1 |
dimitri |
1.1 |
// |
2 |
|
|
// MPI IO for MITgcm |
3 |
|
|
// |
4 |
|
|
|
5 |
|
|
#include <stdio.h> |
6 |
|
|
#include <string.h> |
7 |
|
|
#include <assert.h> |
8 |
|
|
#include <mpi.h> |
9 |
|
|
|
10 |
|
|
|
11 |
|
|
// lat-lon-cap decomposition has 13 square facets |
12 |
|
|
// facetElements1D is typically 1080, or 2160, or 4320 |
13 |
|
|
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
////////////////////////////////////////////////////////////// |
17 |
|
|
// These values filled in during "initSizesAndTypes()" |
18 |
|
|
MPI_Datatype fieldElementalTypeMPI; |
19 |
|
|
size_t sizeofFieldElementalType; |
20 |
|
|
|
21 |
|
|
long int tileSizeX; |
22 |
|
|
long int tileSizeY; |
23 |
|
|
long int xGhosts; |
24 |
|
|
long int yGhosts; |
25 |
|
|
|
26 |
|
|
long int facetElements1D; |
27 |
|
|
long int facetBytes2D; |
28 |
|
|
long int facetTilesInX; |
29 |
|
|
long int facetTilesInY; |
30 |
|
|
long int tilesPerFacet; |
31 |
|
|
|
32 |
|
|
long int fieldZlevelSizeInBytes; |
33 |
|
|
long int tileZlevelSizeInBytes; |
34 |
|
|
long int ghostedTileZlevelSizeInBytes; |
35 |
|
|
|
36 |
|
|
// The first 7 facets all use the same style of layout; here we call |
37 |
|
|
// them "section1". The last 6 facets share a layout style, but this |
38 |
|
|
// style is different than section1. Here, we call them "section2". |
39 |
|
|
MPI_Datatype section1_ioShape2D, section2_ioShape2D; |
40 |
|
|
MPI_Datatype tileShape2D, ghostedTileShape2D; |
41 |
|
|
MPI_Info ioHints; |
42 |
|
|
////////////////////////////////////////////////////////////// |
43 |
|
|
|
44 |
|
|
|
45 |
|
|
|
46 |
|
|
int |
47 |
|
|
getSizeOfMPIType(MPI_Datatype mpi_type) |
48 |
|
|
{ |
49 |
|
|
switch (mpi_type) { |
50 |
|
|
|
51 |
|
|
case MPI_INT: case MPI_FLOAT: case MPI_REAL4: |
52 |
|
|
return 4; |
53 |
|
|
break; |
54 |
|
|
|
55 |
|
|
case MPI_LONG_INT: case MPI_DOUBLE: case MPI_REAL8: |
56 |
|
|
return 8; |
57 |
|
|
break; |
58 |
|
|
|
59 |
|
|
default: |
60 |
|
|
assert(("unexpected mpi elemental type", 0)); |
61 |
|
|
break; |
62 |
|
|
|
63 |
|
|
} |
64 |
|
|
return -1; |
65 |
|
|
} |
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
|
|
void |
70 |
|
|
createMPItypes(void) |
71 |
|
|
{ |
72 |
|
|
// Create a type with the "shape" of a section1, 2D tile |
73 |
|
|
MPI_Type_vector(tileSizeY, tileSizeX, facetElements1D, |
74 |
|
|
fieldElementalTypeMPI, §ion1_ioShape2D); |
75 |
|
|
MPI_Type_commit(§ion1_ioShape2D); |
76 |
|
|
|
77 |
|
|
// Create a type with the "shape" of a section2, 2D tile |
78 |
|
|
MPI_Type_vector(tileSizeY, tileSizeX, 3*facetElements1D, |
79 |
|
|
fieldElementalTypeMPI, §ion2_ioShape2D); |
80 |
|
|
MPI_Type_commit(§ion2_ioShape2D); |
81 |
|
|
|
82 |
|
|
|
83 |
|
|
// Create a type that describes a 2D tile in memory |
84 |
|
|
MPI_Type_vector(tileSizeY, tileSizeX, tileSizeX, |
85 |
|
|
fieldElementalTypeMPI, &tileShape2D); |
86 |
|
|
MPI_Type_commit(&tileShape2D); |
87 |
|
|
|
88 |
|
|
// Create a type that describes a 2D tile in memory with ghost-cells. |
89 |
|
|
int fullDims[2] = {tileSizeX + 2*xGhosts, tileSizeY + 2*yGhosts}; |
90 |
|
|
int tileDims[2] = {tileSizeX, tileSizeY}; |
91 |
|
|
int startElements[2] = {xGhosts, yGhosts}; |
92 |
|
|
MPI_Type_create_subarray(2, fullDims, tileDims, startElements, |
93 |
|
|
MPI_ORDER_FORTRAN, fieldElementalTypeMPI, &ghostedTileShape2D); |
94 |
|
|
MPI_Type_commit(&ghostedTileShape2D); |
95 |
|
|
|
96 |
|
|
|
97 |
|
|
// Set up some possible hints |
98 |
|
|
MPI_Info_create(&ioHints); |
99 |
|
|
MPI_Info_set(ioHints, "collective_buffering", "true"); |
100 |
|
|
char blockSize[64]; |
101 |
|
|
sprintf(blockSize, "%ld", (((long)facetElements1D * 3) * |
102 |
|
|
tileSizeY) * sizeofFieldElementalType); |
103 |
|
|
MPI_Info_set(ioHints, "cb_block_size", blockSize); |
104 |
|
|
} |
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
// Somehow we acquire this info at runtime |
109 |
|
|
void |
110 |
|
|
initSizesAndTypes(void) |
111 |
|
|
{ |
112 |
|
|
///////////////////////////////////////////// |
113 |
|
|
// Fundamental values |
114 |
|
|
fieldElementalTypeMPI = MPI_DOUBLE; |
115 |
|
|
facetElements1D = 1080; |
116 |
dimitri |
1.3 |
tileSizeX = 90; |
117 |
|
|
tileSizeY = 90; |
118 |
dimitri |
1.1 |
xGhosts = 8; |
119 |
|
|
yGhosts = 8; |
120 |
|
|
///////////////////////////////////////////// |
121 |
|
|
|
122 |
|
|
// Derived values |
123 |
|
|
sizeofFieldElementalType = getSizeOfMPIType(fieldElementalTypeMPI); |
124 |
|
|
long int facetElements2D = ((facetElements1D) * (facetElements1D)); |
125 |
|
|
facetBytes2D = (facetElements2D * sizeofFieldElementalType); |
126 |
|
|
fieldZlevelSizeInBytes = (13*(facetBytes2D)); |
127 |
|
|
|
128 |
|
|
facetTilesInX = ((facetElements1D)/(tileSizeX)); |
129 |
|
|
facetTilesInY = ((facetElements1D)/(tileSizeY)); |
130 |
|
|
tilesPerFacet = ((facetTilesInX)*(facetTilesInY)); |
131 |
|
|
|
132 |
|
|
tileZlevelSizeInBytes = tileSizeX * tileSizeY * sizeofFieldElementalType; |
133 |
|
|
ghostedTileZlevelSizeInBytes = (tileSizeX + 2*xGhosts) * |
134 |
|
|
(tileSizeY + 2*yGhosts) * |
135 |
|
|
sizeofFieldElementalType; |
136 |
|
|
|
137 |
|
|
// Create the specialized type definitions |
138 |
|
|
createMPItypes(); |
139 |
|
|
} |
140 |
|
|
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
void |
144 |
|
|
tileIO( |
145 |
|
|
MPI_Comm comm, |
146 |
|
|
char *filename, |
147 |
|
|
MPI_Offset tileOffsetInFile, |
148 |
|
|
MPI_Datatype tileLayoutInFile, |
149 |
|
|
void *tileBuf, |
150 |
|
|
MPI_Datatype tileLayoutInMemory, |
151 |
|
|
int writeFlag) |
152 |
|
|
{ |
153 |
|
|
int fileFlags; |
154 |
|
|
MPI_File fh; |
155 |
|
|
int (*MPI_IO)(); |
156 |
|
|
|
157 |
|
|
int res,count; |
158 |
|
|
MPI_Status status; |
159 |
|
|
|
160 |
|
|
if (writeFlag) { |
161 |
|
|
fileFlags = MPI_MODE_WRONLY | MPI_MODE_CREATE; |
162 |
|
|
MPI_IO = MPI_File_write_all; |
163 |
|
|
} else { |
164 |
|
|
fileFlags = MPI_MODE_RDONLY; |
165 |
|
|
MPI_IO = MPI_File_read_all; |
166 |
|
|
} |
167 |
|
|
|
168 |
|
|
//printf("filename is %s\n",filename); |
169 |
|
|
|
170 |
|
|
MPI_File_open(comm, filename, fileFlags, ioHints, &fh); |
171 |
|
|
MPI_File_set_view(fh, tileOffsetInFile, fieldElementalTypeMPI, |
172 |
|
|
tileLayoutInFile, "native", ioHints); |
173 |
|
|
|
174 |
|
|
|
175 |
|
|
// MPI_IO(fh, tileBuf, 1, tileLayoutInMemory, MPI_STATUS_IGNORE); |
176 |
|
|
res = MPI_IO(fh, tileBuf, 1, tileLayoutInMemory, &status); |
177 |
|
|
|
178 |
|
|
MPI_Get_count(&status,tileLayoutInFile,&count); |
179 |
|
|
|
180 |
|
|
//fprintf(stderr,"MPI: %d %d\n",res,count); |
181 |
|
|
|
182 |
|
|
MPI_File_close(&fh); |
183 |
|
|
} |
184 |
|
|
|
185 |
|
|
|
186 |
|
|
|
187 |
|
|
// N.B.: tileID is 1-based, not 0-based |
188 |
|
|
inline int |
189 |
|
|
isInSection1(int tileID) |
190 |
|
|
{ return (tileID <= (7 * tilesPerFacet)); } |
191 |
|
|
|
192 |
|
|
|
193 |
|
|
// N.B.: tileID is 1-based, not 0-based |
194 |
|
|
long int |
195 |
|
|
tileOffsetInField(int tileID) |
196 |
|
|
{ |
197 |
|
|
return isInSection1(tileID) ? |
198 |
|
|
((tileID -= 1), |
199 |
|
|
(((long)tileID / facetTilesInX) * tileZlevelSizeInBytes * facetTilesInX) + |
200 |
|
|
(((long)tileID % facetTilesInX) * tileSizeX * sizeofFieldElementalType)) |
201 |
|
|
: |
202 |
|
|
((tileID -= 1 + (7 * tilesPerFacet)), |
203 |
|
|
(7 * facetBytes2D) + |
204 |
|
|
((tileID / (3*facetTilesInX)) * tileZlevelSizeInBytes * 3*facetTilesInX) + |
205 |
|
|
((tileID % (3*facetTilesInX)) * tileSizeX * sizeofFieldElementalType)); |
206 |
|
|
} |
207 |
|
|
|
208 |
|
|
|
209 |
|
|
|
210 |
|
|
void |
211 |
|
|
readField( |
212 |
|
|
MPI_Comm appComm, |
213 |
|
|
char *filename, |
214 |
|
|
MPI_Offset fieldOffsetInFile, |
215 |
|
|
void *tileBuf, |
216 |
|
|
int tileID, |
217 |
|
|
int zLevels) |
218 |
|
|
{ |
219 |
|
|
int writeFlag = 0; |
220 |
|
|
MPI_Comm sectionComm = MPI_COMM_NULL; |
221 |
|
|
MPI_Datatype section1_ioShape, section2_ioShape; |
222 |
|
|
MPI_Datatype inMemoryShape, tileShape, ghostedTileShape; |
223 |
|
|
|
224 |
|
|
int inSection1 = isInSection1(tileID); |
225 |
|
|
MPI_Offset tileOffsetInFile = fieldOffsetInFile + tileOffsetInField(tileID); |
226 |
|
|
|
227 |
|
|
|
228 |
|
|
// Create a type with the "shape" of a tile in memory, |
229 |
|
|
// with the given number of z-levels. |
230 |
|
|
MPI_Type_hvector(zLevels, 1, tileZlevelSizeInBytes, |
231 |
|
|
tileShape2D, &tileShape); |
232 |
|
|
MPI_Type_commit(&tileShape); |
233 |
|
|
|
234 |
|
|
// Create a type with the "shape" of a tile in memory, |
235 |
|
|
// with ghost-cells, with the given number of z-levels. |
236 |
|
|
MPI_Type_hvector(zLevels, 1, ghostedTileZlevelSizeInBytes, |
237 |
|
|
ghostedTileShape2D, &ghostedTileShape); |
238 |
|
|
MPI_Type_commit(&ghostedTileShape); |
239 |
|
|
|
240 |
|
|
|
241 |
|
|
// choose the i/o type |
242 |
|
|
inMemoryShape = tileShape; |
243 |
|
|
|
244 |
|
|
|
245 |
|
|
// Split between section1 tiles and section2 tiles. |
246 |
|
|
// If a rank has been assigned multiple tiles, it is possible that |
247 |
|
|
// some of those tiles are in section1, and some are in section2. |
248 |
|
|
// So we have to dynamically do the comm_split each time because we |
249 |
|
|
// cannot absolutely guarentee that each rank will always be on the |
250 |
|
|
// same side of the split every time. |
251 |
|
|
MPI_Comm_split(appComm, inSection1, 0, §ionComm); |
252 |
|
|
|
253 |
|
|
memset(tileBuf,-1,tileZlevelSizeInBytes*zLevels); |
254 |
|
|
|
255 |
|
|
if (inSection1) { |
256 |
|
|
|
257 |
|
|
// Create a type with the "shape" of a section1 tile |
258 |
|
|
// in the file, with the given number of z-levels. |
259 |
|
|
MPI_Type_hvector(zLevels, 1, fieldZlevelSizeInBytes, |
260 |
|
|
section1_ioShape2D, §ion1_ioShape); |
261 |
|
|
MPI_Type_commit(§ion1_ioShape); |
262 |
|
|
|
263 |
|
|
//printf("section 1: %d -> %ld (%ld + %ld)\n",tileID,tileOffsetInFile,fieldOffsetInFile,tileOffsetInField(tileID)); |
264 |
|
|
|
265 |
|
|
// Do the i/o |
266 |
|
|
tileIO(sectionComm, filename, tileOffsetInFile, section1_ioShape, |
267 |
|
|
tileBuf, inMemoryShape, writeFlag); |
268 |
|
|
// I believe (?) this is needed to ensure consistency when writting |
269 |
|
|
if (writeFlag) MPI_Barrier(appComm); |
270 |
|
|
|
271 |
|
|
MPI_Type_free(§ion1_ioShape); |
272 |
|
|
|
273 |
|
|
} else { |
274 |
|
|
|
275 |
|
|
// Create a type with the "shape" of a section2 tile |
276 |
|
|
// in the file, with the given number of z-levels. |
277 |
|
|
MPI_Type_hvector(zLevels, 1, fieldZlevelSizeInBytes, |
278 |
|
|
section2_ioShape2D, §ion2_ioShape); |
279 |
|
|
MPI_Type_commit(§ion2_ioShape); |
280 |
|
|
|
281 |
|
|
//printf("section 2: %d -> %ld (%ld + %ld)\n",tileID,tileOffsetInFile,fieldOffsetInFile,tileOffsetInField(tileID)); |
282 |
|
|
|
283 |
|
|
// Do the i/o |
284 |
|
|
// I believe (?) this is needed to ensure consistency when writting |
285 |
|
|
if (writeFlag) MPI_Barrier(appComm); |
286 |
|
|
tileIO(sectionComm, filename, tileOffsetInFile, section2_ioShape, |
287 |
|
|
tileBuf, inMemoryShape, writeFlag); |
288 |
|
|
|
289 |
|
|
MPI_Type_free(§ion2_ioShape); |
290 |
|
|
} |
291 |
|
|
|
292 |
|
|
/* |
293 |
|
|
if (tileID==315){ |
294 |
|
|
int i; |
295 |
|
|
printf("field offset: %ld ",fieldOffsetInFile); |
296 |
|
|
printf("tile offset: %ld ",tileOffsetInField(tileID)); |
297 |
|
|
printf("zlevels: %d ",zLevels); |
298 |
|
|
for (i=0;i<10;++i) |
299 |
|
|
printf("%f ",((double*)tileBuf)[i]); |
300 |
|
|
printf("\n"); |
301 |
|
|
} |
302 |
|
|
*/ |
303 |
|
|
|
304 |
|
|
// Clean up |
305 |
|
|
MPI_Type_free(&tileShape); |
306 |
|
|
MPI_Type_free(&ghostedTileShape); |
307 |
|
|
MPI_Comm_free(§ionComm); |
308 |
|
|
} |
309 |
|
|
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
// Fortran interface |
313 |
|
|
// This uses the "usual" method for passing Fortran strings: |
314 |
|
|
// the string length is passed, by value, as an extra "hidden" argument |
315 |
|
|
// after the end of the normal argument list. So for example, this |
316 |
|
|
// routine would be invoked on the Fortran side like this: |
317 |
|
|
// call readField(comm, filename, offset, tilebuf, tileid, zlevels) |
318 |
|
|
// This method of passing FOrtran strings is NOT defined by the Fortran |
319 |
|
|
// standard, but it is the method of choice for many compilers, including |
320 |
|
|
// gcc (GNU/Linux), and icc (Intel). |
321 |
|
|
// |
322 |
|
|
// PLEASE NOTE that the "offset" field is of type "MPI_Offset", which |
323 |
|
|
// is synonymous with the Fortran type "integer(kind=MPI_OFFSET_KIND)". |
324 |
|
|
// This will typically be integer*8. But in particular it is almost |
325 |
|
|
// certainly NOT of type "default integer", which means in particular |
326 |
|
|
// that you CANNOT simply pass a constant (e.g. "0") as the argument, |
327 |
|
|
// since that type will be of the wrong size. |
328 |
|
|
void |
329 |
|
|
readfield_( |
330 |
|
|
MPI_Fint *fortranAppComm, |
331 |
|
|
char *fortranFilename, |
332 |
|
|
int *fieldOffsetInFileInPencils, |
333 |
|
|
void *tileBuf, |
334 |
|
|
int *tileID, |
335 |
|
|
int *zLevels, |
336 |
|
|
int filenameLength) |
337 |
|
|
{ |
338 |
|
|
int i; |
339 |
|
|
char namebuf[filenameLength+1]; |
340 |
|
|
char *filename = namebuf; |
341 |
|
|
|
342 |
|
|
MPI_Offset fieldOffsetInFile = *fieldOffsetInFileInPencils * tileSizeX * sizeofFieldElementalType; |
343 |
|
|
|
344 |
|
|
// Translate the MPI communicator from a Fortran-style handle |
345 |
|
|
// into a C-style handle. |
346 |
|
|
MPI_Comm appComm = MPI_Comm_f2c(*fortranAppComm); |
347 |
|
|
|
348 |
|
|
// Translate the Fortran-style string into a C-style string |
349 |
|
|
//memset(filename, ' ', filenameLength)); |
350 |
|
|
strncpy(filename, fortranFilename, filenameLength); |
351 |
|
|
for (i = filenameLength; (i > 0) && (' ' == filename[i-1]); --i) ; |
352 |
|
|
filename[i] = '\0'; |
353 |
|
|
//while(' ' == *filename) ++filename; |
354 |
|
|
assert(strlen(filename) > 0); |
355 |
|
|
|
356 |
|
|
//fprintf(stderr,"%d ::%s:: %d %ld \n",appComm,filename,filenameLength,fieldOffsetInFile); |
357 |
|
|
|
358 |
|
|
// Make the translated call |
359 |
|
|
readField(appComm, filename, fieldOffsetInFile, tileBuf, *tileID, *zLevels); |
360 |
|
|
} |
361 |
|
|
|
362 |
|
|
|
363 |
|
|
|
364 |
|
|
// For testing |
365 |
|
|
void initsizesandtypes_(void) {initSizesAndTypes();} |
366 |
|
|
|
367 |
|
|
|
368 |
|
|
|
369 |
|
|
|
370 |
|
|
|
371 |
|
|
///////////////////////////////////////////////////////////// |
372 |
|
|
// Test case |
373 |
|
|
#if 0 |
374 |
|
|
|
375 |
|
|
#define FILENAME "./dataFile" |
376 |
|
|
long int fieldOffsetInFile = 0; |
377 |
|
|
|
378 |
|
|
void |
379 |
|
|
doIO(MPI_Comm appComm) |
380 |
|
|
{ |
381 |
|
|
int sizeZ = 3; |
382 |
|
|
int tile1[sizeZ][tileSizeY][tileSizeX]; |
383 |
|
|
int tile2[sizeZ][tileSizeY][tileSizeX]; |
384 |
|
|
int ghostedTile[sizeZ][tileSizeY + 2*yGhosts][tileSizeX + 2*xGhosts]; |
385 |
|
|
int tileID; |
386 |
|
|
int i,j,k; |
387 |
|
|
|
388 |
|
|
int appCommSize, appCommRank; |
389 |
|
|
MPI_Comm_size(appComm, &appCommSize); |
390 |
|
|
MPI_Comm_rank(appComm, &appCommRank); |
391 |
|
|
|
392 |
|
|
assert((facetTilesInX * tileSizeX) == facetElements1D); |
393 |
|
|
assert((facetTilesInY * tileSizeY) == facetElements1D); |
394 |
|
|
|
395 |
|
|
// Ignore the dry tiles ("holes") for the moment |
396 |
|
|
if (facetTilesInX * facetTilesInY * 13 != appCommSize) { |
397 |
|
|
if (0 == appCommRank) { |
398 |
|
|
printf("Unexpected number of ranks: is %d, expected %ld\n", |
399 |
|
|
appCommSize, facetTilesInX * facetTilesInY * 13); |
400 |
|
|
} |
401 |
|
|
} |
402 |
|
|
tileID = appCommRank + 1; |
403 |
|
|
|
404 |
|
|
#if 0 |
405 |
|
|
// Fill tile1 with distinguished values |
406 |
|
|
for (k = 0; k < sizeZ; ++k) { |
407 |
|
|
for (j = 0; j < (tileSizeY + 2*yGhosts); ++j) { |
408 |
|
|
for (i = 0; i < (tileSizeX + 2*xGhosts); ++i) { |
409 |
|
|
ghostedTile[k][j][i] = -appCommRank; |
410 |
|
|
} |
411 |
|
|
} |
412 |
|
|
} |
413 |
|
|
for (k = 0; k < sizeZ; ++k) { |
414 |
|
|
for (j = 0; j < tileSizeY; ++j) { |
415 |
|
|
for (i = 0; i < tileSizeX; ++i) { |
416 |
|
|
tile1[k][j][i] = appCommRank; |
417 |
|
|
ghostedTile[k][j+yGhosts][i+xGhosts] = appCommRank; |
418 |
|
|
} |
419 |
|
|
} |
420 |
|
|
} |
421 |
|
|
#endif |
422 |
|
|
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
if (0 == appCommRank) system("/bin/echo -n 'begin io: ' ; date "); |
426 |
|
|
readField(appComm, FILENAME, 0, ghostedTile, tileID, sizeZ); |
427 |
|
|
if (0 == appCommRank) system("/bin/echo -n 'half: ' ; date "); |
428 |
|
|
readField(appComm, FILENAME, sizeZ*fieldZlevelSizeInBytes, |
429 |
|
|
ghostedTile, tileID, sizeZ); |
430 |
|
|
|
431 |
|
|
#if 1 |
432 |
|
|
for (k = 0; k < sizeZ; ++k) { |
433 |
|
|
for (j = 0; j < tileSizeY; ++j) { |
434 |
|
|
for (i = 0; i < tileSizeX; ++i) { |
435 |
|
|
int value = ghostedTile[k][j+yGhosts][i+xGhosts]; |
436 |
|
|
if (value != appCommRank) { |
437 |
|
|
printf("Fail: %d %d %d: %d %d\n", k,j,i, value, appCommRank); |
438 |
|
|
exit(1); |
439 |
|
|
} |
440 |
|
|
} |
441 |
|
|
} |
442 |
|
|
} |
443 |
|
|
if (0 == appCommRank) printf("Verification complete\n"); |
444 |
|
|
#endif |
445 |
|
|
|
446 |
|
|
MPI_Barrier(appComm); |
447 |
|
|
if (0 == appCommRank) system("/bin/echo -n 'finish: ' ; date "); |
448 |
|
|
|
449 |
|
|
MPI_Finalize(); |
450 |
|
|
} |
451 |
|
|
|
452 |
|
|
|
453 |
|
|
|
454 |
|
|
int |
455 |
|
|
main(int argc, char *argv[]) |
456 |
|
|
{ |
457 |
|
|
MPI_Comm appComm = MPI_COMM_NULL; |
458 |
|
|
|
459 |
|
|
MPI_Init(&argc, &argv); |
460 |
|
|
MPI_Comm_dup(MPI_COMM_WORLD, &appComm); |
461 |
|
|
|
462 |
|
|
initSizesAndTypes(); |
463 |
|
|
doIO(appComm); |
464 |
|
|
|
465 |
|
|
MPI_Finalize(); |
466 |
|
|
return 0; |
467 |
|
|
} |
468 |
|
|
#endif |
469 |
|
|
|