| 1 |
%clear all |
| 2 |
|
| 3 |
new = 'input.shelfice'; |
| 4 |
input = 'input'; |
| 5 |
eostype = 'mdjwf'; |
| 6 |
|
| 7 |
nx = 45; |
| 8 |
ny = nx*18; |
| 9 |
nz = 23; |
| 10 |
nt = 12; |
| 11 |
|
| 12 |
load MASKS |
| 13 |
hf = msk; |
| 14 |
load FMT |
| 15 |
load HN |
| 16 |
load ZN |
| 17 |
% $$$ hn = mit_readfield(fullfile(input,'bathy_llc_p90.bin'),[nx ny],fmt); |
| 18 |
% $$$ hnz = mit_readfield(fullfile(input,'shelfice_bath.bin'),[nx ny],fmt); |
| 19 |
% $$$ zn = mit_readfield(fullfile(input,'shelfice_topo.bin'),[nx ny],fmt); |
| 20 |
|
| 21 |
h = hn+hnz; |
| 22 |
mit_writefield(fullfile(new,'bathy_llc_p90.bin'),mdsiocompact(hn),fmt); |
| 23 |
mit_writefield(fullfile(new,'bathy_llc_p90.shice'),mdsiocompact(h),fmt); |
| 24 |
mit_writefield(fullfile(new,'shelfice_topo.bin'),mdsiocompact(zn),fmt); |
| 25 |
|
| 26 |
% create hydrographic fields |
| 27 |
levt = mit_readfield(fullfile(input,'lev_t.bin'),[nx ny nz nt],fmt); |
| 28 |
levs = mit_readfield(fullfile(input,'lev_s.bin'),[nx ny nz nt],fmt); |
| 29 |
is = find(zn~=0); |
| 30 |
[ix,iy] = find(zn~=0); |
| 31 |
[t,s] = shelfice_hydrography(ix,iy,is,levt,levs); |
| 32 |
mit_writefield(fullfile(new,'lev_t.shice'),mdsiocompact(t),fmt); |
| 33 |
mit_writefield(fullfile(new,'lev_s.shice'),mdsiocompact(s),fmt); |
| 34 |
|
| 35 |
% create hydrographic fields |
| 36 |
levt = mdsiocompact(mit_readfield(fullfile(input,'lev_t.init'),[nx ny nz],fmt),0); |
| 37 |
levs = mdsiocompact(mit_readfield(fullfile(input,'lev_s.init'),[nx ny nz],fmt),0); |
| 38 |
is = find(zn~=0); |
| 39 |
[ix,iy] = find(zn~=0); |
| 40 |
[t,s] = shelfice_hydrography(ix,iy,is,levt,levs); |
| 41 |
mit_writefield(fullfile(new,'lev_t.shice.init'),mdsiocompact(t),fmt); |
| 42 |
mit_writefield(fullfile(new,'lev_s.shice.init'),mdsiocompact(s),fmt); |
| 43 |
|
| 44 |
% create geopotential anomaly |
| 45 |
gravity = 9.81; |
| 46 |
rho0 = 1035; |
| 47 |
tol0 = 0; |
| 48 |
si2dbar = 1e-4; |
| 49 |
disp('compute geopotential anomaly') |
| 50 |
load VGRID |
| 51 |
zg = zf; |
| 52 |
dzm = abs([zg(1)-zc(1) .5*diff(zc)]); |
| 53 |
dzp = abs([.5*diff(zc) zc(end)-zg(end)]); |
| 54 |
hFacMin = 0.1; |
| 55 |
for ks=1:length(ix) |
| 56 |
t0 = squeeze(mean(t(ix(ks),iy(ks),:,:),4)); |
| 57 |
s0 = squeeze(mean(s(ix(ks),iy(ks),:,:),4)); |
| 58 |
% compute potential anomaly exactly as in code |
| 59 |
% for that we need the correct density |
| 60 |
rho = []; |
| 61 |
p = abs(zc(:))*gravity*rho0*si2dbar; |
| 62 |
dp = p; |
| 63 |
tol1 = 1; |
| 64 |
tol2 = 2; |
| 65 |
kp = 0; |
| 66 |
while tol1 > tol0 |
| 67 |
kp = kp+1; |
| 68 |
p0 = p; |
| 69 |
if strcmp(eostype,'mdjwf') |
| 70 |
drho = densmdjwf(s0,t0,p(:,end))-rho0; |
| 71 |
else |
| 72 |
error(['unknown eostype: ' eostype]); |
| 73 |
end |
| 74 |
phiHydF(1) = 0; |
| 75 |
for k=1:length(zc(:)); |
| 76 |
phiHydC(k) = phiHydF(k) + dzm(k)*gravity*drho(k)/rho0; |
| 77 |
phiHydF(k+1) = phiHydC(k) + dzp(k)*gravity*drho(k)/rho0; |
| 78 |
end |
| 79 |
p = [p (gravity*rho0*abs(zc(:)) + phiHydC(:)*rho0)/gravity/rho0]; |
| 80 |
dp = p(:,end)-p(:,end-1); |
| 81 |
tol2 = tol1; |
| 82 |
tol1 = sqrt(sum(dp.^2)); |
| 83 |
if tol1==tol2; break; end; |
| 84 |
end |
| 85 |
% find the appropriate level |
| 86 |
zloc = zn(is(ks)); |
| 87 |
kl0 = max(find(abs(zg-hFacMin*zg)<=abs(zloc))); |
| 88 |
hfloc= squeeze(hf(ix(ks),iy(ks),:)); |
| 89 |
kl = min(find(hfloc>0)); |
| 90 |
if isempty(kl); |
| 91 |
kl = 0; |
| 92 |
ph(ks) = 0; |
| 93 |
else |
| 94 |
ph(ks) = phiHydF(kl); |
| 95 |
end |
| 96 |
disp(sprintf('kl0 = %u, kl = %u',kl0,kl)); |
| 97 |
end |
| 98 |
|
| 99 |
pload = 0*hn; |
| 100 |
for ks=1:length(ix) |
| 101 |
pload(ix(ks),iy(ks)) = -ph(ks)*rho0; |
| 102 |
end |
| 103 |
|
| 104 |
mit_writefield(fullfile(new,['pload.' eostype]),mdsiocompact(pload),fmt); |
| 105 |
|