1 |
C $Header: $ |
2 |
C $Name: $ |
3 |
C $Id: ini_rhs.F,v 1.4 2009/11/17 02:41:49 cwolfe Exp $ |
4 |
#include "CPP_OPTIONS.h" |
5 |
CStartOfInterface |
6 |
SUBROUTINE INI_RHS( |
7 |
I cg2d_b, |
8 |
O cg2d_x1, |
9 |
O cg2d_x2, |
10 |
I myThid) |
11 |
C /==========================================================\ |
12 |
C | SUBROUTINE INI_RHS | |
13 |
C | o Initialise 2d conjugate gradient solver right-hand side| |
14 |
C |==========================================================| |
15 |
C | Set a source term b in Ax = b (1) | |
16 |
C | We solve (1) with neumann bc's whic means that b must | |
17 |
C | integrate out to zero over the whole domain. If b does | |
18 |
C | not integrate out to zero then the solution will | |
19 |
C | converge, but to a non-zero final residual. | |
20 |
C \==========================================================/ |
21 |
IMPLICIT NONE |
22 |
|
23 |
C === Global variables === |
24 |
#include "SIZE.h" |
25 |
#include "EEPARAMS.h" |
26 |
#include "PARAMS.h" |
27 |
#include "CG2D.h" |
28 |
|
29 |
C === Routine arguments === |
30 |
CEndOFInterface |
31 |
|
32 |
C === Local variables === |
33 |
C iG, jG - Global coordinate index |
34 |
C faceArea - Temporary used to hold cell face areas. |
35 |
C I,J,K - Loop counters |
36 |
C iMid, jMid - Global coords of mid-point of model domain |
37 |
INTEGER I, J |
38 |
INTEGER bi, bj |
39 |
INTEGER iG, jG |
40 |
INTEGER iMid, jMid |
41 |
INTEGER iQ, i3Q |
42 |
INTEGER myThid |
43 |
_RL cg2d_b(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
44 |
_RL cg2d_x1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
45 |
_RL cg2d_x2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
46 |
_RL bsum, bsumTile(nSx,nSy) |
47 |
_RL port_rand |
48 |
INTEGER numPoints |
49 |
|
50 |
C-- Get model global domain mid-point |
51 |
iMid = Nx/2 |
52 |
iQ = Nx/4 |
53 |
i3Q = 3*Nx/4 |
54 |
jMid = Ny/2 |
55 |
|
56 |
C-- Set dummy source term for elliptic equation |
57 |
DO bj=myByLo(myThid),myByHi(myThid) |
58 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
59 |
DO J=1-OLy,sNy+OLy |
60 |
DO I=1-OLx,sNx+OLx |
61 |
cg2d_b(I,J,bi,bj) = 0. _d 0 |
62 |
cg2d_x1(I,J,bi,bj) = 0. _d 0 |
63 |
cg2d_x2(I,J,bi,bj) = 0. _d 0 |
64 |
ENDDO |
65 |
ENDDO |
66 |
ENDDO |
67 |
ENDDO |
68 |
|
69 |
C bsum = 0. _d 0 |
70 |
C numPoints = NX*NY |
71 |
DO bj=myByLo(myThid),myByHi(myThid) |
72 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
73 |
C bsumTile(bi,bj) = 0. _d 0 |
74 |
DO J=1,sNy |
75 |
DO I=1,sNx |
76 |
cg2d_b(I,J,bi,bj) = 0. _d 0 |
77 |
C-- Set +/-1 source function in middle of domain. |
78 |
iG = myXGlobalLo + sNx*(bi-1) + I - 1 |
79 |
jG = myYGlobalLo + sNy*(bj-1) + J - 1 |
80 |
C write(*,'(i2,2i3,2i5,2x,a,2i5)')mythid,bi,bj,i,j,'iG, jG =',iG,jG |
81 |
IF ( iG .EQ. Nx/2 .AND. jG .EQ. Ny/2 ) |
82 |
& cg2d_b(I,J,bi,bj) = 1._d 0 |
83 |
IF ( iG .EQ. Nx/2+1 .AND. jG .EQ. Ny/2 ) |
84 |
& cg2d_b(I,J,bi,bj) = -1. _d 0 |
85 |
C cg2d_b(I,J,bi,bj) = port_rand(-1.) |
86 |
C bsumTile(bi,bj) = bsumTile(bi,bj) + cg2d_b(I,J,bi,bj) |
87 |
ENDDO |
88 |
ENDDO |
89 |
ENDDO |
90 |
ENDDO |
91 |
|
92 |
C CALL GLOBAL_SUM_TILE_RL(bsumTile,bsum,myThid) |
93 |
|
94 |
! DO bj=myByLo(myThid),myByHi(myThid) |
95 |
! DO bi=myBxLo(myThid),myBxHi(myThid) |
96 |
! DO J=1,sNy |
97 |
! DO I=1,sNx |
98 |
! cg2d_b(I,J,bi,bj) = cg2d_b(I,J,bi,bj) - bsum/numPoints |
99 |
! ENDDO |
100 |
! ENDDO |
101 |
! ENDDO |
102 |
! ENDDO |
103 |
|
104 |
C-- Update overlap regions synchronously |
105 |
CALL EXCH_XY_RL(cg2d_b,myThid) |
106 |
CALL EXCH_XY_RL(cg2d_x1,myThid) |
107 |
CALL EXCH_XY_RL(cg2d_x2,myThid) |
108 |
C |
109 |
RETURN |
110 |
END |
111 |
|