1 |
C $Header: /u/u0/gcmpack/MITgcm/model/src/external_forcing.F,v 1.19 2003/06/19 15:00:45 heimbach Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "CPP_OPTIONS.h" |
5 |
#ifdef ALLOW_OBCS |
6 |
# include "OBCS_OPTIONS.h" |
7 |
#endif |
8 |
|
9 |
CBOP |
10 |
C !ROUTINE: EXTERNAL_FORCING_U |
11 |
C !INTERFACE: |
12 |
SUBROUTINE EXTERNAL_FORCING_U( |
13 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
14 |
I myCurrentTime,myThid) |
15 |
C !DESCRIPTION: \bv |
16 |
C *==========================================================* |
17 |
C | S/R EXTERNAL_FORCING_U |
18 |
C | o Contains problem specific forcing for zonal velocity. |
19 |
C *==========================================================* |
20 |
C | Adds terms to gU for forcing by external sources |
21 |
C | e.g. wind stress, bottom friction etc.................. |
22 |
C *==========================================================* |
23 |
C \ev |
24 |
|
25 |
C !USES: |
26 |
IMPLICIT NONE |
27 |
C == Global data == |
28 |
#include "SIZE.h" |
29 |
#include "EEPARAMS.h" |
30 |
#include "PARAMS.h" |
31 |
#include "GRID.h" |
32 |
#include "DYNVARS.h" |
33 |
#include "FFIELDS.h" |
34 |
|
35 |
C !INPUT/OUTPUT PARAMETERS: |
36 |
C == Routine arguments == |
37 |
C iMin - Working range of tile for applying forcing. |
38 |
C iMax |
39 |
C jMin |
40 |
C jMax |
41 |
C kLev |
42 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
43 |
_RL myCurrentTime |
44 |
INTEGER myThid |
45 |
|
46 |
C !LOCAL VARIABLES: |
47 |
C == Local variables == |
48 |
C Loop counters |
49 |
INTEGER I, J |
50 |
C number of surface interface layer |
51 |
INTEGER kSurface |
52 |
C Cheap sponge layer |
53 |
_RS recip_tauSp(5) |
54 |
INTEGER spWidth |
55 |
_RS curRecipTau |
56 |
INTEGER jFromNBndy, jFromSBndy, |
57 |
& jNorthBndy, jSouthBndy, jG |
58 |
CEOP |
59 |
|
60 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
61 |
kSurface = Nr |
62 |
else |
63 |
kSurface = 1 |
64 |
endif |
65 |
|
66 |
C-- Forcing term |
67 |
C Add windstress momentum impulse into the top-layer |
68 |
IF ( kLev .EQ. kSurface ) THEN |
69 |
DO j=jMin,jMax |
70 |
DO i=iMin,iMax |
71 |
gU(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
72 |
& +foFacMom*surfaceTendencyU(i,j,bi,bj) |
73 |
& *_maskW(i,j,kLev,bi,bj) |
74 |
ENDDO |
75 |
ENDDO |
76 |
ENDIF |
77 |
|
78 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
79 |
C Damping time scale decreases away from boundary so that |
80 |
C tau = 1 day, 5days, 10days, 20days, 60days |
81 |
spWidth = 5 |
82 |
recip_tauSp(1) = 1./(86400.*1. ) |
83 |
recip_tauSp(2) = 1./(86400.*5. ) |
84 |
recip_tauSp(3) = 1./(86400.*10.) |
85 |
recip_tauSp(4) = 1./(86400.*20.) |
86 |
recip_tauSp(5) = 1./(86400.*60.) |
87 |
jSouthBndy = 5 |
88 |
jNorthBndy = ny-5+1 |
89 |
DO j=1,sNy |
90 |
DO i=iMin,iMax |
91 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
92 |
jFromNBndy = jNorthBndy-jG |
93 |
jFromSBndy = jSouthBndy-jG |
94 |
curRecipTau=0. |
95 |
IF ( jFromNBndy .LE. 0 ) THEN |
96 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
97 |
ENDIF |
98 |
IF ( jFromSBndy .GE. 0 ) THEN |
99 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
100 |
ENDIF |
101 |
gu(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
102 |
& -curRecipTau*uVel(i,j,Klev,bi,bj) |
103 |
ENDDO |
104 |
ENDDO |
105 |
|
106 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
107 |
IF (useOBCS) THEN |
108 |
CALL OBCS_SPONGE_U( |
109 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
110 |
I myCurrentTime,myThid) |
111 |
ENDIF |
112 |
#endif |
113 |
|
114 |
RETURN |
115 |
END |
116 |
CBOP |
117 |
C !ROUTINE: EXTERNAL_FORCING_V |
118 |
C !INTERFACE: |
119 |
SUBROUTINE EXTERNAL_FORCING_V( |
120 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
121 |
I myCurrentTime,myThid) |
122 |
C !DESCRIPTION: \bv |
123 |
C *==========================================================* |
124 |
C | S/R EXTERNAL_FORCING_V |
125 |
C | o Contains problem specific forcing for merid velocity. |
126 |
C *==========================================================* |
127 |
C | Adds terms to gV for forcing by external sources |
128 |
C | e.g. wind stress, bottom friction etc.................. |
129 |
C *==========================================================* |
130 |
C \ev |
131 |
|
132 |
C !USES: |
133 |
IMPLICIT NONE |
134 |
C == Global data == |
135 |
#include "SIZE.h" |
136 |
#include "EEPARAMS.h" |
137 |
#include "PARAMS.h" |
138 |
#include "GRID.h" |
139 |
#include "DYNVARS.h" |
140 |
#include "FFIELDS.h" |
141 |
|
142 |
C !INPUT/OUTPUT PARAMETERS: |
143 |
C == Routine arguments == |
144 |
C iMin - Working range of tile for applying forcing. |
145 |
C iMax |
146 |
C jMin |
147 |
C jMax |
148 |
C kLev |
149 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
150 |
_RL myCurrentTime |
151 |
INTEGER myThid |
152 |
|
153 |
C !LOCAL VARIABLES: |
154 |
C == Local variables == |
155 |
C Loop counters |
156 |
INTEGER I, J |
157 |
C number of surface interface layer |
158 |
INTEGER kSurface |
159 |
|
160 |
C == Cheap sponge layer == |
161 |
_RS recip_tauSp(5) |
162 |
INTEGER spWidth |
163 |
_RS curRecipTau |
164 |
INTEGER jFromNBndy, jFromSBndy, |
165 |
& jNorthBndy, jSouthBndy, jG |
166 |
|
167 |
|
168 |
CEOP |
169 |
|
170 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
171 |
kSurface = Nr |
172 |
else |
173 |
kSurface = 1 |
174 |
endif |
175 |
|
176 |
C-- Forcing term |
177 |
C Add windstress momentum impulse into the top-layer |
178 |
IF ( kLev .EQ. kSurface ) THEN |
179 |
DO j=jMin,jMax |
180 |
DO i=iMin,iMax |
181 |
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
182 |
& +foFacMom*surfaceTendencyV(i,j,bi,bj) |
183 |
& *_maskS(i,j,kLev,bi,bj) |
184 |
ENDDO |
185 |
ENDDO |
186 |
ENDIF |
187 |
|
188 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
189 |
IF (useOBCS) THEN |
190 |
CALL OBCS_SPONGE_V( |
191 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
192 |
I myCurrentTime,myThid) |
193 |
ENDIF |
194 |
#endif |
195 |
|
196 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
197 |
C Damping time scale decreases away from boundary so that |
198 |
C tau = 1 day, 5days, 10days, 20days, 60days |
199 |
spWidth = 5 |
200 |
recip_tauSp(1) = 1./(86400.*1. ) |
201 |
recip_tauSp(2) = 1./(86400.*5. ) |
202 |
recip_tauSp(3) = 1./(86400.*10.) |
203 |
recip_tauSp(4) = 1./(86400.*20.) |
204 |
recip_tauSp(5) = 1./(86400.*60.) |
205 |
jSouthBndy = 5 |
206 |
jNorthBndy = ny-5+1 |
207 |
DO j=1,sNy |
208 |
DO i=iMin,iMax |
209 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
210 |
jFromNBndy = jNorthBndy-jG |
211 |
jFromSBndy = jSouthBndy-jG |
212 |
curRecipTau=0. |
213 |
IF ( jFromNBndy .LE. 0 ) THEN |
214 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
215 |
ENDIF |
216 |
IF ( jFromSBndy .GE. 0 ) THEN |
217 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
218 |
ENDIF |
219 |
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
220 |
& -curRecipTau*vVel(i,j,Klev,bi,bj) |
221 |
ENDDO |
222 |
ENDDO |
223 |
|
224 |
RETURN |
225 |
END |
226 |
CBOP |
227 |
C !ROUTINE: EXTERNAL_FORCING_T |
228 |
C !INTERFACE: |
229 |
SUBROUTINE EXTERNAL_FORCING_T( |
230 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
231 |
I myCurrentTime,myThid) |
232 |
C !DESCRIPTION: \bv |
233 |
C *==========================================================* |
234 |
C | S/R EXTERNAL_FORCING_T |
235 |
C | o Contains problem specific forcing for temperature. |
236 |
C *==========================================================* |
237 |
C | Adds terms to gT for forcing by external sources |
238 |
C | e.g. heat flux, climatalogical relaxation.............. |
239 |
C *==========================================================* |
240 |
C \ev |
241 |
|
242 |
C !USES: |
243 |
IMPLICIT NONE |
244 |
C == Global data == |
245 |
#include "SIZE.h" |
246 |
#include "EEPARAMS.h" |
247 |
#include "PARAMS.h" |
248 |
#include "GRID.h" |
249 |
#include "DYNVARS.h" |
250 |
#include "FFIELDS.h" |
251 |
#ifdef SHORTWAVE_HEATING |
252 |
integer two |
253 |
_RL minusone |
254 |
parameter (two=2,minusone=-1.) |
255 |
_RL swfracb(two) |
256 |
#endif |
257 |
|
258 |
C !INPUT/OUTPUT PARAMETERS: |
259 |
C == Routine arguments == |
260 |
C iMin - Working range of tile for applying forcing. |
261 |
C iMax |
262 |
C jMin |
263 |
C jMax |
264 |
C kLev |
265 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
266 |
_RL myCurrentTime |
267 |
INTEGER myThid |
268 |
CEndOfInterface |
269 |
|
270 |
C !LOCAL VARIABLES: |
271 |
C == Local variables == |
272 |
C Loop counters |
273 |
INTEGER I, J |
274 |
C number of surface interface layer |
275 |
INTEGER kSurface |
276 |
C Cheap sponge layer |
277 |
_RS recip_tauSp(5) |
278 |
INTEGER spWidth |
279 |
_RS curRecipTau |
280 |
INTEGER jFromNBndy, jFromSBndy, |
281 |
& jNorthBndy, jSouthBndy, jG |
282 |
|
283 |
CEOP |
284 |
|
285 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
286 |
kSurface = Nr |
287 |
else |
288 |
kSurface = 1 |
289 |
endif |
290 |
|
291 |
C-- Forcing term |
292 |
C Add heat in top-layer |
293 |
IF ( kLev .EQ. kSurface ) THEN |
294 |
DO j=jMin,jMax |
295 |
DO i=iMin,iMax |
296 |
gT(i,j,kLev,bi,bj)=gT(i,j,kLev,bi,bj) |
297 |
& +maskC(i,j,kLev,bi,bj)*surfaceTendencyT(i,j,bi,bj) |
298 |
ENDDO |
299 |
ENDDO |
300 |
ENDIF |
301 |
|
302 |
C-- Forcing term |
303 |
C Add heat in top-layer ( 90 day climatalogical average relaxation ) |
304 |
IF ( kLev .EQ. kSurface ) THEN |
305 |
curRecipTau=1./(86400.*90.) |
306 |
DO j=jMin,jMax |
307 |
DO i=iMin,iMax |
308 |
gT(i,j,kLev,bi,bj)=gT(i,j,kLev,bi,bj) |
309 |
& +maskC(i,j,kLev,bi,bj)*( |
310 |
& -curRecipTau*(theta(i,j,Klev,bi,bj)-thetaRef(i,j,kLev,bi,bj)) |
311 |
& ) |
312 |
ENDDO |
313 |
ENDDO |
314 |
ENDIF |
315 |
|
316 |
#ifdef SHORTWAVE_HEATING |
317 |
C Penetrating SW radiation |
318 |
swfracb(1)=abs(rF(klev)) |
319 |
swfracb(2)=abs(rF(klev+1)) |
320 |
call SWFRAC( |
321 |
I two,minusone, |
322 |
I myCurrentTime,myThid, |
323 |
U swfracb) |
324 |
DO j=jMin,jMax |
325 |
DO i=iMin,iMax |
326 |
gT(i,j,klev,bi,bj) = gT(i,j,klev,bi,bj) |
327 |
& -maskC(i,j,klev,bi,bj)*Qsw(i,j,bi,bj)*(swfracb(1)-swfracb(2)) |
328 |
& *recip_Cp*recip_rhoConst*recip_drF(klev) |
329 |
ENDDO |
330 |
ENDDO |
331 |
#endif |
332 |
|
333 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
334 |
IF (useOBCS) THEN |
335 |
CALL OBCS_SPONGE_T( |
336 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
337 |
I myCurrentTime,myThid) |
338 |
ENDIF |
339 |
#endif |
340 |
|
341 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
342 |
C Damping time scale decreases away from boundary so that |
343 |
C tau = 1 day, 5days, 10days, 20days, 60days |
344 |
spWidth = 5 |
345 |
recip_tauSp(1) = 1./(86400.*1. ) |
346 |
recip_tauSp(2) = 1./(86400.*5. ) |
347 |
recip_tauSp(3) = 1./(86400.*10.) |
348 |
recip_tauSp(4) = 1./(86400.*20.) |
349 |
recip_tauSp(5) = 1./(86400.*60.) |
350 |
jSouthBndy = 5 |
351 |
jNorthBndy = ny-5+1 |
352 |
DO j=1,sNy |
353 |
DO i=iMin,iMax |
354 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
355 |
jFromNBndy = jNorthBndy-jG |
356 |
jFromSBndy = jSouthBndy-jG |
357 |
curRecipTau=0. |
358 |
IF ( jFromNBndy .LE. 0 ) THEN |
359 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
360 |
ENDIF |
361 |
IF ( jFromSBndy .GE. 0 ) THEN |
362 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
363 |
ENDIF |
364 |
gT(i,j,kLev,bi,bj) = gT(i,j,kLev,bi,bj) |
365 |
& -curRecipTau*(theta(i,j,Klev,bi,bj)-thetaRef(i,j,kLev,bi,bj)) |
366 |
C & *0.0000D0 |
367 |
ENDDO |
368 |
ENDDO |
369 |
|
370 |
|
371 |
RETURN |
372 |
END |
373 |
CBOP |
374 |
C !ROUTINE: EXTERNAL_FORCING_S |
375 |
C !INTERFACE: |
376 |
SUBROUTINE EXTERNAL_FORCING_S( |
377 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
378 |
I myCurrentTime,myThid) |
379 |
|
380 |
C !DESCRIPTION: \bv |
381 |
C *==========================================================* |
382 |
C | S/R EXTERNAL_FORCING_S |
383 |
C | o Contains problem specific forcing for merid velocity. |
384 |
C *==========================================================* |
385 |
C | Adds terms to gS for forcing by external sources |
386 |
C | e.g. fresh-water flux, climatalogical relaxation....... |
387 |
C *==========================================================* |
388 |
C \ev |
389 |
|
390 |
C !USES: |
391 |
IMPLICIT NONE |
392 |
C == Global data == |
393 |
#include "SIZE.h" |
394 |
#include "EEPARAMS.h" |
395 |
#include "PARAMS.h" |
396 |
#include "GRID.h" |
397 |
#include "DYNVARS.h" |
398 |
#include "FFIELDS.h" |
399 |
|
400 |
C !INPUT/OUTPUT PARAMETERS: |
401 |
C == Routine arguments == |
402 |
C iMin - Working range of tile for applying forcing. |
403 |
C iMax |
404 |
C jMin |
405 |
C jMax |
406 |
C kLev |
407 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
408 |
_RL myCurrentTime |
409 |
INTEGER myThid |
410 |
|
411 |
C !LOCAL VARIABLES: |
412 |
C == Local variables == |
413 |
C Loop counters |
414 |
INTEGER I, J |
415 |
C number of surface interface layer |
416 |
INTEGER kSurface |
417 |
C Cheap sponge layer |
418 |
_RS recip_tauSp(5) |
419 |
INTEGER spWidth |
420 |
_RS curRecipTau |
421 |
INTEGER jFromNBndy, jFromSBndy, |
422 |
& jNorthBndy, jSouthBndy, jG |
423 |
|
424 |
CEOP |
425 |
|
426 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
427 |
kSurface = Nr |
428 |
else |
429 |
kSurface = 1 |
430 |
endif |
431 |
|
432 |
|
433 |
C-- Forcing term |
434 |
C Add fresh-water in top-layer |
435 |
IF ( kLev .EQ. kSurface ) THEN |
436 |
DO j=jMin,jMax |
437 |
DO i=iMin,iMax |
438 |
gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) |
439 |
& +maskC(i,j,kLev,bi,bj)*surfaceTendencyS(i,j,bi,bj) |
440 |
ENDDO |
441 |
ENDDO |
442 |
ENDIF |
443 |
|
444 |
C-- Forcing term |
445 |
C Add freshening/salt in top-layer ( 90 day climatalogical average relaxation ) |
446 |
IF ( kLev .EQ. kSurface ) THEN |
447 |
curRecipTau=1./(86400.*90.) |
448 |
DO j=jMin,jMax |
449 |
DO i=iMin,iMax |
450 |
gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) |
451 |
& +maskC(i,j,kLev,bi,bj)*( |
452 |
& -curRecipTau*(salt(i,j,Klev,bi,bj)-saltRef(i,j,kLev,bi,bj)) |
453 |
& ) |
454 |
ENDDO |
455 |
ENDDO |
456 |
ENDIF |
457 |
|
458 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
459 |
IF (useOBCS) THEN |
460 |
CALL OBCS_SPONGE_S( |
461 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
462 |
I myCurrentTime,myThid) |
463 |
ENDIF |
464 |
#endif |
465 |
|
466 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
467 |
C Damping time scale decreases away from boundary so that |
468 |
C tau = 1 day, 5days, 10days, 20days, 60days |
469 |
spWidth = 5 |
470 |
recip_tauSp(1) = 1./(86400.*1. ) |
471 |
recip_tauSp(2) = 1./(86400.*5. ) |
472 |
recip_tauSp(3) = 1./(86400.*10.) |
473 |
recip_tauSp(4) = 1./(86400.*20.) |
474 |
recip_tauSp(5) = 1./(86400.*60.) |
475 |
jSouthBndy = 5 |
476 |
jNorthBndy = ny-5+1 |
477 |
DO j=1,sNy |
478 |
DO i=iMin,iMax |
479 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
480 |
jFromNBndy = jNorthBndy-jG |
481 |
jFromSBndy = jSouthBndy-jG |
482 |
curRecipTau=0. |
483 |
IF ( jFromNBndy .LE. 0 ) THEN |
484 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
485 |
ENDIF |
486 |
IF ( jFromSBndy .GE. 0 ) THEN |
487 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
488 |
ENDIF |
489 |
gS(i,j,kLev,bi,bj) = gS(i,j,kLev,bi,bj) |
490 |
& -curRecipTau*(salt(i,j,Klev,bi,bj)-saltRef(i,j,kLev,bi,bj)) |
491 |
C & *0.0000D0 |
492 |
ENDDO |
493 |
ENDDO |
494 |
|
495 |
RETURN |
496 |
END |