1 |
mlosch |
1.1 |
clear all |
2 |
|
|
|
3 |
|
|
new = 'input.180x120x23_shelfice'; |
4 |
|
|
input = 'input.180x120x23'; |
5 |
|
|
eostype = 'mdjwf'; |
6 |
|
|
|
7 |
|
|
nx = 180; |
8 |
|
|
ny = 120; |
9 |
|
|
nz = 23; |
10 |
|
|
nt = 12; |
11 |
|
|
|
12 |
|
|
load FMT |
13 |
|
|
hn = mit_readfield(fullfile(input,'bathymetry.bin'),[nx ny],fmt); |
14 |
|
|
hnz = mit_readfield(fullfile(input,'shelfice_bath.bin'),[nx ny],fmt); |
15 |
|
|
zn = mit_readfield(fullfile(input,'shelfice_topo.bin'),[nx ny],fmt); |
16 |
|
|
|
17 |
|
|
h = hn+hnz; |
18 |
|
|
mit_writefield(fullfile(new,'bathymetry.bin'),hn,fmt); |
19 |
|
|
mit_writefield(fullfile(new,'bathymetry.shice'),h,fmt); |
20 |
|
|
mit_writefield(fullfile(new,'shelfice_topo.bin'),zn,fmt); |
21 |
|
|
|
22 |
|
|
% create hydrographic fields |
23 |
|
|
levt = mit_readfield(fullfile(input,'lev_t.bin'),[nx ny nz nt],fmt); |
24 |
|
|
levs = mit_readfield(fullfile(input,'lev_s.bin'),[nx ny nz nt],fmt); |
25 |
|
|
is = find(zn~=0); |
26 |
|
|
[ix,iy] = find(zn~=0); |
27 |
|
|
[t,s] = shelfice_hydrography(ix,iy,is,levt,levs); |
28 |
|
|
mit_writefield(fullfile(new,'lev_t.shice'),t,fmt); |
29 |
|
|
mit_writefield(fullfile(new,'lev_s.shice'),s,fmt); |
30 |
|
|
|
31 |
|
|
% create geopotential anomaly |
32 |
|
|
gravity = 9.81; |
33 |
|
|
rho0 = 1035; |
34 |
|
|
tol = 0; |
35 |
|
|
si2dbar = 1e-4; |
36 |
|
|
phiHydC = zeros(nz,length(ix)); |
37 |
|
|
phiHydF = zeros(nz+1,length(ix)); |
38 |
|
|
disp('compute geopotential anomaly') |
39 |
|
|
load VGRID |
40 |
|
|
for ks=1:length(ix) |
41 |
|
|
t0 = squeeze(mean(t(ix(ks),iy(ks),:,:),4)); |
42 |
|
|
s0 = squeeze(mean(s(ix(ks),iy(ks),:,:),4)); |
43 |
|
|
% compute potential anomaly exactly as in code |
44 |
|
|
% for that we need the correct density |
45 |
|
|
rho = []; |
46 |
|
|
p = -zc(:)*gravity*rho0*si2dbar; |
47 |
|
|
dp = p; |
48 |
|
|
tol1 = 1; |
49 |
|
|
tol2 = 2; |
50 |
|
|
kw = 0; |
51 |
|
|
while tol1 > tol |
52 |
|
|
kw = kw+1; |
53 |
|
|
if strcmp(eostype,'mdjwf') |
54 |
|
|
rho = [rho densmdjwf(s0,t0,p(:,end))]; |
55 |
|
|
else |
56 |
|
|
error(['unknown eostype: ' eostype]); |
57 |
|
|
end |
58 |
|
|
p = [p -zc(:).*rho(:,end)*gravity*si2dbar]; |
59 |
|
|
dp = p(:,end)-p(:,end-1); |
60 |
|
|
tol2 = tol1; |
61 |
|
|
tol1 = sqrt(sum(dp.^2)); |
62 |
|
|
if tol1==tol2; break; end; |
63 |
|
|
end |
64 |
|
|
% now intergrate |
65 |
|
|
drho = rho(:,end)-rho0; |
66 |
|
|
for k=1:nz |
67 |
|
|
drm = .5*dz(k); |
68 |
|
|
if k==1; drm = zf(k)-zc(k); end |
69 |
|
|
if k==nz; |
70 |
|
|
drp = zc(k)-zf(k+1); |
71 |
|
|
else |
72 |
|
|
drp = .5*dz(k+1); |
73 |
|
|
end |
74 |
|
|
phiHydC(k,ks)=phiHydF(k,ks) + drm*gravity*drho(k)/rho0; |
75 |
|
|
phiHydF(k+1,ks)=phiHydC(k,ks) +drp*gravity*drho(k)/rho0; |
76 |
|
|
end |
77 |
|
|
% find the appropriate level |
78 |
|
|
zloc = zn(is(ks)); |
79 |
|
|
kl = max(find(zloc < zf)); |
80 |
|
|
ph(ks) = phiHydF(kl,ks); |
81 |
|
|
end |
82 |
|
|
|
83 |
|
|
pload = zeros(nx,ny); |
84 |
|
|
for ks=1:length(ix) |
85 |
|
|
pload(ix(ks),iy(ks)) = -ph(ks)*rho0; |
86 |
|
|
end |
87 |
|
|
|
88 |
|
|
mit_writefield(fullfile(new,['pload.' eostype]),pload,fmt); |
89 |
|
|
|