |
866 |
|
|
KK = kk +1 |
867 |
|
|
if (III.lt.1.or.III.gt.NxC) cycle |
868 |
|
|
if (JJJ.lt.1.or.JJJ.gt.NyC) cycle |
869 |
|
|
I_C2P(KK,I,J) = III |
870 |
|
|
J_C2P(KK,I,J) = JJJ |
871 |
|
|
ENDDO |
872 |
|
|
ENDDO |
873 |
|
|
ENDIF |
874 |
|
|
|
875 |
|
|
ENDDO |
876 |
|
|
ENDDO |
877 |
|
|
c |
878 |
|
|
ENDDO |
879 |
|
|
ENDDO |
880 |
|
|
ENDIF |
881 |
|
|
c-------------------------------------------------------- |
882 |
|
|
c Broadcast all the above variables |
883 |
|
|
c-------------------------------------------------------- |
884 |
|
|
call MPI_BCAST(I_C2P,9*NxP*NyP,MPI_INTEGER, |
885 |
|
|
& 0,NEST_COMM,ierr) |
886 |
|
|
call MPI_BCAST(J_C2P,9*NxP*NyP,MPI_INTEGER, |
887 |
|
|
& 0,NEST_COMM,ierr) |
888 |
|
|
|
889 |
|
|
call MPI_BCAST(RAC_C,NxC*NyC,MPI_REAL, |
890 |
|
|
& 0,NEST_COMM,ierr) |
891 |
|
|
call MPI_BCAST(hFacC_C,NxC*NyC*NrC,MPI_REAL, |
892 |
|
|
& 0,NEST_COMM,ierr) |
893 |
|
|
call MPI_BCAST(INV_VOL_C_P,NxP*NyP*NrP,MPI_REAL, |
894 |
|
|
& 0,NEST_COMM,ierr) |
895 |
|
|
|
896 |
|
|
call MPI_BCAST(RAW_C,NxC*NyC,MPI_REAL, |
897 |
|
|
& 0,NEST_COMM,ierr) |
898 |
|
|
call MPI_BCAST(hFacW_C,NxC*NyC*NrC,MPI_REAL, |
899 |
|
|
& 0,NEST_COMM,ierr) |
900 |
|
|
call MPI_BCAST(INV_VOL_W_P,NxP*NyP*NrP,MPI_REAL, |
901 |
|
|
& 0,NEST_COMM,ierr) |
902 |
|
|
|
903 |
|
|
call MPI_BCAST(RAS_C,NxC*NyC,MPI_REAL, |
904 |
|
|
& 0,NEST_COMM,ierr) |
905 |
|
|
call MPI_BCAST(hFacS_C,NxC*NyC*NrC,MPI_REAL, |
906 |
|
|
& 0,NEST_COMM,ierr) |
907 |
|
|
call MPI_BCAST(INV_VOL_S_P,NxP*NyP*NrP,MPI_REAL, |
908 |
|
|
& 0,NEST_COMM,ierr) |
909 |
|
|
c |
910 |
|
|
call MPI_BCAST(DEEP_C,NxC*NyC*NrC,MPI_REAL, |
911 |
|
|
& 0,NEST_COMM,ierr) |
912 |
|
|
call MPI_BCAST(RAC_P,NxP*NyP,MPI_REAL, |
913 |
|
|
& 0,NEST_COMM,ierr) |
914 |
|
|
c |
915 |
|
|
call MPI_BCAST(IM_P,1,MPI_INTEGER, |
916 |
|
|
& 0,NEST_COMM,ierr) |
917 |
|
|
call MPI_BCAST(JM_P,1,MPI_INTEGER, |
918 |
|
|
& 0,NEST_COMM,ierr) |
919 |
|
|
call MPI_BCAST(index_var3D,1,MPI_INTEGER, |
920 |
|
|
& 0,NEST_COMM,ierr) |
921 |
|
|
call MPI_BCAST(index_var2D,1,MPI_INTEGER, |
922 |
|
|
& 0,NEST_COMM,ierr) |
923 |
|
|
c |
924 |
|
|
call MPI_BCAST(DEEP_P,NxP*NyP*NrP,MPI_REAL, |
925 |
|
|
& 0,NEST_COMM,ierr) |
926 |
|
|
call MPI_BCAST(hFacS_P,NxP*NyP*NrP,MPI_REAL, |
927 |
|
|
& 0,NEST_COMM,ierr) |
928 |
|
|
call MPI_BCAST(hFacC_P,NxP*NyP*NrP,MPI_REAL, |
929 |
|
|
& 0,NEST_COMM,ierr) |
930 |
|
|
call MPI_BCAST(hFacW_P,NxP*NyP*NrP,MPI_REAL, |
931 |
|
|
& 0,NEST_COMM,ierr) |
932 |
|
|
|
933 |
|
|
c-------------------------------------------------------- |
934 |
|
|
if(rank.eq.0) then |
935 |
|
|
c-------------------------------------------------------- |
936 |
|
|
DO K = 1,NrP |
937 |
|
|
DO J = 1,NyP |
938 |
|
|
DO I = WesternB+1,EasternB-1 |
939 |
|
|
cc WesternB side |
940 |
|
|
|
941 |
|
|
DO II = 1,9 |
942 |
|
|
IF (I_C2P(II,I,J).eq.0) cycle |
943 |
|
|
IF (J_C2P(II,I,J).eq.0) cycle |
944 |
|
|
c |
945 |
|
|
Indx = I_C2P(II,I,J) |
946 |
|
|
Jndx = J_C2P(II,I,J) |
947 |
|
|
ENDDO |
948 |
|
|
ENDDO |
949 |
|
|
ENDDO |
950 |
|
|
ENDDO |
951 |
|
|
c--------------------------------------------------------- |
952 |
|
|
ONOFF=0 |
953 |
|
|
endif |
954 |
|
|
c-------------------------------------------------------- |
955 |
|
|
c BEGIN MAIN LOOP |
956 |
|
|
c-------------------------------------------------------- |
957 |
|
|
do |
958 |
|
|
if(rank.eq.0) then |
959 |
|
|
c-------------------------------------------------------- |
960 |
|
|
c (1) READ FROM PARENT MODEL |
961 |
|
|
c-------------------------------------------------------- |
962 |
|
|
ICONT=1 |
963 |
|
|
DO WHILE(ICONT.le.nSxP*nSyP) |
964 |
|
|
from= MPI_ANY_SOURCE |
965 |
|
|
|
966 |
|
|
call MPI_RECV (globalPA, index, MPI_REAL8, |
967 |
|
|
& FROM, 3000, |
968 |
|
|
& MPI_COMM_World, status,ierr) |
969 |
|
|
c |
970 |
|
|
ICONT=ICONT+1 |
971 |
|
|
c |
972 |
|
|
whm=status(MPI_SOURCE)-MSTR_PRNT(NST_LEV)+1 |
973 |
|
|
c |
974 |
|
|
call MPI_GET_COUNT(status,MPI_REAL8,st_count,ierr) |
975 |
|
|
c |
976 |
|
|
DO II = 1,6 |
977 |
|
|
IF (globalPA(II,1,1,1).ne.-999.) THEN |
978 |
|
|
globalP1(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
979 |
|
|
& globalPA(II,1:JM_P,:,1) |
980 |
|
|
globalP2(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
981 |
|
|
& globalPA(II,1:JM_P,:,2) |
982 |
|
|
globalP3(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
983 |
|
|
& globalPA(II,1:JM_P,:,3) |
984 |
|
|
globalP4(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
985 |
|
|
& globalPA(II,1:JM_P,:,4) |
986 |
|
|
globalP5(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
987 |
|
|
& globalPA(II,1:JM_P,:,5) |
988 |
|
|
ENDIF |
989 |
|
|
|
990 |
|
|
ENDDO |
991 |
|
|
ENDDO |
992 |
|
|
c-------------------------------------------------------- |
993 |
|
|
c Start interpolation for CHILD |
994 |
|
|
c-------------------------------------------------------- |
995 |
|
|
CALL INTERPOLATION_P2C ( |
996 |
|
|
& globalP1,globalP2,globalP3,globalP4,globalP5, |
997 |
|
|
& NxP,NyP,NrP, |
998 |
|
|
& NxC,NyC,NrC, |
999 |
|
|
$ WesternB,EasternB, |
1000 |
|
|
$ P2C_U,P2C_V,P2C_o,P2C1_V,P2C2_V,P2C1_o,P2C2_o, |
1001 |
|
|
$ P2C_linU,WO3_linU,P2C_linV,WO3_linV, |
1002 |
|
|
$ Xv_C,Yv_C,Xv_P,Yv_P, |
1003 |
|
|
$ T_C1,S_C1,U_C1,V_C1,ETA_C1, |
1004 |
|
|
$ DEEP_C,DEEP_P |
1005 |
|
|
& ) |
1006 |
|
|
c============================================================== |
1007 |
|
|
c Open Files from PARENT MODEL |
1008 |
|
|
c============================================================== |
1009 |
|
|
ICONT=1 |
1010 |
|
|
|
1011 |
|
|
do while(ICONT.le.nSxP*nSyP) |
1012 |
|
|
from= MPI_ANY_SOURCE |
1013 |
|
|
|
1014 |
|
|
call MPI_RECV (globalPA, index, MPI_REAL8, |
1015 |
|
|
& FROM, 3000, |
1016 |
|
|
& MPI_COMM_World, status,ierr) |
1017 |
|
|
|
1018 |
|
|
|
1019 |
|
|
|
1020 |
|
|
ICONT=ICONT+1 |
1021 |
|
|
|
1022 |
|
|
whm=status(MPI_SOURCE)-MSTR_PRNT(NST_LEV)+1 |
1023 |
|
|
|
1024 |
|
|
call MPI_GET_COUNT(status,MPI_REAL8,st_count,ierr) |
1025 |
|
|
|
1026 |
|
|
DO II = 1,6 |
1027 |
|
|
IF (globalPA(II,1,1,1).ne.-999.) THEN |
1028 |
|
|
globalP1(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
1029 |
|
|
& globalPA(II,1:JM_P,:,1) |
1030 |
|
|
globalP2(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
1031 |
|
|
& globalPA(II,1:JM_P,:,2) |
1032 |
|
|
globalP3(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
1033 |
|
|
& globalPA(II,1:JM_P,:,3) |
1034 |
|
|
globalP4(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
1035 |
|
|
& globalPA(II,1:JM_P,:,4) |
1036 |
|
|
globalP5(II,1+IndJ_P(whm):JM_P+IndJ_P(whm),:) = |
1037 |
|
|
& globalPA(II,1:JM_P,:,5) |
1038 |
|
|
ENDIF |
1039 |
|
|
ENDDO |
1040 |
|
|
|
1041 |
|
|
end do |
1042 |
|
|
c-------------------------------------------------------- |
1043 |
|
|
c Start inteprolation for CHILD |
1044 |
|
|
c-------------------------------------------------------- |
1045 |
|
|
CALL INTERPOLATION_P2C ( |
1046 |
|
|
& globalP1,globalP2,globalP3,globalP4,globalP5, |
1047 |
|
|
& NxP,NyP,NrP, |
1048 |
|
|
& NxC,NyC,NrC, |
1049 |
|
|
$ WesternB,EasternB, |
1050 |
|
|
$ P2C_U,P2C_V,P2C_o,P2C1_V,P2C2_V,P2C1_o,P2C2_o, |
1051 |
|
|
$ P2C_linU,WO3_linU,P2C_linV,WO3_linV, |
1052 |
|
|
$ Xv_C,Yv_C,Xv_P,Yv_P, |
1053 |
|
|
$ T_C2,S_C2,U_C2,V_C2,ETA_C2, |
1054 |
|
|
$ DEEP_C,DEEP_P |
1055 |
|
|
& ) |
1056 |
|
|
|
1057 |
|
|
|
1058 |
|
|
|
1059 |
|
|
c============================================================== |
1060 |
|
|
c Temporal Interpolation OBCs x CHILD MODEL |
1061 |
|
|
c============================================================== |
1062 |
|
|
c 0 1200 |
1063 |
|
|
c ---+--.--.--+---- Parent |
1064 |
|
|
c |
1065 |
|
|
c |--|--|-- |
1066 |
|
|
c 0 800 |
1067 |
|
|
c 400 |
1068 |
|
|
c------------------------------------------------------------ |
1069 |
|
|
DO I = 1,2 ! WesternB & EasternB |
1070 |
|
|
DIFF_T(:,:,I) = (T_C2(:,:,I) - T_C1(:,:,I))/3. |
1071 |
|
|
DIFF_S(:,:,I) = (S_C2(:,:,I) - S_C1(:,:,I))/3. |
1072 |
|
|
DIFF_U(:,:,I) = (U_C2(:,:,I) - U_C1(:,:,I))/3. |
1073 |
|
|
DIFF_V(:,:,I) = (V_C2(:,:,I) - V_C1(:,:,I))/3. |
1074 |
|
|
DIFF_eta(:,:,I) = (eta_C2(:,:,I) - eta_C1(:,:,I))/3. |
1075 |
|
|
ENDDO |
1076 |
|
|
c------------------------------------------------------------- |
1077 |
|
|
c |
1078 |
|
|
c Step 0 (Rec = 1 ==> WesternB) |
1079 |
|
|
c------- (Rec = 2 ==> EasternB) |
1080 |
|
|
|
1081 |
|
|
DO I = 1,2 !WesternB & EasternB |
1082 |
|
|
T_C1(:,:,I) = T_C2(:,:,I) !+ DIFF_T(:,:,I) |
1083 |
|
|
S_C1(:,:,I) = S_C2(:,:,I) !+ DIFF_S(:,:,I) |
1084 |
|
|
U_C1(:,:,I) = U_C2(:,:,I) !+ DIFF_U(:,:,I) |
1085 |
|
|
V_C1(:,:,I) = V_C2(:,:,I) !+ DIFF_V(:,:,I) |
1086 |
|
|
ETA_C1(:,:,I) = ETA_C2(:,:,I) !+ DIFF_ETA(:,:,I) |
1087 |
|
|
ENDDO |
1088 |
|
|
|
1089 |
|
|
|
1090 |
|
|
if(ONOFF.eq.0) then |
1091 |
|
|
c--------------------------------------------------------------------- |
1092 |
|
|
ICONT = -1 |
1093 |
|
|
DO I = 1,nSxC |
1094 |
|
|
DO J = 1,nSyC |
1095 |
|
|
ICONT = ICONT + 1 |
1096 |
|
|
IndI = IM_C*(I-1) |
1097 |
|
|
IndJ = JM_C*(J-1) |
1098 |
|
|
|
1099 |
|
|
VAR_C1(:,:,:,:) = 0. |
1100 |
|
|
c |
1101 |
|
|
J1 = 1+IndJ-OLY |
1102 |
|
|
J2 = JM_C+IndJ+OLY |
1103 |
|
|
c |
1104 |
|
|
JJ1 = 1 |
1105 |
|
|
JJ2 = JM_C+OLY+OLY |
1106 |
|
|
c |
1107 |
|
|
IF(1 +IndJ-OLY.LT.0) THEN |
1108 |
|
|
J1 = 1 |
1109 |
|
|
JJ1 = 4 |
1110 |
|
|
ENDIF |
1111 |
|
|
c |
1112 |
|
|
IF(JM_C+IndJ+OLY.GT.NyC) THEN |
1113 |
|
|
J2 = NyC |
1114 |
|
|
JJ2 = JM_C |
1115 |
|
|
ENDIF |
1116 |
|
|
c |
1117 |
|
|
VAR_C1(JJ1:JJ2,:,:,1) = U_C1(J1:J2,:,:) |
1118 |
|
|
VAR_C1(JJ1:JJ2,:,:,2) = V_C1(J1:J2,:,:) |
1119 |
|
|
VAR_C1(JJ1:JJ2,:,:,3) = T_C1(J1:J2,:,:) |
1120 |
|
|
VAR_C1(JJ1:JJ2,:,:,4) = S_C1(J1:J2,:,:) |
1121 |
|
|
VAR_C1(JJ1:JJ2,:,:,5) = ETA_C1(J1:J2,:,:) |
1122 |
|
|
c |
1123 |
|
|
call MPI_SEND (VAR_C1, indexF, MPI_REAL8, |
1124 |
|
|
& MSTR_CHLD(NST_LEV)+ICONT, 3000, |
1125 |
|
|
& MPI_Comm_World,ierr) |
1126 |
|
|
c |
1127 |
|
|
ENDDO |
1128 |
|
|
ENDDO |
1129 |
|
|
c---------------------------------------------------------------------- |
1130 |
|
|
cc write(*,*) 'VIC: MANDO SEGNALE DI OK AL CHILD PER INIZIALIZZARE' |
1131 |
|
|
ONOFF=1 |
1132 |
|
|
ENDIF |
1133 |
|
|
cc write(*,*) 'VIC: MANDO SEGNALE DI OK AL CHILD PER IL PASSO 1' |
1134 |
|
|
c----------------------------------------------------------------------- |
1135 |
|
|
ICONT = -1 |
1136 |
|
|
DO I = 1,nSxC |
1137 |
|
|
DO J = 1,nSyC |
1138 |
|
|
ICONT = ICONT + 1 |
1139 |
|
|
IndI = IM_C*(I-1) |
1140 |
|
|
IndJ = JM_C*(J-1) |
1141 |
|
|
c |
1142 |
|
|
VAR_C1(:,:,:,:) = 0. |
1143 |
|
|
c |
1144 |
|
|
J1 = 1+IndJ-OLY |
1145 |
|
|
J2 = JM_C+IndJ+OLY |
1146 |
|
|
c |
1147 |
|
|
JJ1 = 1 |
1148 |
|
|
JJ2 = JM_C+OLY+OLY |
1149 |
|
|
c |
1150 |
|
|
IF(1 +IndJ-OLY.LT.0) THEN |
1151 |
|
|
J1 = 1 |
1152 |
|
|
JJ1 = 4 |
1153 |
|
|
ENDIF |
1154 |
|
|
c |
1155 |
|
|
IF(JM_C+IndJ+OLY.GT.NyC) THEN |
1156 |
|
|
J2 = NyC |
1157 |
|
|
JJ2 = JM_C |
1158 |
|
|
ENDIF |
1159 |
|
|
c |
1160 |
|
|
VAR_C1(JJ1:JJ2,:,:,1) = U_C1(J1:J2,:,:) |
1161 |
|
|
VAR_C1(JJ1:JJ2,:,:,2) = V_C1(J1:J2,:,:) |
1162 |
|
|
VAR_C1(JJ1:JJ2,:,:,3) = T_C1(J1:J2,:,:) |
1163 |
|
|
VAR_C1(JJ1:JJ2,:,:,4) = S_C1(J1:J2,:,:) |
1164 |
|
|
VAR_C1(JJ1:JJ2,:,:,5) = ETA_C1(J1:J2,:,:) |
1165 |
|
|
c |
1166 |
|
|
call MPI_SEND (VAR_C1, indexF, MPI_REAL8, |
1167 |
|
|
& MSTR_CHLD(NST_LEV)+ICONT, 3000, |
1168 |
|
|
& MPI_Comm_World,ierr) |
1169 |
|
|
|
1170 |
|
|
ENDDO |
1171 |
|
|
ENDDO |
1172 |
|
|
c--------------------------------------------------------------------- |
1173 |
|
|
goto 8888 |
1174 |
|
|
|
1175 |
|
|
c |
1176 |
|
|
c Step 1 (Rec = 3 ==> WesternB) |
1177 |
|
|
c------- (Rec = 4 ==> EasternB) |
1178 |
|
|
|
1179 |
|
|
DO I = 1,2 !WesternB & EasternB |
1180 |
|
|
T_C1(:,:,I) = T_C2(:,:,I) !+ DIFF_T(:,:,I) |
1181 |
|
|
S_C1(:,:,I) = S_C2(:,:,I) !+ DIFF_S(:,:,I) |
1182 |
|
|
U_C1(:,:,I) = U_C2(:,:,I) !+ DIFF_U(:,:,I) |
1183 |
|
|
V_C1(:,:,I) = V_C2(:,:,I) !+ DIFF_V(:,:,I) |
1184 |
|
|
ETA_C1(:,:,I) = ETA_C2(:,:,I) !+ DIFF_ETA(:,:,I) |
1185 |
|
|
ENDDO |
1186 |
|
|
c---------------------------------------------------------- |
1187 |
|
|
ICONT = -1 |
1188 |
|
|
DO I = 1,nSxC |
1189 |
|
|
DO J = 1,nSyC |
1190 |
|
|
ICONT = ICONT + 1 |
1191 |
|
|
IndI = IM_C*(I-1) |
1192 |
|
|
IndJ = JM_C*(J-1) |
1193 |
|
|
|
1194 |
|
|
VAR_C1(:,:,:,:) = 0. |
1195 |
|
|
c |
1196 |
|
|
J1 = 1+IndJ-OLY |
1197 |
|
|
J2 = JM_C+IndJ+OLY |
1198 |
|
|
c |
1199 |
|
|
JJ1 = 1 |
1200 |
|
|
JJ2 = JM_C+OLY+OLY |
1201 |
|
|
c |
1202 |
|
|
IF(1 +IndJ-OLY.LT.0) THEN |
1203 |
|
|
J1 = 1 |
1204 |
|
|
JJ1 = 4 |
1205 |
|
|
ENDIF |
1206 |
|
|
c |
1207 |
|
|
IF(JM_C+IndJ+OLY.GT.NyC) THEN |
1208 |
|
|
J2 = NyC |
1209 |
|
|
JJ2 = JM_C |
1210 |
|
|
ENDIF |
1211 |
|
|
c |
1212 |
|
|
VAR_C1(JJ1:JJ2,:,:,1) = U_C1(J1:J2,:,:) |
1213 |
|
|
VAR_C1(JJ1:JJ2,:,:,2) = V_C1(J1:J2,:,:) |
1214 |
|
|
VAR_C1(JJ1:JJ2,:,:,3) = T_C1(J1:J2,:,:) |
1215 |
|
|
VAR_C1(JJ1:JJ2,:,:,4) = S_C1(J1:J2,:,:) |
1216 |
|
|
VAR_C1(JJ1:JJ2,:,:,5) = ETA_C1(J1:J2,:,:) |
1217 |
|
|
|
1218 |
|
|
call MPI_SEND (VAR_C1, indexF, MPI_REAL8, |
1219 |
|
|
& MSTR_CHLD(NST_LEV)+ICONT, 3000, |
1220 |
|
|
& MPI_Comm_World,ierr) |
1221 |
|
|
|
1222 |
|
|
|
1223 |
|
|
ENDDO |
1224 |
|
|
ENDDO |
1225 |
|
|
c----------------------------------------------------------- |
1226 |
|
|
c |
1227 |
|
|
c Step 2 (Rec = 5 ==> WesternB) |
1228 |
|
|
c------- (Rec = 6 ==> EasternB) |
1229 |
|
|
|
1230 |
|
|
DO I = 1,2 !WesternB & EasternB |
1231 |
|
|
T_C1(:,:,I) = T_C2(:,:,I) !+ DIFF_T(:,:,I) |
1232 |
|
|
S_C1(:,:,I) = S_C2(:,:,I) !+ DIFF_S(:,:,I) |
1233 |
|
|
U_C1(:,:,I) = U_C2(:,:,I) !+ DIFF_U(:,:,I) |
1234 |
|
|
V_C1(:,:,I) = V_C2(:,:,I) !+ DIFF_V(:,:,I) |
1235 |
|
|
ETA_C1(:,:,I) = ETA_C2(:,:,I) !+ DIFF_ETA(:,:,I) |
1236 |
|
|
ENDDO |
1237 |
|
|
c---------------------------------------------------------- |
1238 |
|
|
ICONT = -1 |
1239 |
|
|
DO I = 1,nSxC |
1240 |
|
|
DO J = 1,nSyC |
1241 |
|
|
ICONT = ICONT + 1 |
1242 |
|
|
IndI = IM_C*(I-1) |
1243 |
|
|
IndJ = JM_C*(J-1) |
1244 |
|
|
|
1245 |
|
|
VAR_C1(:,:,:,:) = 0. |
1246 |
|
|
c |
1247 |
|
|
J1 = 1+IndJ-OLY |
1248 |
|
|
J2 = JM_C+IndJ+OLY |
1249 |
|
|
c |
1250 |
|
|
JJ1 = 1 |
1251 |
|
|
JJ2 = JM_C+OLY+OLY |
1252 |
|
|
c |
1253 |
|
|
IF(1 +IndJ-OLY.LT.0) THEN |
1254 |
|
|
J1 = 1 |
1255 |
|
|
JJ1 = 4 |
1256 |
|
|
ENDIF |
1257 |
|
|
c |
1258 |
|
|
IF(JM_C+IndJ+OLY.GT.NyC) THEN |
1259 |
|
|
J2 = NyC |
1260 |
|
|
JJ2 = JM_C |
1261 |
|
|
ENDIF |
1262 |
|
|
c |
1263 |
|
|
VAR_C1(JJ1:JJ2,:,:,1) = U_C1(J1:J2,:,:) |
1264 |
|
|
VAR_C1(JJ1:JJ2,:,:,2) = V_C1(J1:J2,:,:) |
1265 |
|
|
VAR_C1(JJ1:JJ2,:,:,3) = T_C1(J1:J2,:,:) |
1266 |
|
|
VAR_C1(JJ1:JJ2,:,:,4) = S_C1(J1:J2,:,:) |
1267 |
|
|
VAR_C1(JJ1:JJ2,:,:,5) = ETA_C1(J1:J2,:,:) |
1268 |
|
|
|
1269 |
|
|
call MPI_SEND (VAR_C1, indexF, MPI_REAL8, |
1270 |
|
|
& MSTR_CHLD(NST_LEV)+ICONT, 3000, |
1271 |
|
|
& MPI_Comm_World,ierr) |
1272 |
|
|
|
1273 |
|
|
|
1274 |
|
|
ENDDO |
1275 |
|
|
ENDDO |
1276 |
|
|
c--------------------------------------------------------------- |
1277 |
|
|
8888 CONTINUE |
1278 |
|
|
c-------------------------------------------------------- |
1279 |
|
|
c Close OBCs Files x CHILD MODEL |
1280 |
|
|
c-------------------------------------------------------- |
1281 |
|
|
c---------------------------------------------------- |
1282 |
|
|
c------------- MANDO SEGNALE DI OK AL CHILD |
1283 |
|
|
c---------------------------------------------------- |
1284 |
|
|
c-------------------------------------------------------- |
1285 |
|
|
c (1) READ FROM CHILD MODEL |
1286 |
|
|
c-------------------------------------------------------- |
1287 |
|
|
call MPI_RECV (TRANSPORT_WEST, 1, MPI_REAL8, |
1288 |
|
|
& MSTR_CHLD(NST_LEV), 3000, |
1289 |
|
|
& MPI_COMM_World, status,ierr) |
1290 |
|
|
|
1291 |
|
|
|
1292 |
|
|
call MPI_RECV (TRANSPORT_EAST, 1, MPI_REAL8, |
1293 |
|
|
& MSTR_CHLD(NST_LEV), 3000, |
1294 |
|
|
& MPI_COMM_World, status,ierr) |
1295 |
|
|
c--------------------------------------------------------- |
1296 |
|
|
c--------------------------------------------------------- |
1297 |
|
|
ICONT=1 |
1298 |
|
|
|
1299 |
|
|
DO WHILE(ICONT.le.nSxC*nSyC) |
1300 |
|
|
from= MPI_ANY_SOURCE |
1301 |
|
|
call MPI_RECV (globalC3D_a,indexF, MPI_REAL8, |
1302 |
|
|
& from, 3000, MPI_COMM_World, status,ierr) |
1303 |
|
|
|
1304 |
|
|
ICONT=ICONT+1 |
1305 |
|
|
|
1306 |
|
|
whm=status(MPI_SOURCE)-MSTR_CHLD(NST_LEV)+1 |
1307 |
|
|
|
1308 |
|
|
call MPI_GET_COUNT(status,MPI_REAL8,st_count,ierr) |
1309 |
|
|
|
1310 |
|
|
globalC3D(1+IndI_C(whm):IM_C+IndI_C(whm), |
1311 |
|
|
& 1+IndJ_C(whm):JM_C+IndJ_C(whm),:,:)= |
1312 |
|
|
& globalC3D_a(:,:,:,:) |
1313 |
|
|
END DO |
1314 |
|
|
c----------------------------- |
1315 |
|
|
ICONT=1 |
1316 |
|
|
|
1317 |
|
|
DO WHILE(ICONT.le.nSxC*nSyC) |
1318 |
|
|
from= MPI_ANY_SOURCE |
1319 |
|
|
call MPI_RECV (globalC2D_a,index1F, MPI_REAL8, |
1320 |
|
|
& from, 3000, MPI_COMM_World, status,ierr) |
1321 |
|
|
|
1322 |
|
|
ICONT=ICONT+1 |
1323 |
|
|
|
1324 |
|
|
whm=status(MPI_SOURCE)-MSTR_CHLD(NST_LEV)+1 |
1325 |
|
|
|
1326 |
|
|
call MPI_GET_COUNT(status,MPI_REAL8,st_count,ierr) |
1327 |
|
|
|
1328 |
|
|
|
1329 |
|
|
globalC2D(1+IndI_C(whm):IM_C+IndI_C(whm), |
1330 |
|
|
& 1+IndJ_C(whm):JM_C+IndJ_C(whm),:)= |
1331 |
|
|
& globalC2D_a(:,:,:) |
1332 |
|
|
END DO |
1333 |
|
|
ENDIF |
1334 |
|
|
|
1335 |
|
|
|
1336 |
|
|
|
1337 |
|
|
|
1338 |
|
|
call MPI_BCAST(globalC3D,NxC*NyC*NrC*15,MPI_REAL8, |
1339 |
|
|
& 0,NEST_COMM,ierr) |
1340 |
|
|
call MPI_BCAST(globalC2D,NxC*NyC*4,MPI_REAL8, |
1341 |
|
|
& 0,NEST_COMM,ierr) |
1342 |
|
|
|
1343 |
|
|
2323 CONTINUE |
1344 |
|
|
c======================================================= |
1345 |
|
|
c (1) READ FROM CHILD MODEL |
1346 |
|
|
c======================================================= |
1347 |
|
|
|
1348 |
|
|
c======================================================= |
1349 |
|
|
c (2) INTERPOLATIONS |
1350 |
|
|
c======================================================= |
1351 |
|
|
|
1352 |
|
|
c 3D VAR |
1353 |
|
|
c-------- |
1354 |
|
|
DO iVar = 1,15 ! tipo di variabile |
1355 |
|
|
DO K = 1,NrP |
1356 |
|
|
DO J = 1,NyP |
1357 |
|
|
DO I = WesternB+1,EasternB-1 |
1358 |
|
|
VAR3D_P(I,J,K,iVar) = 0. ! inizializzo |
1359 |
|
|
c WesternB side |
1360 |
|
|
|
1361 |
|
|
AREA_VOL = 0. !can be area or volume depend on the variable |
1362 |
|
|
|
1363 |
|
|
SELECT CASE(iVar) |
1364 |
|
|
CASE(1,5,9) |
1365 |
|
|
I_START = 1 |
1366 |
|
|
I_END = 9 |
1367 |
|
|
I_STEP = 1 !3 |
1368 |
|
|
CASE(2,6,10) |
1369 |
|
|
I_START = 1 |
1370 |
|
|
I_END = 9 !3 |
1371 |
|
|
I_STEP = 1 |
1372 |
|
|
CASE DEFAULT |
1373 |
|
|
I_START = 1 |
1374 |
|
|
I_END = 9 |
1375 |
|
|
I_STEP = 1 |
1376 |
|
|
END SELECT |
1377 |
|
|
|
1378 |
|
|
|
1379 |
|
|
DO II = I_START,I_END,I_STEP |
1380 |
|
|
|
1381 |
|
|
|
1382 |
|
|
IF (I_C2P(II,I,J).eq.0) cycle |
1383 |
|
|
IF (J_C2P(II,I,J).eq.0) cycle |
1384 |
|
|
c |
1385 |
|
|
Indx = I_C2P(II,I,J) |
1386 |
|
|
Jndx = J_C2P(II,I,J) |
1387 |
|
|
c |
1388 |
|
|
c |
1389 |
|
|
SELECT CASE(iVar) |
1390 |
|
|
|
1391 |
|
|
CASE (1,5,9) |
1392 |
|
|
VAR3D_P(I,J,K,ivar) = VAR3D_P(I,J,K,iVar) + |
1393 |
|
|
& globalC3D(Indx,Jndx,K,iVar)* |
1394 |
|
|
$ RAW_C(Indx,Jndx)* |
1395 |
|
|
& hFacW_C(Indx,Jndx,K) |
1396 |
|
|
|
1397 |
|
|
CASE (2,6,10) |
1398 |
|
|
VAR3D_P(I,J,K,ivar) = VAR3D_P(I,J,K,iVar) + |
1399 |
|
|
& globalC3D(Indx,Jndx,K,iVar)* |
1400 |
|
|
$ RAS_C(Indx,Jndx)* |
1401 |
|
|
& hFacS_C(Indx,Jndx,K) |
1402 |
|
|
|
1403 |
|
|
|
1404 |
|
|
CASE DEFAULT |
1405 |
|
|
VAR3D_P(I,J,K,ivar) = VAR3D_P(I,J,K,iVar) + |
1406 |
|
|
& globalC3D(Indx,Jndx,K,iVar)* |
1407 |
|
|
$ RAC_C(Indx,Jndx)* |
1408 |
|
|
& hFacC_C(Indx,Jndx,K) |
1409 |
|
|
|
1410 |
|
|
AREA_VOL = AREA_VOL + |
1411 |
|
|
& RAC_C(Indx,Jndx)* hFacC_C(Indx,Jndx,K) |
1412 |
|
|
|
1413 |
|
|
END SELECT |
1414 |
|
|
ENDDO |
1415 |
|
|
c----------------------------------------------- |
1416 |
|
|
c Make a volume average |
1417 |
|
|
c---------------------------------------------- |
1418 |
|
|
SELECT CASE(iVar) |
1419 |
|
|
CASE (1,5,9) |
1420 |
|
|
VAR3D_P(I,J,K,ivar) = |
1421 |
|
|
& VAR3D_P(I,J,K,iVar)* |
1422 |
|
|
& INV_VOL_W_P(I,J,K) |
1423 |
|
|
if (hFacW_P(I,J,K).eq.0.) VAR3D_P(I,J,K,ivar)=0. |
1424 |
|
|
|
1425 |
|
|
CASE (2,6,10) |
1426 |
|
|
VAR3D_P(I,J,K,ivar) = |
1427 |
|
|
& VAR3D_P(I,J,K,iVar)* |
1428 |
|
|
& INV_VOL_S_P(I,J,K) |
1429 |
|
|
if (hFacS_P(I,J,K).eq.0.) VAR3D_P(I,J,K,ivar)=0. |
1430 |
|
|
CASE DEFAULT |
1431 |
|
|
IF (AREA_VOL.ne.0.) then |
1432 |
|
|
VAR3D_P(I,J,K,ivar) = |
1433 |
|
|
& VAR3D_P(I,J,K,iVar)/AREA_VOL |
1434 |
|
|
ENDIF |
1435 |
|
|
if (hFacC_P(I,J,K).eq.0.) VAR3D_P(I,J,K,ivar)=0. |
1436 |
|
|
END SELECT |
1437 |
|
|
ENDDO |
1438 |
|
|
ENDDO |
1439 |
|
|
ENDDO |
1440 |
|
|
ENDDO |
1441 |
|
|
|
1442 |
|
|
|
1443 |
|
|
|
1444 |
|
|
c 2D VAR |
1445 |
|
|
c-------- |
1446 |
|
|
DO iVar = 1,4 |
1447 |
|
|
DO J = 1,NyP |
1448 |
|
|
DO I = WesternB+1,EasternB-1 |
1449 |
|
|
VAR2D_P(I,J,iVar) = 0. |
1450 |
|
|
AREA_VOL = 0. |
1451 |
|
|
DO II = 1,9 |
1452 |
|
|
IF (I_C2P(II,I,J).eq.0) cycle |
1453 |
|
|
IF (J_C2P(II,I,J).eq.0) cycle |
1454 |
|
|
c |
1455 |
|
|
Indx = I_C2P(II,I,J) |
1456 |
|
|
Jndx = J_C2P(II,I,J) |
1457 |
|
|
c |
1458 |
|
|
VAR2D_P(I,J,ivar) = VAR2D_P(I,J,iVar) + |
1459 |
|
|
& globalC2D(Indx,Jndx,iVar)* |
1460 |
|
|
$ RAC_C(Indx,Jndx)* |
1461 |
|
|
& DEEP_C(Indx,Jndx,1) |
1462 |
|
|
|
1463 |
|
|
|
1464 |
|
|
AREA_VOL = AREA_VOL + |
1465 |
|
|
& RAC_C(Indx,Jndx)* DEEP_C(Indx,Jndx,1) |
1466 |
|
|
|
1467 |
|
|
ENDDO |
1468 |
|
|
c----------------------------- |
1469 |
|
|
IF ((RAC_P(I,J)*DEEP_P(I,J,1)).ne.0.) then |
1470 |
|
|
c IF (AREA_VOL.ne.0.) then |
1471 |
|
|
|
1472 |
|
|
VAR2D_P(I,J,ivar) = |
1473 |
|
|
& VAR2D_P(I,J,iVar)/ |
1474 |
|
|
& RAC_P(I,J) |
1475 |
|
|
ENDIF |
1476 |
|
|
c---------------------------- |
1477 |
|
|
ENDDO |
1478 |
|
|
ENDDO |
1479 |
|
|
ENDDO |
1480 |
|
|
if(rank.eq.0) then |
1481 |
|
|
c-------------------------------------------------------- |
1482 |
|
|
c Write Files for PARENT MODEL |
1483 |
|
|
c-------------------------------------------------------- |
1484 |
|
|
c print*,' (*) Open Files for PARENT MODEL' |
1485 |
|
|
|
1486 |
|
|
7575 CONTINUE |
1487 |
|
|
c---------------------------------------------------- |
1488 |
|
|
c------------- MANDO SEGNALE DI OK AL PARENT |
1489 |
|
|
c---------------------------------------------------- |
1490 |
|
|
call MPI_SEND (TRANSPORT_WEST, 1, MPI_REAL8, |
1491 |
|
|
& MSTR_PRNT(NST_LEV), 3000, |
1492 |
|
|
& MPI_Comm_World,ierr) |
1493 |
|
|
|
1494 |
|
|
call MPI_SEND (TRANSPORT_EAST, 1, MPI_REAL8, |
1495 |
|
|
& MSTR_PRNT(NST_LEV), 3000, |
1496 |
|
|
& MPI_Comm_World,ierr) |
1497 |
|
|
|
1498 |
|
|
ENDIF |
1499 |
|
|
c--------------------------------------------------------- |
1500 |
|
|
!--------------------------------------------------------- |
1501 |
|
|
VCONT=VCONTP(rank) |
1502 |
|
|
|
1503 |
|
|
DO I = vstart,vstop |
1504 |
|
|
DO J = 1,nSyP |
1505 |
|
|
VCONT = VCONT + 1 |
1506 |
|
|
IndI = IM_P*(I-1) |
1507 |
|
|
IndJ = JM_P*(J-1) |
1508 |
|
|
c----------------------------------------------------------- |
1509 |
|
|
DO iVar=1,15 |
1510 |
|
|
CALL MPI_SEND (VAR3D_P(1+IndI:IM_P+IndI |
1511 |
|
|
& ,1+IndJ:JM_P+IndJ,:,iVar), |
1512 |
|
|
& index_var3D,MPI_REAL8,MSTR_PRNT(NST_LEV)+VCONT, |
1513 |
|
|
& 3000,MPI_Comm_World,ierr) |
1514 |
|
|
|
1515 |
|
|
ENDDO |
1516 |
|
|
|
1517 |
|
|
|
1518 |
|
|
|
1519 |
|
|
DO iVar=1,4 |
1520 |
|
|
call MPI_SEND (VAR2D_P(1+IndI:IM_P+IndI |
1521 |
|
|
& ,1+IndJ:JM_P+IndJ,iVar), |
1522 |
|
|
& index_var2D,MPI_REAL8,MSTR_PRNT(NST_LEV)+VCONT, |
1523 |
|
|
& 3000,MPI_Comm_World,ierr) |
1524 |
|
|
ENDDO |
1525 |
|
|
|
1526 |
|
|
c----------------------------------------------------------- |
1527 |
|
|
END DO |
1528 |
|
|
END DO |
1529 |
|
|
|
1530 |
|
|
call MPI_BARRIER(NEST_COMM,ierr) |
1531 |
|
|
end do |
1532 |
|
|
c--------------------------------------------------------- |
1533 |
|
|
c======================================================= |
1534 |
|
|
c END MAIN LOOP |
1535 |
|
|
c======================================================= |
1536 |
|
|
call MPI_FINALIZE(ierr) |
1537 |
|
|
c--------------------------------------------------------- |
1538 |
|
|
!--------------------------------------------------------- |
1539 |
|
|
|
1540 |
|
|
101 FORMAT (I1) |
1541 |
|
|
|
1542 |
|
|
STOP |
1543 |
|
|
END |
1544 |
|
|
|
1545 |
|
|
|
1546 |
|
|
|
1547 |
|
|
|
1548 |
|
|
|
1549 |
|
|
|
1550 |
|
|
|
1551 |
|
|
|
1552 |
|
|
|
1553 |
|
|
|
1554 |
|
|
|
1555 |
|
|
|
1556 |
|
|
|
1557 |
|
|
|
1558 |
|
|
|
1559 |
|
|
SUBROUTINE INTERPOLATION_P2C ( |
1560 |
|
|
& globalP1,globalP2,globalP3,globalP4,globalP5, |
1561 |
|
|
& NxP,NyP,NrP, |
1562 |
|
|
& NxC,NyC,NrC, |
1563 |
|
|
$ WesternB,EasternB, |
1564 |
|
|
$ P2C_U,P2C_V,P2C_o,P2C1_V,P2C2_V,P2C1_o,P2C2_o, |
1565 |
|
|
$ P2C_linU,WO3_linU,P2C_linV,WO3_linV, |
1566 |
|
|
$ Xv_F,Yv_F,Xv_P,Yv_P, |
1567 |
|
|
$ T_F,S_F,U_F,V_F,ETA_F, |
1568 |
|
|
$ DEEP_F,DEEP_P |
1569 |
|
|
& ) |
1570 |
|
|
c---------------------------------------------------- |
1571 |
|
|
implicit none |
1572 |
|
|
c---------------------------------------------------- |
1573 |
|
|
INTEGER :: I,J,K,II,JJ |
1574 |
|
|
INTEGER :: WesternB,EasternB |
1575 |
|
|
INTEGER :: NrP,NxP,NyP |
1576 |
|
|
INTEGER :: NrC,NxC,NyC |
1577 |
|
|
c---------------------------------------------------- |
1578 |
|
|
REAL*8 :: Fp,Fm,Fo,VEL_MEMO |
1579 |
|
|
INTEGER :: INDC |
1580 |
|
|
c---------------------------------------------------- |
1581 |
|
|
c Define Global Variables to Exchange |
1582 |
|
|
c---------------------------------------------------- |
1583 |
|
|
REAL*8 :: globalP1(6,NyP,NrP) |
1584 |
|
|
REAL*8 :: globalP2(6,NyP,NrP) |
1585 |
|
|
REAL*8 :: globalP3(6,NyP,NrP) |
1586 |
|
|
REAL*8 :: globalP4(6,NyP,NrP) |
1587 |
|
|
REAL*8 :: globalP5(6,NyP,NrP) |
1588 |
|
|
c---------------------------------------------------- |
1589 |
|
|
c Define CHILD Model Geometry |
1590 |
|
|
c---------------------------------------------------- |
1591 |
|
|
REAL*4 :: Xu_F(NxC,NyC) |
1592 |
|
|
REAL*4 :: Yu_F(NxC,NyC) |
1593 |
|
|
REAL*4 :: Xv_F(NxC,NyC) |
1594 |
|
|
REAL*4 :: Yv_F(NxC,NyC) |
1595 |
|
|
REAL*4 :: Xo_F(NxC,NyC) |
1596 |
|
|
REAL*4 :: Yo_F(NxC,NyC) |
1597 |
|
|
REAL*4 :: Xg_F(NxC,NyC) |
1598 |
|
|
REAL*4 :: Yg_F(NxC,NyC) |
1599 |
|
|
REAL*4 :: DEEP_F(NxC,NyC,NrC) |
1600 |
|
|
c---------------------------------------------------- |
1601 |
|
|
c Define PARENT Model Geometry |
1602 |
|
|
c---------------------------------------------------- |
1603 |
|
|
c REAL*4 :: Xu_P(NxP,NyP) |
1604 |
|
|
REAL*4 :: Yu_P(NxP,NyP) |
1605 |
|
|
REAL*4 :: Xv_P(NxP,NyP) |
1606 |
|
|
REAL*4 :: Yv_P(NxP,NyP) |
1607 |
|
|
REAL*4 :: Xo_P(NxP,NyP) |
1608 |
|
|
REAL*4 :: Yo_P(NxP,NyP) |
1609 |
|
|
REAL*4 :: Xg_P(NxP,NyP) |
1610 |
|
|
REAL*4 :: Yg_P(NxP,NyP) |
1611 |
|
|
REAL*4 :: DEEP_P(NxP,NyP,NrP) |
1612 |
|
|
REAL*4 :: DEPDEP |
1613 |
|
|
c----------------------------------------------------- |
1614 |
|
|
REAL*4 :: X1,X2,X3,X4,Y1,Y2,Y3,Y4 |
1615 |
|
|
REAL*4 :: f1,f2,f3,f4,f,x,y |
1616 |
|
|
REAL*4 :: gammaT,gammaS,terzo,dueterzi |
1617 |
|
|
REAL*4 :: gammaEta |
1618 |
|
|
REAL*4 :: gammaV |
1619 |
|
|
c---------------------------------------------------- |
1620 |
|
|
c Define INDICIES MATRIX |
1621 |
|
|
c---------------------------------------------------- |
1622 |
|
|
INTEGER :: P2C_U(NyC) !x imposizione NETTA |
1623 |
|
|
INTEGER :: P2C_linU(NyC) !x Lineare |
1624 |
|
|
INTEGER :: WO3_linU(NyC) !x Lineare !Which Of 3 |
1625 |
|
|
|
1626 |
|
|
INTEGER :: P2C_linV(NyC) !x Lineare |
1627 |
|
|
INTEGER :: WO3_linV(NyC) !x Lineare !Which Of 3 |
1628 |
|
|
|
1629 |
|
|
INTEGER :: P2C_V(NyC) !x Lineare |
1630 |
|
|
INTEGER :: P2C_o(NyC) !x Lineare |
1631 |
|
|
|
1632 |
|
|
INTEGER :: P2C1_V(NyC) !x BiLineare |
1633 |
|
|
INTEGER :: P2C2_V(NyC) !x BiLineare |
1634 |
|
|
INTEGER :: P2C1_o(NyC) !x BiLineare |
1635 |
|
|
INTEGER :: P2C2_o(NyC) !x BiLineare |
1636 |
|
|
|
1637 |
|
|
REAL*8 :: diff(NrC) |
1638 |
|
|
REAL*8 :: DEPDEP_F_WesternB(NrC) |
1639 |
|
|
REAL*8 :: DEPDEP_F_EasternB(NrC) |
1640 |
|
|
c---------------------------------------------------- |
1641 |
|
|
c Define CHILD model variable |
1642 |
|
|
c---------------------------------------------------- |
1643 |
|
|
c _____________ (1) WesternB (2) EasternB |
1644 |
|
|
c | |
1645 |
|
|
REAL*8 :: U_F(NyC,NrC,2) |
1646 |
|
|
REAL*8 :: V_F(NyC,NrC,2) |
1647 |
|
|
REAL*8 :: T_F(NyC,NrC,2) |
1648 |
|
|
REAL*8 :: S_F(NyC,NrC,2) |
1649 |
|
|
REAL*8 :: ETA_F(NyC,NrC,2) |
1650 |
|
|
c---------------------------------------------------- |
1651 |
|
|
PARAMETER ( terzo = 1./3.) |
1652 |
|
|
PARAMETER (dueterzi = 2./3.) |
1653 |
|
|
c======================================================= |
1654 |
|
|
c (2) INTERPOLATIONS |
1655 |
|
|
c======================================================= |
1656 |
|
|
c (2.1) Linear for normal velocity component (u in this case) |
1657 |
|
|
c------------------------------------------------------- |
1658 |
|
|
DO K = 1,NrP |
1659 |
|
|
DO J = 1,NyP-1 |
1660 |
|
|
IF (globalP4(2,J,K).eq.0.) THEN !uso la salinità come discriminante |
1661 |
|
|
globalP1 (2,J,K) = globalP1 (2,J+1,K) |
1662 |
|
|
ENDIF |
1663 |
|
|
ENDDO |
1664 |
|
|
|
1665 |
|
|
DO J = NyP,2,-1 |
1666 |
|
|
IF (globalP4(2,J,K).eq.0.) THEN !uso la salinità come discriminante |
1667 |
|
|
globalP1 (2,J,K) = globalP1 (2,J-1,K) |
1668 |
|
|
ENDIF |
1669 |
|
|
ENDDO |
1670 |
|
|
ENDDO |
1671 |
|
|
c======================================================= |
1672 |
|
|
c (2.1) NOT Linear but simply imposed |
1673 |
|
|
c------------------------------------------------------- |
1674 |
|
|
DO J = 1,3 |
1675 |
|
|
U_F(J,:,1) = globalP1(2,P2C_U(J),:) |
1676 |
|
|
U_F(J,:,2) = globalP1(6,P2C_U(J),:) |
1677 |
|
|
ENDDO |
1678 |
|
|
|
1679 |
|
|
DO J = NyC-2,NyC |
1680 |
|
|
U_F(J,:,1) = globalP1(2,P2C_U(J),:) |
1681 |
|
|
U_F(J,:,2) = globalP1(6,P2C_U(J),:) |
1682 |
|
|
ENDDO |
1683 |
|
|
c================================================= |
1684 |
|
|
DO J = 4,NyC-3,3 |
1685 |
|
|
INDC = P2C_U(J) |
1686 |
|
|
DO K = 1,NrC |
1687 |
|
|
c-------- WesternB ---------------------- |
1688 |
|
|
Fp = globalP1(2,INDC+1,K) |
1689 |
|
|
Fo = globalP1(2,INDC,K) |
1690 |
|
|
Fm = globalP1(2,INDC-1,K) |
1691 |
|
|
c |
1692 |
|
|
VEL_MEMO = 0. |
1693 |
|
|
DO I = -1,1 |
1694 |
|
|
U_F(J+1+i,K,1) = ((Fp-2.*Fo+Fm)/24.)* |
1695 |
|
|
& ((12.*float(i)**2+1.)/9.)+ |
1696 |
|
|
& ((float(i)/6.)*(Fp-Fm))+(26.*Fo-Fp-Fm)/24. |
1697 |
|
|
VEL_MEMO = VEL_MEMO + U_F(J+1+i,K,1) |
1698 |
|
|
ENDDO |
1699 |
|
|
|
1700 |
|
|
VEL_MEMO = ((3.*Fo) - VEL_MEMO)/3. |
1701 |
|
|
|
1702 |
|
|
DO I = -1,1 |
1703 |
|
|
U_F(J+1+i,K,1) = U_F(J+1+i,K,1) + VEL_MEMO |
1704 |
|
|
ENDDO |
1705 |
|
|
|
1706 |
|
|
c-------- EasternB ---------------------- |
1707 |
|
|
Fp = globalP1(6,INDC+1,K) |
1708 |
|
|
Fo = globalP1(6,INDC,K) |
1709 |
|
|
Fm = globalP1(6,INDC-1,K) |
1710 |
|
|
|
1711 |
|
|
VEL_MEMO = 0. |
1712 |
|
|
DO I = -1,1 |
1713 |
|
|
U_F(J+1+i,K,2) = ((Fp-2.*Fo+Fm)/24.)* |
1714 |
|
|
& ((12.*float(i)**2+1.)/9.)+ |
1715 |
|
|
& ((float(i)/6.)*(Fp-Fm))+(26.*Fo-Fp-Fm)/24. |
1716 |
|
|
VEL_MEMO = VEL_MEMO + U_F(J+1+i,K,2) |
1717 |
|
|
ENDDO |
1718 |
|
|
|
1719 |
|
|
VEL_MEMO = ((3.*Fo) - VEL_MEMO)/3. |
1720 |
|
|
|
1721 |
|
|
DO I = -1,1 |
1722 |
|
|
U_F(J+1+i,K,2) = U_F(J+1+i,K,2) + VEL_MEMO |
1723 |
|
|
ENDDO |
1724 |
|
|
c------------------------------------------------------ |
1725 |
|
|
ENDDO |
1726 |
|
|
ENDDO |
1727 |
|
|
c------------------------------------------------------- |
1728 |
|
|
c (2.2) BiLinear for tangent velocity component (v in this case) |
1729 |
|
|
c------------------------------------------------------- |
1730 |
|
|
I = 1 |
1731 |
|
|
II = WesternB |
1732 |
|
|
|
1733 |
|
|
V_F(:,:,:) = 0. |
1734 |
|
|
|
1735 |
|
|
DO K = 1,NrC |
1736 |
|
|
DO J = 1,NyC |
1737 |
|
|
x1 = Xv_P(II,P2C1_V(J)) |
1738 |
|
|
x2 = Xv_P(II,P2C2_V(J)) |
1739 |
|
|
|
1740 |
|
|
x3 = Xv_P(II+1,P2C1_V(J)) |
1741 |
|
|
x4 = Xv_P(II+1,P2C2_V(J)) |
1742 |
|
|
|
1743 |
|
|
y1 = Yv_P(II,P2C1_V(J)) |
1744 |
|
|
y2 = Yv_P(II,P2C2_V(J)) |
1745 |
|
|
|
1746 |
|
|
y3 = Yv_P(II+1,P2C1_V(J)) |
1747 |
|
|
y4 = Yv_P(II+1,P2C2_V(J)) |
1748 |
|
|
|
1749 |
|
|
x = Xv_F(I,J) |
1750 |
|
|
y = Yv_F(I,J) |
1751 |
|
|
|
1752 |
|
|
f1 = globalP2(1,P2C1_V(J),K) |
1753 |
|
|
f2 = globalP2(1,P2C2_V(J),K) |
1754 |
|
|
f3 = globalP2(2,P2C1_V(J),K) |
1755 |
|
|
f4 = globalP2(2,P2C2_V(J),K) |
1756 |
|
|
|
1757 |
|
|
call blint(x1,x2,x3,x4,y1,y2,y3,y4,f1,f2,f3,f4,x,y,f) |
1758 |
|
|
V_F(J,K,1) = f |
1759 |
|
|
ENDDO |
1760 |
|
|
ENDDO |
1761 |
|
|
c.............................................. |
1762 |
|
|
I = NxC |
1763 |
|
|
II = EasternB |
1764 |
|
|
|
1765 |
|
|
DO K = 1,NrC |
1766 |
|
|
DO J = 1,NyC |
1767 |
|
|
x1 = Xv_P(II,P2C1_V(J)) |
1768 |
|
|
x2 = Xv_P(II,P2C2_V(J)) |
1769 |
|
|
|
1770 |
|
|
x3 = Xv_P(II-1,P2C1_V(J)) |
1771 |
|
|
x4 = Xv_P(II-1,P2C2_V(J)) |
1772 |
|
|
|
1773 |
|
|
y1 = Yv_P(II,P2C1_V(J)) |
1774 |
|
|
y2 = Yv_P(II,P2C2_V(J)) |
1775 |
|
|
|
1776 |
|
|
y3 = Yv_P(II-1,P2C1_V(J)) |
1777 |
|
|
y4 = Yv_P(II-1,P2C2_V(J)) |
1778 |
|
|
|
1779 |
|
|
x = Xv_F(I,J) |
1780 |
|
|
y = Yv_F(I,J) |
1781 |
|
|
|
1782 |
|
|
f1 = globalP2(6,P2C1_V(J),K) |
1783 |
|
|
f2 = globalP2(6,P2C2_V(J),K) |
1784 |
|
|
f3 = globalP2(5,P2C1_V(J),K) |
1785 |
|
|
f4 = globalP2(5,P2C2_V(J),K) |
1786 |
|
|
|
1787 |
|
|
call blint(x1,x2,x3,x4,y1,y2,y3,y4,f1,f2,f3,f4,x,y,f) |
1788 |
|
|
V_F(J,K,2) = f |
1789 |
|
|
ENDDO |
1790 |
|
|
ENDDO |
1791 |
|
|
c------------------------------------------------------- |
1792 |
|
|
c (2.3.1) Linear |
1793 |
|
|
c------------------------------------------------------- |
1794 |
|
|
c |
1795 |
|
|
c WesternB |
1796 |
|
|
c |
1797 |
|
|
DO K = 1,NrP |
1798 |
|
|
DO J = 1,NyP |
1799 |
|
|
c |
1800 |
|
|
DEPDEP = DEEP_P(WesternB,J,K) * DEEP_P(WesternB+1,J,K) |
1801 |
|
|
c |
1802 |
|
|
gammaT =(globalP3(2,J,K)-globalP3(1,J,K))*DEPDEP |
1803 |
|
|
gammaS =(globalP4(2,J,K)-globalP4(1,J,K))*DEPDEP |
1804 |
|
|
gammaeta =(globalP5(2,J,K)-globalP5(1,J,K))*DEPDEP |
1805 |
|
|
cgm------- |
1806 |
|
|
c gammaV =(globalP2(2,J,K)-globalP2(1,J,K))*DEPDEP |
1807 |
|
|
cgm--------- |
1808 |
|
|
globalP3(1,J,K) = globalP3(1,J,K) + terzo* gammaT |
1809 |
|
|
globalP4(1,J,K) = globalP4(1,J,K) + terzo* gammaS |
1810 |
|
|
globalP5(1,J,K) = globalP5(1,J,K) + terzo* gammaeta |
1811 |
|
|
cgm------- |
1812 |
|
|
c globalP2(1,J,K) = globalP2(1,J,K) + terzo* gammaV |
1813 |
|
|
cgm--------- |
1814 |
|
|
ENDDO |
1815 |
|
|
c-------------------------------------------------------------- |
1816 |
|
|
DO J = 1,NyP-1 |
1817 |
|
|
IF (globalP4(1,J,K).eq.0.) THEN !uso la salinità come discriminante |
1818 |
|
|
globalP3(1,J,K) = globalP3(1,J+1,K) |
1819 |
|
|
globalP4(1,J,K) = globalP4(1,J+1,K) |
1820 |
|
|
globalP5(1,J,K) = globalP5(1,J+1,K) |
1821 |
|
|
ENDIF |
1822 |
|
|
ENDDO |
1823 |
|
|
|
1824 |
|
|
DO J = NyP,2,-1 |
1825 |
|
|
IF (globalP4(1,J,K).eq.0.) THEN !uso la salinità come discriminante |
1826 |
|
|
globalP3(1,J,K) = globalP3(1,J-1,K) |
1827 |
|
|
globalP4(1,J,K) = globalP4(1,J-1,K) |
1828 |
|
|
globalP5(1,J,K) = globalP5(1,J-1,K) |
1829 |
|
|
cgm--------- |
1830 |
|
|
c globalP2(1,J,K) = globalP2(1,J-1,K) |
1831 |
|
|
cgm------------- |
1832 |
|
|
ENDIF |
1833 |
|
|
ENDDO |
1834 |
|
|
c--------------------------------------------------------------- |
1835 |
|
|
ENDDO |
1836 |
|
|
|
1837 |
|
|
|
1838 |
|
|
|
1839 |
|
|
c |
1840 |
|
|
c EasternB |
1841 |
|
|
c |
1842 |
|
|
DO K = 1,NrP |
1843 |
|
|
DO J = 1,NyP |
1844 |
|
|
c |
1845 |
|
|
DEPDEP = DEEP_P(EasternB,J,K) * DEEP_P(EasternB-1,J,K) |
1846 |
|
|
c |
1847 |
|
|
gammaT =(globalP3(5,J,K)-globalP3(6,J,K))*DEPDEP |
1848 |
|
|
gammaS =(globalP4(5,J,K)-globalP4(6,J,K))*DEPDEP |
1849 |
|
|
gammaeta =(globalP5(5,J,K)-globalP5(6,J,K))*DEPDEP |
1850 |
|
|
cgm------------- |
1851 |
|
|
c gammaV =(globalP2(5,J,K)-globalP2(6,J,K))*DEPDEP |
1852 |
|
|
cgm---------------- |
1853 |
|
|
globalP3(6,J,K) = globalP3(6,J,K) + terzo* gammaT |
1854 |
|
|
globalP4(6,J,K) = globalP4(6,J,K) + terzo* gammaS |
1855 |
|
|
globalP5(6,J,K) = globalP5(6,J,K) + terzo* gammaeta |
1856 |
|
|
cgm---------------- |
1857 |
|
|
c globalP2(6,J,K) = globalP2(6,J,K) + terzo* gammaV |
1858 |
|
|
cgm---------------- |
1859 |
|
|
ENDDO |
1860 |
|
|
c-------------------------------------------------------------- |
1861 |
|
|
DO J = 1,NyP-1 |
1862 |
|
|
IF (globalP4(6,J,K).eq.0.) THEN !uso la salinità come discriminante |
1863 |
|
|
globalP3(6,J,K) = globalP3(6,J+1,K) |
1864 |
|
|
globalP4(6,J,K) = globalP4(6,J+1,K) |
1865 |
|
|
globalP5(6,J,K) = globalP5(6,J+1,K) |
1866 |
|
|
cgm---------------- |
1867 |
|
|
c globalP2(6,J,K) = globalP2(6,J+1,K) |
1868 |
|
|
cgm---------------- |
1869 |
|
|
ENDIF |
1870 |
|
|
ENDDO |
1871 |
|
|
|
1872 |
|
|
DO J = NyP,2,-1 |
1873 |
|
|
IF (globalP4(6,J,K).eq.0.) THEN !uso la salinità come discriminante |
1874 |
|
|
globalP3(6,J,K) = globalP3(6,J-1,K) |
1875 |
|
|
globalP4(6,J,K) = globalP4(6,J-1,K) |
1876 |
|
|
globalP5(6,J,K) = globalP5(6,J-1,K) |
1877 |
|
|
cgm---------------- |
1878 |
|
|
c globalP2(6,J,K) = globalP2(6,J-1,K) |
1879 |
|
|
cgm---------------- |
1880 |
|
|
ENDIF |
1881 |
|
|
ENDDO |
1882 |
|
|
c--------------------------------------------------------------- |
1883 |
|
|
ENDDO |
1884 |
|
|
c------------------------------------------------------- |
1885 |
|
|
c (2.3.2) Linear |
1886 |
|
|
c------------------------------------------------------- |
1887 |
|
|
DO J = 1,NyC |
1888 |
|
|
c....MASK DEEP_F |
1889 |
|
|
IF (J.EQ.NyC) THEN !EVITO ERRORI DI CHECK BOUND x Vittorio |
1890 |
|
|
DEPDEP_F_WesternB (:) = DEEP_F(1 ,J,:)*DEEP_F(1 ,J,:) |
1891 |
|
|
DEPDEP_F_EasternB(:) = DEEP_F(NxC,J,:)*DEEP_F(NxC,J,:) |
1892 |
|
|
ELSE |
1893 |
|
|
DEPDEP_F_WesternB (:) = DEEP_F(1 ,J,:)*DEEP_F(1 ,J+1,:) |
1894 |
|
|
DEPDEP_F_EasternB(:) = DEEP_F(NxC,J,:)*DEEP_F(NxC,J+1,:) |
1895 |
|
|
ENDIF |
1896 |
|
|
|
1897 |
|
|
c....WesternB...T..................... |
1898 |
|
|
diff(:) = globalP3(1,P2C_linU(J)+1,:)- |
1899 |
|
|
& globalP3(1,P2C_linU(J) ,:) |
1900 |
|
|
|
1901 |
|
|
T_F(J,:,1) = globalP3(1,P2C_linU(J) ,:)+ |
1902 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
1903 |
|
|
& *DEPDEP_F_WesternB(:) |
1904 |
|
|
c.....EasternB..T..................... |
1905 |
|
|
diff(:) = globalP3(6,P2C_linU(J)+1,:)- |
1906 |
|
|
& globalP3(6,P2C_linU(J) ,:) |
1907 |
|
|
|
1908 |
|
|
T_F(J,:,2) = globalP3(6,P2C_linU(J) ,:)+ |
1909 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
1910 |
|
|
& *DEPDEP_F_EasternB(:) |
1911 |
|
|
c.....WesternB...S..................... |
1912 |
|
|
diff(:) = globalP4(1,P2C_linU(J)+1,:)- |
1913 |
|
|
& globalP4 (1,P2C_linU(J) ,:) |
1914 |
|
|
|
1915 |
|
|
S_F(J,:,1) = globalP4(1,P2C_linU(J) ,:)+ |
1916 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
1917 |
|
|
& *DEPDEP_F_WesternB(:) |
1918 |
|
|
c.... EasternB..S..................... |
1919 |
|
|
diff(:) = (globalP4(6,P2C_linU(J)+1,:)- |
1920 |
|
|
& globalP4 (6,P2C_linU(J) ,:)) |
1921 |
|
|
|
1922 |
|
|
S_F(J,:,2) = globalP4(6,P2C_linU(J) ,:)+ |
1923 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
1924 |
|
|
& *DEPDEP_F_EasternB(:) |
1925 |
|
|
c.... WesternB...Eta..................... |
1926 |
|
|
diff(:) = globalP5(1,P2C_linU(J)+1,:)- |
1927 |
|
|
& globalP5(1,P2C_linU(J) ,:) |
1928 |
|
|
|
1929 |
|
|
eta_F(J,:,1) = globalP5(1,P2C_linU(J) ,:)+ |
1930 |
|
|
& (diff(:)/3.)*float((WO3_linU(J))) |
1931 |
|
|
& *DEPDEP_F_WesternB(:) |
1932 |
|
|
c.... EasternB..Eta..................... |
1933 |
|
|
diff(:) = globalP5(6,P2C_linU(J)+1,:)- |
1934 |
|
|
& globalP5(6,P2C_linU(J) ,:) |
1935 |
|
|
|
1936 |
|
|
eta_F(J,:,2) = globalP5(6,P2C_linU(J) ,:)+ |
1937 |
|
|
& (diff(:)/3.)*float(WO3_linU(J)) |
1938 |
|
|
& *DEPDEP_F_EasternB(:) |
1939 |
|
|
|
1940 |
|
|
cgm-------------------------- |
1941 |
|
|
|
1942 |
|
|
c.... WesternB...V..................... |
1943 |
|
|
c diff(:) = globalP2(1,P2C_linU(J)+1,:)- |
1944 |
|
|
c & globalP2(1,P2C_linU(J) ,:) |
1945 |
|
|
c |
1946 |
|
|
c V_F(J,:,1) = globalP2(1,P2C_linU(J) ,:)+ |
1947 |
|
|
c & (diff(:)/3.)*float((WO3_linU(J))) |
1948 |
|
|
c & *DEPDEP_F_WesternB(:) |
1949 |
|
|
c.... EasternB..V..................... |
1950 |
|
|
c diff(:) = globalP2(6,P2C_linU(J)+1,:)- |
1951 |
|
|
c & globalP2(6,P2C_linU(J) ,:) |
1952 |
|
|
c |
1953 |
|
|
c V_F(J,:,2) = globalP2(6,P2C_linU(J) ,:)+ |
1954 |
|
|
c & (diff(:)/3.)*float((WO3_linU(J))) |
1955 |
|
|
c & *DEPDEP_F_EasternB(:) |
1956 |
|
|
cgm---------------------------- |
1957 |
|
|
ENDDO |
1958 |
|
|
|
1959 |
|
|
|
1960 |
|
|
8765 CONTINUE |
1961 |
|
|
c=============== END INTERPOLAZIONI x CHILD ==================== |
1962 |
|
|
|
1963 |
|
|
RETURN |
1964 |
|
|
END |
1965 |
|
|
|
1966 |
|
|
|
1967 |
|
|
|
1968 |
|
|
|
1969 |
|
|
|
1970 |
|
|
|
1971 |
|
|
|
1972 |
|
|
|
1973 |
|
|
|
1974 |
|
|
|
1975 |
|
|
c================================================================ |
1976 |
|
|
SUBROUTINE BLINT(x1,x2,x3,x4,y1,y2,y3,y4,f1,f2,f3,f4,x,y,f) |
1977 |
|
|
c================================================================ |
1978 |
|
|
C |
1979 |
|
|
C Bilinear interpolation subroutine. |
1980 |
|
|
C (Xi,Yi,fi) = data grid & values surounding model point (x,y) |
1981 |
|
|
C f = interpolated value at the model grid point. |
1982 |
|
|
IMPLICIT NONE |
1983 |
|
|
real*4 a1,a2,a3,a4 |
1984 |
|
|
real*4 b1,b2,b3,b4 |
1985 |
|
|
real*4 x1,x2,x3,x4 |
1986 |
|
|
real*4 y1,y2,y3,y4 |
1987 |
|
|
real*4 f1,f2,f3,f4 |
1988 |
|
|
real*4 x,y,A,B,C,t,f,s |
1989 |
|
|
C |
1990 |
|
|
a1=x1-x2+x3-x4 |
1991 |
|
|
a2=-x1+x4 |
1992 |
|
|
a3=-x1+x2 |
1993 |
|
|
a4=x1-x |
1994 |
|
|
b1=y1-y2+y3-y4 |
1995 |
|
|
b2=-y1+y4 |
1996 |
|
|
b3=-y1+y2 |
1997 |
|
|
b4=y1-y |
1998 |
|
|
A=a3*b1-a1*b3 |
1999 |
|
|
B=b2*a3+b1*a4-a1*b4-a2*b3 |
2000 |
|
|
C=-a2*b4+a4*b2 |
2001 |
|
|
if(ABS(A*C).gt.0.002*B**2) then |
2002 |
|
|
t=(-B-sqrt(B*B-4.*A*C))/(2.*A) |
2003 |
|
|
else |
2004 |
|
|
t=C/ABS(B) |
2005 |
|
|
endif |
2006 |
|
|
10 CONTINUE |
2007 |
|
|
A=a2*b1-a1*b2 |
2008 |
|
|
B=b3*a2+b1*a4-a1*b4-a3*b2 |
2009 |
|
|
C=-a3*b4+a4*b3 |
2010 |
|
|
if(ABS(A*C).gt.0.002*B**2) then |
2011 |
|
|
s=(-B+sqrt(B*B-4.*A*C))/(2.*A) |
2012 |
|
|
else |
2013 |
|
|
s=-C/ABS(B) |
2014 |
|
|
endif |
2015 |
|
|
20 CONTINUE |
2016 |
|
|
f=f1*(1.-t)*(1.-s)+f2*t*(1.-s)+f3*s*t+f4*(1.-t)*s |
2017 |
|
|
return |
2018 |
|
|
end |