| 1 |
C $Header: /u/u0/gcmpack/MITgcm/model/src/external_forcing.F,v 1.19 2003/06/19 15:00:45 heimbach Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "CPP_OPTIONS.h" |
| 5 |
#ifdef ALLOW_OBCS |
| 6 |
# include "OBCS_OPTIONS.h" |
| 7 |
#endif |
| 8 |
|
| 9 |
CBOP |
| 10 |
C !ROUTINE: EXTERNAL_FORCING_U |
| 11 |
C !INTERFACE: |
| 12 |
SUBROUTINE EXTERNAL_FORCING_U( |
| 13 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 14 |
I myCurrentTime,myThid) |
| 15 |
C !DESCRIPTION: \bv |
| 16 |
C *==========================================================* |
| 17 |
C | S/R EXTERNAL_FORCING_U |
| 18 |
C | o Contains problem specific forcing for zonal velocity. |
| 19 |
C *==========================================================* |
| 20 |
C | Adds terms to gU for forcing by external sources |
| 21 |
C | e.g. wind stress, bottom friction etc.................. |
| 22 |
C *==========================================================* |
| 23 |
C \ev |
| 24 |
|
| 25 |
C !USES: |
| 26 |
IMPLICIT NONE |
| 27 |
C == Global data == |
| 28 |
#include "SIZE.h" |
| 29 |
#include "EEPARAMS.h" |
| 30 |
#include "PARAMS.h" |
| 31 |
#include "GRID.h" |
| 32 |
#include "DYNVARS.h" |
| 33 |
#include "FFIELDS.h" |
| 34 |
|
| 35 |
C !INPUT/OUTPUT PARAMETERS: |
| 36 |
C == Routine arguments == |
| 37 |
C iMin - Working range of tile for applying forcing. |
| 38 |
C iMax |
| 39 |
C jMin |
| 40 |
C jMax |
| 41 |
C kLev |
| 42 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
| 43 |
_RL myCurrentTime |
| 44 |
INTEGER myThid |
| 45 |
|
| 46 |
C !LOCAL VARIABLES: |
| 47 |
C == Local variables == |
| 48 |
C Loop counters |
| 49 |
INTEGER I, J |
| 50 |
C number of surface interface layer |
| 51 |
INTEGER kSurface |
| 52 |
C Cheap sponge layer |
| 53 |
_RS recip_tauSp(5) |
| 54 |
INTEGER spWidth |
| 55 |
_RS curRecipTau |
| 56 |
INTEGER jFromNBndy, jFromSBndy, |
| 57 |
& jNorthBndy, jSouthBndy, jG |
| 58 |
CEOP |
| 59 |
|
| 60 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
| 61 |
kSurface = Nr |
| 62 |
else |
| 63 |
kSurface = 1 |
| 64 |
endif |
| 65 |
|
| 66 |
C-- Forcing term |
| 67 |
C Add windstress momentum impulse into the top-layer |
| 68 |
IF ( kLev .EQ. kSurface ) THEN |
| 69 |
DO j=jMin,jMax |
| 70 |
DO i=iMin,iMax |
| 71 |
gU(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
| 72 |
& +foFacMom*surfaceTendencyU(i,j,bi,bj) |
| 73 |
& *_maskW(i,j,kLev,bi,bj) |
| 74 |
ENDDO |
| 75 |
ENDDO |
| 76 |
ENDIF |
| 77 |
|
| 78 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
| 79 |
C Damping time scale decreases away from boundary so that |
| 80 |
C tau = 1 day, 5days, 10days, 20days, 60days |
| 81 |
spWidth = 5 |
| 82 |
recip_tauSp(1) = 1./(86400.*1. ) |
| 83 |
recip_tauSp(2) = 1./(86400.*5. ) |
| 84 |
recip_tauSp(3) = 1./(86400.*10.) |
| 85 |
recip_tauSp(4) = 1./(86400.*20.) |
| 86 |
recip_tauSp(5) = 1./(86400.*60.) |
| 87 |
jSouthBndy = 5 |
| 88 |
jNorthBndy = ny-5+1 |
| 89 |
DO j=1,sNy |
| 90 |
DO i=iMin,iMax |
| 91 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
| 92 |
jFromNBndy = jNorthBndy-jG |
| 93 |
jFromSBndy = jSouthBndy-jG |
| 94 |
curRecipTau=0. |
| 95 |
IF ( jFromNBndy .LE. 0 ) THEN |
| 96 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
| 97 |
ENDIF |
| 98 |
IF ( jFromSBndy .GE. 0 ) THEN |
| 99 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
| 100 |
ENDIF |
| 101 |
gu(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
| 102 |
& -curRecipTau*uVel(i,j,Klev,bi,bj) |
| 103 |
ENDDO |
| 104 |
ENDDO |
| 105 |
|
| 106 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
| 107 |
IF (useOBCS) THEN |
| 108 |
CALL OBCS_SPONGE_U( |
| 109 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 110 |
I myCurrentTime,myThid) |
| 111 |
ENDIF |
| 112 |
#endif |
| 113 |
|
| 114 |
RETURN |
| 115 |
END |
| 116 |
CBOP |
| 117 |
C !ROUTINE: EXTERNAL_FORCING_V |
| 118 |
C !INTERFACE: |
| 119 |
SUBROUTINE EXTERNAL_FORCING_V( |
| 120 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 121 |
I myCurrentTime,myThid) |
| 122 |
C !DESCRIPTION: \bv |
| 123 |
C *==========================================================* |
| 124 |
C | S/R EXTERNAL_FORCING_V |
| 125 |
C | o Contains problem specific forcing for merid velocity. |
| 126 |
C *==========================================================* |
| 127 |
C | Adds terms to gV for forcing by external sources |
| 128 |
C | e.g. wind stress, bottom friction etc.................. |
| 129 |
C *==========================================================* |
| 130 |
C \ev |
| 131 |
|
| 132 |
C !USES: |
| 133 |
IMPLICIT NONE |
| 134 |
C == Global data == |
| 135 |
#include "SIZE.h" |
| 136 |
#include "EEPARAMS.h" |
| 137 |
#include "PARAMS.h" |
| 138 |
#include "GRID.h" |
| 139 |
#include "DYNVARS.h" |
| 140 |
#include "FFIELDS.h" |
| 141 |
|
| 142 |
C !INPUT/OUTPUT PARAMETERS: |
| 143 |
C == Routine arguments == |
| 144 |
C iMin - Working range of tile for applying forcing. |
| 145 |
C iMax |
| 146 |
C jMin |
| 147 |
C jMax |
| 148 |
C kLev |
| 149 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
| 150 |
_RL myCurrentTime |
| 151 |
INTEGER myThid |
| 152 |
|
| 153 |
C !LOCAL VARIABLES: |
| 154 |
C == Local variables == |
| 155 |
C Loop counters |
| 156 |
INTEGER I, J |
| 157 |
C number of surface interface layer |
| 158 |
INTEGER kSurface |
| 159 |
|
| 160 |
C == Cheap sponge layer == |
| 161 |
_RS recip_tauSp(5) |
| 162 |
INTEGER spWidth |
| 163 |
_RS curRecipTau |
| 164 |
INTEGER jFromNBndy, jFromSBndy, |
| 165 |
& jNorthBndy, jSouthBndy, jG |
| 166 |
|
| 167 |
|
| 168 |
CEOP |
| 169 |
|
| 170 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
| 171 |
kSurface = Nr |
| 172 |
else |
| 173 |
kSurface = 1 |
| 174 |
endif |
| 175 |
|
| 176 |
C-- Forcing term |
| 177 |
C Add windstress momentum impulse into the top-layer |
| 178 |
IF ( kLev .EQ. kSurface ) THEN |
| 179 |
DO j=jMin,jMax |
| 180 |
DO i=iMin,iMax |
| 181 |
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
| 182 |
& +foFacMom*surfaceTendencyV(i,j,bi,bj) |
| 183 |
& *_maskS(i,j,kLev,bi,bj) |
| 184 |
ENDDO |
| 185 |
ENDDO |
| 186 |
ENDIF |
| 187 |
|
| 188 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
| 189 |
IF (useOBCS) THEN |
| 190 |
CALL OBCS_SPONGE_V( |
| 191 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 192 |
I myCurrentTime,myThid) |
| 193 |
ENDIF |
| 194 |
#endif |
| 195 |
|
| 196 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
| 197 |
C Damping time scale decreases away from boundary so that |
| 198 |
C tau = 1 day, 5days, 10days, 20days, 60days |
| 199 |
spWidth = 5 |
| 200 |
recip_tauSp(1) = 1./(86400.*1. ) |
| 201 |
recip_tauSp(2) = 1./(86400.*5. ) |
| 202 |
recip_tauSp(3) = 1./(86400.*10.) |
| 203 |
recip_tauSp(4) = 1./(86400.*20.) |
| 204 |
recip_tauSp(5) = 1./(86400.*60.) |
| 205 |
jSouthBndy = 5 |
| 206 |
jNorthBndy = ny-5+1 |
| 207 |
DO j=1,sNy |
| 208 |
DO i=iMin,iMax |
| 209 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
| 210 |
jFromNBndy = jNorthBndy-jG |
| 211 |
jFromSBndy = jSouthBndy-jG |
| 212 |
curRecipTau=0. |
| 213 |
IF ( jFromNBndy .LE. 0 ) THEN |
| 214 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
| 215 |
ENDIF |
| 216 |
IF ( jFromSBndy .GE. 0 ) THEN |
| 217 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
| 218 |
ENDIF |
| 219 |
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
| 220 |
& -curRecipTau*vVel(i,j,Klev,bi,bj) |
| 221 |
ENDDO |
| 222 |
ENDDO |
| 223 |
|
| 224 |
RETURN |
| 225 |
END |
| 226 |
CBOP |
| 227 |
C !ROUTINE: EXTERNAL_FORCING_T |
| 228 |
C !INTERFACE: |
| 229 |
SUBROUTINE EXTERNAL_FORCING_T( |
| 230 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 231 |
I myCurrentTime,myThid) |
| 232 |
C !DESCRIPTION: \bv |
| 233 |
C *==========================================================* |
| 234 |
C | S/R EXTERNAL_FORCING_T |
| 235 |
C | o Contains problem specific forcing for temperature. |
| 236 |
C *==========================================================* |
| 237 |
C | Adds terms to gT for forcing by external sources |
| 238 |
C | e.g. heat flux, climatalogical relaxation.............. |
| 239 |
C *==========================================================* |
| 240 |
C \ev |
| 241 |
|
| 242 |
C !USES: |
| 243 |
IMPLICIT NONE |
| 244 |
C == Global data == |
| 245 |
#include "SIZE.h" |
| 246 |
#include "EEPARAMS.h" |
| 247 |
#include "PARAMS.h" |
| 248 |
#include "GRID.h" |
| 249 |
#include "DYNVARS.h" |
| 250 |
#include "FFIELDS.h" |
| 251 |
#ifdef SHORTWAVE_HEATING |
| 252 |
integer two |
| 253 |
_RL minusone |
| 254 |
parameter (two=2,minusone=-1.) |
| 255 |
_RL swfracb(two) |
| 256 |
#endif |
| 257 |
|
| 258 |
C !INPUT/OUTPUT PARAMETERS: |
| 259 |
C == Routine arguments == |
| 260 |
C iMin - Working range of tile for applying forcing. |
| 261 |
C iMax |
| 262 |
C jMin |
| 263 |
C jMax |
| 264 |
C kLev |
| 265 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
| 266 |
_RL myCurrentTime |
| 267 |
INTEGER myThid |
| 268 |
CEndOfInterface |
| 269 |
|
| 270 |
C !LOCAL VARIABLES: |
| 271 |
C == Local variables == |
| 272 |
C Loop counters |
| 273 |
INTEGER I, J |
| 274 |
C number of surface interface layer |
| 275 |
INTEGER kSurface |
| 276 |
C Cheap sponge layer |
| 277 |
_RS recip_tauSp(5) |
| 278 |
INTEGER spWidth |
| 279 |
_RS curRecipTau |
| 280 |
INTEGER jFromNBndy, jFromSBndy, |
| 281 |
& jNorthBndy, jSouthBndy, jG |
| 282 |
|
| 283 |
CEOP |
| 284 |
|
| 285 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
| 286 |
kSurface = Nr |
| 287 |
else |
| 288 |
kSurface = 1 |
| 289 |
endif |
| 290 |
|
| 291 |
C-- Forcing term |
| 292 |
C Add heat in top-layer |
| 293 |
IF ( kLev .EQ. kSurface ) THEN |
| 294 |
DO j=jMin,jMax |
| 295 |
DO i=iMin,iMax |
| 296 |
gT(i,j,kLev,bi,bj)=gT(i,j,kLev,bi,bj) |
| 297 |
& +maskC(i,j,kLev,bi,bj)*surfaceTendencyT(i,j,bi,bj) |
| 298 |
ENDDO |
| 299 |
ENDDO |
| 300 |
ENDIF |
| 301 |
|
| 302 |
C-- Forcing term |
| 303 |
C Add heat in top-layer ( 90 day climatalogical average relaxation ) |
| 304 |
IF ( kLev .EQ. kSurface ) THEN |
| 305 |
curRecipTau=1./(86400.*90.) |
| 306 |
DO j=jMin,jMax |
| 307 |
DO i=iMin,iMax |
| 308 |
gT(i,j,kLev,bi,bj)=gT(i,j,kLev,bi,bj) |
| 309 |
& +maskC(i,j,kLev,bi,bj)*( |
| 310 |
& -curRecipTau*(theta(i,j,Klev,bi,bj)-thetaRef(i,j,kLev,bi,bj)) |
| 311 |
& ) |
| 312 |
ENDDO |
| 313 |
ENDDO |
| 314 |
ENDIF |
| 315 |
|
| 316 |
#ifdef SHORTWAVE_HEATING |
| 317 |
C Penetrating SW radiation |
| 318 |
swfracb(1)=abs(rF(klev)) |
| 319 |
swfracb(2)=abs(rF(klev+1)) |
| 320 |
call SWFRAC( |
| 321 |
I two,minusone, |
| 322 |
I myCurrentTime,myThid, |
| 323 |
U swfracb) |
| 324 |
DO j=jMin,jMax |
| 325 |
DO i=iMin,iMax |
| 326 |
gT(i,j,klev,bi,bj) = gT(i,j,klev,bi,bj) |
| 327 |
& -maskC(i,j,klev,bi,bj)*Qsw(i,j,bi,bj)*(swfracb(1)-swfracb(2)) |
| 328 |
& *recip_Cp*recip_rhoConst*recip_drF(klev) |
| 329 |
ENDDO |
| 330 |
ENDDO |
| 331 |
#endif |
| 332 |
|
| 333 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
| 334 |
IF (useOBCS) THEN |
| 335 |
CALL OBCS_SPONGE_T( |
| 336 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 337 |
I myCurrentTime,myThid) |
| 338 |
ENDIF |
| 339 |
#endif |
| 340 |
|
| 341 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
| 342 |
C Damping time scale decreases away from boundary so that |
| 343 |
C tau = 1 day, 5days, 10days, 20days, 60days |
| 344 |
spWidth = 5 |
| 345 |
recip_tauSp(1) = 1./(86400.*1. ) |
| 346 |
recip_tauSp(2) = 1./(86400.*5. ) |
| 347 |
recip_tauSp(3) = 1./(86400.*10.) |
| 348 |
recip_tauSp(4) = 1./(86400.*20.) |
| 349 |
recip_tauSp(5) = 1./(86400.*60.) |
| 350 |
jSouthBndy = 5 |
| 351 |
jNorthBndy = ny-5+1 |
| 352 |
DO j=1,sNy |
| 353 |
DO i=iMin,iMax |
| 354 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
| 355 |
jFromNBndy = jNorthBndy-jG |
| 356 |
jFromSBndy = jSouthBndy-jG |
| 357 |
curRecipTau=0. |
| 358 |
IF ( jFromNBndy .LE. 0 ) THEN |
| 359 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
| 360 |
ENDIF |
| 361 |
IF ( jFromSBndy .GE. 0 ) THEN |
| 362 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
| 363 |
ENDIF |
| 364 |
gT(i,j,kLev,bi,bj) = gT(i,j,kLev,bi,bj) |
| 365 |
& -curRecipTau*(theta(i,j,Klev,bi,bj)-thetaRef(i,j,kLev,bi,bj)) |
| 366 |
C & *0.0000D0 |
| 367 |
ENDDO |
| 368 |
ENDDO |
| 369 |
|
| 370 |
|
| 371 |
RETURN |
| 372 |
END |
| 373 |
CBOP |
| 374 |
C !ROUTINE: EXTERNAL_FORCING_S |
| 375 |
C !INTERFACE: |
| 376 |
SUBROUTINE EXTERNAL_FORCING_S( |
| 377 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 378 |
I myCurrentTime,myThid) |
| 379 |
|
| 380 |
C !DESCRIPTION: \bv |
| 381 |
C *==========================================================* |
| 382 |
C | S/R EXTERNAL_FORCING_S |
| 383 |
C | o Contains problem specific forcing for merid velocity. |
| 384 |
C *==========================================================* |
| 385 |
C | Adds terms to gS for forcing by external sources |
| 386 |
C | e.g. fresh-water flux, climatalogical relaxation....... |
| 387 |
C *==========================================================* |
| 388 |
C \ev |
| 389 |
|
| 390 |
C !USES: |
| 391 |
IMPLICIT NONE |
| 392 |
C == Global data == |
| 393 |
#include "SIZE.h" |
| 394 |
#include "EEPARAMS.h" |
| 395 |
#include "PARAMS.h" |
| 396 |
#include "GRID.h" |
| 397 |
#include "DYNVARS.h" |
| 398 |
#include "FFIELDS.h" |
| 399 |
|
| 400 |
C !INPUT/OUTPUT PARAMETERS: |
| 401 |
C == Routine arguments == |
| 402 |
C iMin - Working range of tile for applying forcing. |
| 403 |
C iMax |
| 404 |
C jMin |
| 405 |
C jMax |
| 406 |
C kLev |
| 407 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
| 408 |
_RL myCurrentTime |
| 409 |
INTEGER myThid |
| 410 |
|
| 411 |
C !LOCAL VARIABLES: |
| 412 |
C == Local variables == |
| 413 |
C Loop counters |
| 414 |
INTEGER I, J |
| 415 |
C number of surface interface layer |
| 416 |
INTEGER kSurface |
| 417 |
C Cheap sponge layer |
| 418 |
_RS recip_tauSp(5) |
| 419 |
INTEGER spWidth |
| 420 |
_RS curRecipTau |
| 421 |
INTEGER jFromNBndy, jFromSBndy, |
| 422 |
& jNorthBndy, jSouthBndy, jG |
| 423 |
|
| 424 |
CEOP |
| 425 |
|
| 426 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
| 427 |
kSurface = Nr |
| 428 |
else |
| 429 |
kSurface = 1 |
| 430 |
endif |
| 431 |
|
| 432 |
|
| 433 |
C-- Forcing term |
| 434 |
C Add fresh-water in top-layer |
| 435 |
IF ( kLev .EQ. kSurface ) THEN |
| 436 |
DO j=jMin,jMax |
| 437 |
DO i=iMin,iMax |
| 438 |
gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) |
| 439 |
& +maskC(i,j,kLev,bi,bj)*surfaceTendencyS(i,j,bi,bj) |
| 440 |
ENDDO |
| 441 |
ENDDO |
| 442 |
ENDIF |
| 443 |
|
| 444 |
C-- Forcing term |
| 445 |
C Add freshening/salt in top-layer ( 90 day climatalogical average relaxation ) |
| 446 |
IF ( kLev .EQ. kSurface ) THEN |
| 447 |
curRecipTau=1./(86400.*90.) |
| 448 |
DO j=jMin,jMax |
| 449 |
DO i=iMin,iMax |
| 450 |
gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) |
| 451 |
& +maskC(i,j,kLev,bi,bj)*( |
| 452 |
& -curRecipTau*(salt(i,j,Klev,bi,bj)-saltRef(i,j,kLev,bi,bj)) |
| 453 |
& ) |
| 454 |
ENDDO |
| 455 |
ENDDO |
| 456 |
ENDIF |
| 457 |
|
| 458 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
| 459 |
IF (useOBCS) THEN |
| 460 |
CALL OBCS_SPONGE_S( |
| 461 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
| 462 |
I myCurrentTime,myThid) |
| 463 |
ENDIF |
| 464 |
#endif |
| 465 |
|
| 466 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
| 467 |
C Damping time scale decreases away from boundary so that |
| 468 |
C tau = 1 day, 5days, 10days, 20days, 60days |
| 469 |
spWidth = 5 |
| 470 |
recip_tauSp(1) = 1./(86400.*1. ) |
| 471 |
recip_tauSp(2) = 1./(86400.*5. ) |
| 472 |
recip_tauSp(3) = 1./(86400.*10.) |
| 473 |
recip_tauSp(4) = 1./(86400.*20.) |
| 474 |
recip_tauSp(5) = 1./(86400.*60.) |
| 475 |
jSouthBndy = 5 |
| 476 |
jNorthBndy = ny-5+1 |
| 477 |
DO j=1,sNy |
| 478 |
DO i=iMin,iMax |
| 479 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
| 480 |
jFromNBndy = jNorthBndy-jG |
| 481 |
jFromSBndy = jSouthBndy-jG |
| 482 |
curRecipTau=0. |
| 483 |
IF ( jFromNBndy .LE. 0 ) THEN |
| 484 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
| 485 |
ENDIF |
| 486 |
IF ( jFromSBndy .GE. 0 ) THEN |
| 487 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
| 488 |
ENDIF |
| 489 |
gS(i,j,kLev,bi,bj) = gS(i,j,kLev,bi,bj) |
| 490 |
& -curRecipTau*(salt(i,j,Klev,bi,bj)-saltRef(i,j,kLev,bi,bj)) |
| 491 |
C & *0.0000D0 |
| 492 |
ENDDO |
| 493 |
ENDDO |
| 494 |
|
| 495 |
RETURN |
| 496 |
END |