| 1 |
cnh |
1.1 |
C $Header: /u/u0/gcmpack/MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F,v 1.3 2001/10/30 23:11:51 jmc Exp $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "CPP_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
SUBROUTINE MOM_VI_HDISSIP( |
| 7 |
|
|
I bi,bj,k, |
| 8 |
|
|
I hDiv,vort3,hFacZ,dStar,zStar, |
| 9 |
|
|
O uDissip,vDissip, |
| 10 |
|
|
I myThid) |
| 11 |
|
|
IMPLICIT NONE |
| 12 |
|
|
C |
| 13 |
|
|
C Calculate horizontal dissipation terms |
| 14 |
|
|
C [del^2 - del^4] (u,v) |
| 15 |
|
|
C |
| 16 |
|
|
|
| 17 |
|
|
C == Global variables == |
| 18 |
|
|
#include "SIZE.h" |
| 19 |
|
|
#include "GRID.h" |
| 20 |
|
|
#include "EEPARAMS.h" |
| 21 |
|
|
#include "PARAMS.h" |
| 22 |
|
|
|
| 23 |
|
|
C == Routine arguments == |
| 24 |
|
|
INTEGER bi,bj,k |
| 25 |
|
|
_RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 26 |
|
|
_RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 27 |
|
|
_RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 28 |
|
|
_RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 29 |
|
|
_RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 30 |
|
|
_RL uDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 31 |
|
|
_RL vDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 32 |
|
|
INTEGER myThid |
| 33 |
|
|
|
| 34 |
|
|
C == Local variables == |
| 35 |
|
|
INTEGER I,J |
| 36 |
|
|
_RL Zip,Zij,Zpj,Dim,Dij,Dmj,uD2,vD2,uD4,vD4 |
| 37 |
|
|
|
| 38 |
|
|
C - Laplacian and bi-harmonic terms |
| 39 |
|
|
DO j=2-Oly,sNy+Oly-1 |
| 40 |
|
|
DO i=2-Olx,sNx+Olx-1 |
| 41 |
|
|
|
| 42 |
|
|
c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*hDiv( i ,j-1) |
| 43 |
|
|
c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*hDiv( i , j ) |
| 44 |
|
|
c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*hDiv(i-1, j ) |
| 45 |
|
|
c Dim=dyF( i ,j-1,bi,bj)* hDiv( i ,j-1) |
| 46 |
|
|
c Dij=dyF( i , j ,bi,bj)* hDiv( i , j ) |
| 47 |
|
|
c Dmj=dyF(i-1, j ,bi,bj)* hDiv(i-1, j ) |
| 48 |
|
|
Dim= hDiv( i ,j-1) |
| 49 |
|
|
Dij= hDiv( i , j ) |
| 50 |
|
|
Dmj= hDiv(i-1, j ) |
| 51 |
|
|
|
| 52 |
|
|
c Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*vort3( i ,j+1) |
| 53 |
|
|
c Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*vort3( i , j ) |
| 54 |
|
|
c Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*vort3(i+1, j ) |
| 55 |
|
|
Zip= hFacZ( i ,j+1)*vort3( i ,j+1) |
| 56 |
|
|
Zij= hFacZ( i , j )*vort3( i , j ) |
| 57 |
|
|
Zpj= hFacZ(i+1, j )*vort3(i+1, j ) |
| 58 |
|
|
|
| 59 |
|
|
c uD2 = recip_rAw(i,j,bi,bj)*( |
| 60 |
|
|
c & recip_hFacW(i,j,k,bi,bj)*viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 61 |
|
|
c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) ) |
| 62 |
|
|
c uD2 = recip_rAw(i,j,bi,bj)*( |
| 63 |
|
|
c & viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 64 |
|
|
c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) ) |
| 65 |
|
|
uD2 = viscAh*( |
| 66 |
|
|
& cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj) |
| 67 |
|
|
& -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij )*recip_DYG(i,j,bi,bj) ) |
| 68 |
|
|
|
| 69 |
|
|
c vD2 = recip_rAs(i,j,bi,bj)*( |
| 70 |
|
|
c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 71 |
|
|
c & +recip_hFacS(i,j,k,bi,bj)*viscAh*( Dij-Dim ) ) |
| 72 |
|
|
c vD2 = recip_rAs(i,j,bi,bj)*( |
| 73 |
|
|
c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 74 |
|
|
c & + viscAh*( Dij-Dim ) ) |
| 75 |
|
|
vD2 = viscAh*( |
| 76 |
|
|
& recip_hFacS(i,j,k,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj) |
| 77 |
|
|
& *cosFacV(j,bi,bj) |
| 78 |
|
|
& +( Dij-Dim )*recip_DYC(i,j,bi,bj) ) |
| 79 |
|
|
|
| 80 |
|
|
c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*dStar( i ,j-1) |
| 81 |
|
|
c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*dStar( i , j ) |
| 82 |
|
|
c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*dStar(i-1, j ) |
| 83 |
|
|
Dim=dyF( i ,j-1,bi,bj)* dStar( i ,j-1) |
| 84 |
|
|
Dij=dyF( i , j ,bi,bj)* dStar( i , j ) |
| 85 |
|
|
Dmj=dyF(i-1, j ,bi,bj)* dStar(i-1, j ) |
| 86 |
|
|
|
| 87 |
|
|
Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*zStar( i ,j+1) |
| 88 |
|
|
Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*zStar( i , j ) |
| 89 |
|
|
Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*zStar(i+1, j ) |
| 90 |
|
|
|
| 91 |
|
|
c uD4 = recip_rAw(i,j,bi,bj)*( |
| 92 |
|
|
c & recip_hFacW(i,j,k,bi,bj)*viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 93 |
|
|
c & -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) ) |
| 94 |
|
|
uD4 = recip_rAw(i,j,bi,bj)*( |
| 95 |
|
|
& viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 96 |
|
|
& -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) ) |
| 97 |
|
|
|
| 98 |
|
|
c vD4 = recip_rAs(i,j,bi,bj)*( |
| 99 |
|
|
c & recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 100 |
|
|
c & +recip_hFacS(i,j,k,bi,bj)*viscA4*( Dij-Dim ) ) |
| 101 |
|
|
vD4 = recip_rAs(i,j,bi,bj)*( |
| 102 |
|
|
& recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 103 |
|
|
& + viscA4*( Dij-Dim ) ) |
| 104 |
|
|
|
| 105 |
|
|
uDissip(i,j) = uD2 - uD4 |
| 106 |
|
|
vDissip(i,j) = vD2 - vD4 |
| 107 |
|
|
|
| 108 |
|
|
ENDDO |
| 109 |
|
|
ENDDO |
| 110 |
|
|
|
| 111 |
|
|
RETURN |
| 112 |
|
|
END |