1 |
clear all |
2 |
|
3 |
new = 'input.shelfice'; |
4 |
input = 'input'; |
5 |
eostype = 'mdjwf'; |
6 |
|
7 |
nx = 45; |
8 |
ny = nx*18; |
9 |
nz = 23; |
10 |
nt = 12; |
11 |
|
12 |
load FMT |
13 |
load HN |
14 |
load ZN |
15 |
% $$$ hn = mit_readfield(fullfile(input,'bathy_llc_p90.bin'),[nx ny],fmt); |
16 |
% $$$ hnz = mit_readfield(fullfile(input,'shelfice_bath.bin'),[nx ny],fmt); |
17 |
% $$$ zn = mit_readfield(fullfile(input,'shelfice_topo.bin'),[nx ny],fmt); |
18 |
|
19 |
h = hn+hnz; |
20 |
mit_writefield(fullfile(new,'bathy_llc_p90.bin'),mdsiocompact(hn),fmt); |
21 |
mit_writefield(fullfile(new,'bathy_llc_p90.shice'),mdsiocompact(h),fmt); |
22 |
mit_writefield(fullfile(new,'shelfice_topo.bin'),mdsiocompact(zn),fmt); |
23 |
|
24 |
% create hydrographic fields |
25 |
levt = mit_readfield(fullfile(input,'lev_t.bin'),[nx ny nz nt],fmt); |
26 |
levs = mit_readfield(fullfile(input,'lev_s.bin'),[nx ny nz nt],fmt); |
27 |
is = find(zn~=0); |
28 |
[ix,iy] = find(zn~=0); |
29 |
[t,s] = shelfice_hydrography(ix,iy,is,levt,levs); |
30 |
mit_writefield(fullfile(new,'lev_t.shice'),mdsiocompact(t),fmt); |
31 |
mit_writefield(fullfile(new,'lev_s.shice'),mdsiocompact(s),fmt); |
32 |
|
33 |
% create hydrographic fields |
34 |
levt = mdsiocompact(mit_readfield(fullfile(input,'lev_t.init'),[nx ny nz],fmt),0); |
35 |
levs = mdsiocompact(mit_readfield(fullfile(input,'lev_s.init'),[nx ny nz],fmt),0); |
36 |
is = find(zn~=0); |
37 |
[ix,iy] = find(zn~=0); |
38 |
[t,s] = shelfice_hydrography(ix,iy,is,levt,levs); |
39 |
mit_writefield(fullfile(new,'lev_t.shice.init'),mdsiocompact(t),fmt); |
40 |
mit_writefield(fullfile(new,'lev_s.shice.init'),mdsiocompact(s),fmt); |
41 |
|
42 |
% create geopotential anomaly |
43 |
gravity = 9.81; |
44 |
rho0 = 1035; |
45 |
tol = 0; |
46 |
si2dbar = 1e-4; |
47 |
phiHydC = zeros(nz,length(ix)); |
48 |
phiHydF = zeros(nz+1,length(ix)); |
49 |
disp('compute geopotential anomaly') |
50 |
load VGRID |
51 |
for ks=1:length(ix) |
52 |
t0 = squeeze(mean(t(ix(ks),iy(ks),:,:),4)); |
53 |
s0 = squeeze(mean(s(ix(ks),iy(ks),:,:),4)); |
54 |
% compute potential anomaly exactly as in code |
55 |
% for that we need the correct density |
56 |
rho = []; |
57 |
p = -zc(:)*gravity*rho0*si2dbar; |
58 |
dp = p; |
59 |
tol1 = 1; |
60 |
tol2 = 2; |
61 |
kw = 0; |
62 |
while tol1 > tol |
63 |
kw = kw+1; |
64 |
if strcmp(eostype,'mdjwf') |
65 |
rho = [rho densmdjwf(s0,t0,p(:,end))]; |
66 |
else |
67 |
error(['unknown eostype: ' eostype]); |
68 |
end |
69 |
p = [p -zc(:).*rho(:,end)*gravity*si2dbar]; |
70 |
dp = p(:,end)-p(:,end-1); |
71 |
tol2 = tol1; |
72 |
tol1 = sqrt(sum(dp.^2)); |
73 |
if tol1==tol2; break; end; |
74 |
end |
75 |
% now intergrate |
76 |
drho = rho(:,end)-rho0; |
77 |
for k=1:nz |
78 |
drm = .5*dz(k); |
79 |
if k==1; drm = zf(k)-zc(k); end |
80 |
if k==nz; |
81 |
drp = zc(k)-zf(k+1); |
82 |
else |
83 |
drp = .5*dz(k+1); |
84 |
end |
85 |
phiHydC(k,ks)=phiHydF(k,ks) + drm*gravity*drho(k)/rho0; |
86 |
phiHydF(k+1,ks)=phiHydC(k,ks) +drp*gravity*drho(k)/rho0; |
87 |
end |
88 |
% find the appropriate level |
89 |
zloc = zn(is(ks)); |
90 |
kl = max(find(zloc < zf)); |
91 |
ph(ks) = phiHydF(kl,ks); |
92 |
end |
93 |
|
94 |
pload = 0*hn; |
95 |
for ks=1:length(ix) |
96 |
pload(ix(ks),iy(ks)) = -ph(ks)*rho0; |
97 |
end |
98 |
|
99 |
mit_writefield(fullfile(new,['pload.' eostype]),mdsiocompact(pload),fmt); |
100 |
|