1 |
clear all |
%clear all |
2 |
|
|
3 |
new = 'input.180x120x23_shelfice'; |
new = 'input.shelfice'; |
4 |
input = 'input.180x120x23'; |
input = 'input'; |
5 |
eostype = 'mdjwf'; |
eostype = 'mdjwf'; |
6 |
|
|
7 |
nx = 180; |
nx = 45; |
8 |
ny = 120; |
ny = nx*18; |
9 |
nz = 23; |
nz = 23; |
10 |
nt = 12; |
nt = 12; |
11 |
|
|
12 |
|
load MASKS |
13 |
|
hf = msk; |
14 |
load FMT |
load FMT |
15 |
hn = mit_readfield(fullfile(input,'bathymetry.bin'),[nx ny],fmt); |
load HN |
16 |
hnz = mit_readfield(fullfile(input,'shelfice_bath.bin'),[nx ny],fmt); |
load ZN |
17 |
zn = mit_readfield(fullfile(input,'shelfice_topo.bin'),[nx ny],fmt); |
% $$$ hn = mit_readfield(fullfile(input,'bathy_llc_p90.bin'),[nx ny],fmt); |
18 |
|
% $$$ hnz = mit_readfield(fullfile(input,'shelfice_bath.bin'),[nx ny],fmt); |
19 |
|
% $$$ zn = mit_readfield(fullfile(input,'shelfice_topo.bin'),[nx ny],fmt); |
20 |
|
|
21 |
h = hn+hnz; |
h = hn+hnz; |
22 |
mit_writefield(fullfile(new,'bathymetry.bin'),hn,fmt); |
mit_writefield(fullfile(new,'bathy_llc_p90.bin'),mdsiocompact(hn),fmt); |
23 |
mit_writefield(fullfile(new,'bathymetry.shice'),h,fmt); |
mit_writefield(fullfile(new,'bathy_llc_p90.shice'),mdsiocompact(h),fmt); |
24 |
mit_writefield(fullfile(new,'shelfice_topo.bin'),zn,fmt); |
mit_writefield(fullfile(new,'shelfice_topo.bin'),mdsiocompact(zn),fmt); |
25 |
|
|
26 |
% create hydrographic fields |
% create hydrographic fields |
27 |
levt = mit_readfield(fullfile(input,'lev_t.bin'),[nx ny nz nt],fmt); |
levt = mit_readfield(fullfile(input,'lev_t.bin'),[nx ny nz nt],fmt); |
29 |
is = find(zn~=0); |
is = find(zn~=0); |
30 |
[ix,iy] = find(zn~=0); |
[ix,iy] = find(zn~=0); |
31 |
[t,s] = shelfice_hydrography(ix,iy,is,levt,levs); |
[t,s] = shelfice_hydrography(ix,iy,is,levt,levs); |
32 |
mit_writefield(fullfile(new,'lev_t.shice'),t,fmt); |
mit_writefield(fullfile(new,'lev_t.shice'),mdsiocompact(t),fmt); |
33 |
mit_writefield(fullfile(new,'lev_s.shice'),s,fmt); |
mit_writefield(fullfile(new,'lev_s.shice'),mdsiocompact(s),fmt); |
34 |
|
|
35 |
|
% create hydrographic fields |
36 |
|
levt = mdsiocompact(mit_readfield(fullfile(input,'lev_t.init'),[nx ny nz],fmt),0); |
37 |
|
levs = mdsiocompact(mit_readfield(fullfile(input,'lev_s.init'),[nx ny nz],fmt),0); |
38 |
|
is = find(zn~=0); |
39 |
|
[ix,iy] = find(zn~=0); |
40 |
|
[t,s] = shelfice_hydrography(ix,iy,is,levt,levs); |
41 |
|
mit_writefield(fullfile(new,'lev_t.shice.init'),mdsiocompact(t),fmt); |
42 |
|
mit_writefield(fullfile(new,'lev_s.shice.init'),mdsiocompact(s),fmt); |
43 |
|
|
44 |
% create geopotential anomaly |
% create geopotential anomaly |
45 |
gravity = 9.81; |
gravity = 9.81; |
46 |
rho0 = 1035; |
rho0 = 1035; |
47 |
tol = 0; |
tol0 = 0; |
48 |
si2dbar = 1e-4; |
si2dbar = 1e-4; |
|
phiHydC = zeros(nz,length(ix)); |
|
|
phiHydF = zeros(nz+1,length(ix)); |
|
49 |
disp('compute geopotential anomaly') |
disp('compute geopotential anomaly') |
50 |
load VGRID |
load VGRID |
51 |
|
zg = zf; |
52 |
|
dzm = abs([zg(1)-zc(1) .5*diff(zc)]); |
53 |
|
dzp = abs([.5*diff(zc) zc(end)-zg(end)]); |
54 |
|
hFacMin = 0.1; |
55 |
for ks=1:length(ix) |
for ks=1:length(ix) |
56 |
t0 = squeeze(mean(t(ix(ks),iy(ks),:,:),4)); |
t0 = squeeze(mean(t(ix(ks),iy(ks),:,:),4)); |
57 |
s0 = squeeze(mean(s(ix(ks),iy(ks),:,:),4)); |
s0 = squeeze(mean(s(ix(ks),iy(ks),:,:),4)); |
58 |
% compute potential anomaly exactly as in code |
% compute potential anomaly exactly as in code |
59 |
% for that we need the correct density |
% for that we need the correct density |
60 |
rho = []; |
rho = []; |
61 |
p = -zc(:)*gravity*rho0*si2dbar; |
p = abs(zc(:))*gravity*rho0*si2dbar; |
62 |
dp = p; |
dp = p; |
63 |
tol1 = 1; |
tol1 = 1; |
64 |
tol2 = 2; |
tol2 = 2; |
65 |
kw = 0; |
kp = 0; |
66 |
while tol1 > tol |
while tol1 > tol0 |
67 |
kw = kw+1; |
kp = kp+1; |
68 |
|
p0 = p; |
69 |
if strcmp(eostype,'mdjwf') |
if strcmp(eostype,'mdjwf') |
70 |
rho = [rho densmdjwf(s0,t0,p(:,end))]; |
drho = densmdjwf(s0,t0,p(:,end))-rho0; |
71 |
else |
else |
72 |
error(['unknown eostype: ' eostype]); |
error(['unknown eostype: ' eostype]); |
73 |
end |
end |
74 |
p = [p -zc(:).*rho(:,end)*gravity*si2dbar]; |
phiHydF(1) = 0; |
75 |
|
for k=1:length(zc(:)); |
76 |
|
phiHydC(k) = phiHydF(k) + dzm(k)*gravity*drho(k)/rho0; |
77 |
|
phiHydF(k+1) = phiHydC(k) + dzp(k)*gravity*drho(k)/rho0; |
78 |
|
end |
79 |
|
p = [p (gravity*rho0*abs(zc(:)) + phiHydC(:)*rho0)/gravity/rho0]; |
80 |
dp = p(:,end)-p(:,end-1); |
dp = p(:,end)-p(:,end-1); |
81 |
tol2 = tol1; |
tol2 = tol1; |
82 |
tol1 = sqrt(sum(dp.^2)); |
tol1 = sqrt(sum(dp.^2)); |
83 |
if tol1==tol2; break; end; |
if tol1==tol2; break; end; |
84 |
end |
end |
|
% now intergrate |
|
|
drho = rho(:,end)-rho0; |
|
|
for k=1:nz |
|
|
drm = .5*dz(k); |
|
|
if k==1; drm = zf(k)-zc(k); end |
|
|
if k==nz; |
|
|
drp = zc(k)-zf(k+1); |
|
|
else |
|
|
drp = .5*dz(k+1); |
|
|
end |
|
|
phiHydC(k,ks)=phiHydF(k,ks) + drm*gravity*drho(k)/rho0; |
|
|
phiHydF(k+1,ks)=phiHydC(k,ks) +drp*gravity*drho(k)/rho0; |
|
|
end |
|
85 |
% find the appropriate level |
% find the appropriate level |
86 |
zloc = zn(is(ks)); |
zloc = zn(is(ks)); |
87 |
kl = max(find(zloc < zf)); |
kl0 = max(find(abs(zg-hFacMin*zg)<=abs(zloc))); |
88 |
ph(ks) = phiHydF(kl,ks); |
hfloc= squeeze(hf(ix(ks),iy(ks),:)); |
89 |
|
kl = min(find(hfloc>0)); |
90 |
|
if isempty(kl); |
91 |
|
kl = 0; |
92 |
|
ph(ks) = 0; |
93 |
|
else |
94 |
|
ph(ks) = phiHydF(kl); |
95 |
|
end |
96 |
|
disp(sprintf('kl0 = %u, kl = %u',kl0,kl)); |
97 |
end |
end |
98 |
|
|
99 |
pload = zeros(nx,ny); |
pload = 0*hn; |
100 |
for ks=1:length(ix) |
for ks=1:length(ix) |
101 |
pload(ix(ks),iy(ks)) = -ph(ks)*rho0; |
pload(ix(ks),iy(ks)) = -ph(ks)*rho0; |
102 |
end |
end |
103 |
|
|
104 |
mit_writefield(fullfile(new,['pload.' eostype]),pload,fmt); |
mit_writefield(fullfile(new,['pload.' eostype]),mdsiocompact(pload),fmt); |
105 |
|
|