| 1 |
cnh |
1.1 |
C $Header: /u/u0/gcmpack/MITgcm/pkg/mom_fluxform/mom_v_sidedrag.F,v 1.3 2001/09/26 19:05:21 adcroft Exp $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "CPP_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
CBOP |
| 7 |
|
|
C !ROUTINE: MOM_V_SIDEDRAG |
| 8 |
|
|
|
| 9 |
|
|
C !INTERFACE: ========================================================== |
| 10 |
|
|
SUBROUTINE MOM_V_SIDEDRAG( |
| 11 |
|
|
I bi,bj,k, |
| 12 |
|
|
I vFld, del2v, hFacZ, |
| 13 |
|
|
O vDragTerms, |
| 14 |
|
|
I myThid) |
| 15 |
|
|
|
| 16 |
|
|
C !DESCRIPTION: |
| 17 |
|
|
C Calculates the drag terms due to the no-slip condition on viscous stresses: |
| 18 |
|
|
C \begin{equation*} |
| 19 |
|
|
C G^v_{drag} = - \frac{2}{\Delta x_v} (A_h v - A_4 \nabla^2 v) |
| 20 |
|
|
C \end{equation*} |
| 21 |
|
|
|
| 22 |
|
|
C !USES: =============================================================== |
| 23 |
|
|
IMPLICIT NONE |
| 24 |
|
|
#include "SIZE.h" |
| 25 |
|
|
#include "EEPARAMS.h" |
| 26 |
|
|
#include "PARAMS.h" |
| 27 |
|
|
#include "GRID.h" |
| 28 |
|
|
|
| 29 |
|
|
C !INPUT PARAMETERS: =================================================== |
| 30 |
|
|
C bi,bj :: tile indices |
| 31 |
|
|
C k :: vertical level |
| 32 |
|
|
C uvld :: meridional flow |
| 33 |
|
|
C del2v :: Laplacian of meridional flow |
| 34 |
|
|
C hFacZ :: fractional open water at vorticity points |
| 35 |
|
|
C myThid :: thread number |
| 36 |
|
|
INTEGER bi,bj,k |
| 37 |
|
|
_RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 38 |
|
|
_RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 39 |
|
|
_RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 40 |
|
|
INTEGER myThid |
| 41 |
|
|
|
| 42 |
|
|
C !OUTPUT PARAMETERS: ================================================== |
| 43 |
|
|
C vDragTerms :: drag term |
| 44 |
|
|
_RL vDragTerms(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 45 |
|
|
|
| 46 |
|
|
C !LOCAL VARIABLES: ==================================================== |
| 47 |
|
|
C i,j :: loop indices |
| 48 |
|
|
C hFacZClosedE :: fractional open water to east |
| 49 |
|
|
C hFacZClosedW :: fractional open water to west |
| 50 |
|
|
INTEGER I,J |
| 51 |
|
|
_RS hFacZClosedE,hFacZClosedW |
| 52 |
|
|
_RS gridScalingA4 |
| 53 |
cnh |
1.2 |
_RS gridScalingAh |
| 54 |
cnh |
1.1 |
CEOP |
| 55 |
|
|
|
| 56 |
|
|
C - Laplacian and bi-harmonic terms |
| 57 |
|
|
DO j=1-Oly,sNy+Oly-1 |
| 58 |
|
|
DO i=1-Olx,sNx+Olx-1 |
| 59 |
|
|
hFacZClosedW = _hFacS(i,j,k,bi,bj) - hFacZ(i,j) |
| 60 |
|
|
hFacZClosedE = _hFacS(i,j,k,bi,bj) - hFacZ(i+1,j) |
| 61 |
|
|
gridScalingA4 = (_dxV(i,j,bi,bj)**4)/(5000.**4) ! Really should split this loop for a more precise formulation |
| 62 |
cnh |
1.2 |
gridScalingAh = (_dxV(i,j,bi,bj)**2)/(5000.**2) ! Really should split this loop for a more precise formulation |
| 63 |
cnh |
1.1 |
vDragTerms(i,j) = |
| 64 |
|
|
& -_recip_hFacS(i,j,k,bi,bj) |
| 65 |
|
|
& *recip_drF(k)*recip_rAs(i,j,bi,bj) |
| 66 |
|
|
& *( hFacZClosedW*_dyU( i ,j,bi,bj) |
| 67 |
|
|
& *_recip_dxV( i ,j,bi,bj) |
| 68 |
|
|
& +hFacZClosedE*_dyU(i+1,j,bi,bj) |
| 69 |
|
|
& *_recip_dxV(i+1,j,bi,bj) ) |
| 70 |
|
|
& *drF(k)*2.*( |
| 71 |
|
|
& viscAh*vFld(i,j)*cosFacV(J,bi,bj) |
| 72 |
cnh |
1.2 |
& *gridScalingAh |
| 73 |
cnh |
1.1 |
& -viscA4*del2v(i,j)*cosFacV(J,bi,bj) |
| 74 |
cnh |
1.2 |
& *gridScalingA4 |
| 75 |
cnh |
1.1 |
#ifdef COSINEMETH_III |
| 76 |
|
|
& -viscA4*del2v(i,j)*sqcosFacV(J,bi,bj) |
| 77 |
|
|
#else |
| 78 |
|
|
& -viscA4*del2v(i,j)*cosFacV(J,bi,bj) |
| 79 |
|
|
#endif |
| 80 |
|
|
& ) |
| 81 |
|
|
ENDDO |
| 82 |
|
|
ENDDO |
| 83 |
|
|
|
| 84 |
|
|
RETURN |
| 85 |
|
|
END |