| 1 |
clear all |
%clear all |
| 2 |
|
|
| 3 |
new = 'input.shelfice'; |
new = 'input.shelfice'; |
| 4 |
input = 'input'; |
input = 'input'; |
| 9 |
nz = 23; |
nz = 23; |
| 10 |
nt = 12; |
nt = 12; |
| 11 |
|
|
| 12 |
|
load MASKS |
| 13 |
|
hf = msk; |
| 14 |
load FMT |
load FMT |
| 15 |
load HN |
load HN |
| 16 |
load ZN |
load ZN |
| 44 |
% create geopotential anomaly |
% create geopotential anomaly |
| 45 |
gravity = 9.81; |
gravity = 9.81; |
| 46 |
rho0 = 1035; |
rho0 = 1035; |
| 47 |
tol = 0; |
tol0 = 0; |
| 48 |
si2dbar = 1e-4; |
si2dbar = 1e-4; |
|
phiHydC = zeros(nz,length(ix)); |
|
|
phiHydF = zeros(nz+1,length(ix)); |
|
| 49 |
disp('compute geopotential anomaly') |
disp('compute geopotential anomaly') |
| 50 |
load VGRID |
load VGRID |
| 51 |
|
zg = zf; |
| 52 |
|
dzm = abs([zg(1)-zc(1) .5*diff(zc)]); |
| 53 |
|
dzp = abs([.5*diff(zc) zc(end)-zg(end)]); |
| 54 |
|
hFacMin = 0.1; |
| 55 |
for ks=1:length(ix) |
for ks=1:length(ix) |
| 56 |
t0 = squeeze(mean(t(ix(ks),iy(ks),:,:),4)); |
t0 = squeeze(mean(t(ix(ks),iy(ks),:,:),4)); |
| 57 |
s0 = squeeze(mean(s(ix(ks),iy(ks),:,:),4)); |
s0 = squeeze(mean(s(ix(ks),iy(ks),:,:),4)); |
| 58 |
% compute potential anomaly exactly as in code |
% compute potential anomaly exactly as in code |
| 59 |
% for that we need the correct density |
% for that we need the correct density |
| 60 |
rho = []; |
rho = []; |
| 61 |
p = -zc(:)*gravity*rho0*si2dbar; |
p = abs(zc(:))*gravity*rho0*si2dbar; |
| 62 |
dp = p; |
dp = p; |
| 63 |
tol1 = 1; |
tol1 = 1; |
| 64 |
tol2 = 2; |
tol2 = 2; |
| 65 |
kw = 0; |
kp = 0; |
| 66 |
while tol1 > tol |
while tol1 > tol0 |
| 67 |
kw = kw+1; |
kp = kp+1; |
| 68 |
|
p0 = p; |
| 69 |
if strcmp(eostype,'mdjwf') |
if strcmp(eostype,'mdjwf') |
| 70 |
rho = [rho densmdjwf(s0,t0,p(:,end))]; |
drho = densmdjwf(s0,t0,p(:,end))-rho0; |
| 71 |
else |
else |
| 72 |
error(['unknown eostype: ' eostype]); |
error(['unknown eostype: ' eostype]); |
| 73 |
end |
end |
| 74 |
p = [p -zc(:).*rho(:,end)*gravity*si2dbar]; |
phiHydF(1) = 0; |
| 75 |
|
for k=1:length(zc(:)); |
| 76 |
|
phiHydC(k) = phiHydF(k) + dzm(k)*gravity*drho(k)/rho0; |
| 77 |
|
phiHydF(k+1) = phiHydC(k) + dzp(k)*gravity*drho(k)/rho0; |
| 78 |
|
end |
| 79 |
|
p = [p (gravity*rho0*abs(zc(:)) + phiHydC(:)*rho0)/gravity/rho0]; |
| 80 |
dp = p(:,end)-p(:,end-1); |
dp = p(:,end)-p(:,end-1); |
| 81 |
tol2 = tol1; |
tol2 = tol1; |
| 82 |
tol1 = sqrt(sum(dp.^2)); |
tol1 = sqrt(sum(dp.^2)); |
| 83 |
if tol1==tol2; break; end; |
if tol1==tol2; break; end; |
| 84 |
end |
end |
|
% now intergrate |
|
|
drho = rho(:,end)-rho0; |
|
|
for k=1:nz |
|
|
drm = .5*dz(k); |
|
|
if k==1; drm = zf(k)-zc(k); end |
|
|
if k==nz; |
|
|
drp = zc(k)-zf(k+1); |
|
|
else |
|
|
drp = .5*dz(k+1); |
|
|
end |
|
|
phiHydC(k,ks)=phiHydF(k,ks) + drm*gravity*drho(k)/rho0; |
|
|
phiHydF(k+1,ks)=phiHydC(k,ks) +drp*gravity*drho(k)/rho0; |
|
|
end |
|
| 85 |
% find the appropriate level |
% find the appropriate level |
| 86 |
zloc = zn(is(ks)); |
zloc = zn(is(ks)); |
| 87 |
kl = max(find(zloc < zf)); |
kl0 = max(find(abs(zg-hFacMin*zg)<=abs(zloc))); |
| 88 |
ph(ks) = phiHydF(kl,ks); |
hfloc= squeeze(hf(ix(ks),iy(ks),:)); |
| 89 |
|
kl = min(find(hfloc>0)); |
| 90 |
|
if isempty(kl); |
| 91 |
|
kl = 0; |
| 92 |
|
ph(ks) = 0; |
| 93 |
|
else |
| 94 |
|
ph(ks) = phiHydF(kl); |
| 95 |
|
end |
| 96 |
|
disp(sprintf('kl0 = %u, kl = %u',kl0,kl)); |
| 97 |
end |
end |
| 98 |
|
|
| 99 |
pload = 0*hn; |
pload = 0*hn; |