| 1 |
C $Header: /u/gcmpack/MITgcm_contrib/lab_sea_test/growth.F,v 1.1 2004/07/11 06:19:16 dimitri Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "SEAICE_OPTIONS.h" |
| 5 |
|
| 6 |
CStartOfInterface |
| 7 |
SUBROUTINE growth( myTime, myIter, myThid ) |
| 8 |
C /==========================================================\ |
| 9 |
C | SUBROUTINE growth | |
| 10 |
C | o Updata ice thickness and snow depth | |
| 11 |
C |==========================================================| |
| 12 |
C \==========================================================/ |
| 13 |
IMPLICIT NONE |
| 14 |
|
| 15 |
C === Global variables === |
| 16 |
#include "SIZE.h" |
| 17 |
#include "EEPARAMS.h" |
| 18 |
#include "PARAMS.h" |
| 19 |
#include "DYNVARS.h" |
| 20 |
#include "GRID.h" |
| 21 |
#include "FFIELDS.h" |
| 22 |
#include "SEAICE_PARAMS.h" |
| 23 |
#include "SEAICE.h" |
| 24 |
#include "SEAICE_FFIELDS.h" |
| 25 |
|
| 26 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 27 |
# include "tamc.h" |
| 28 |
#endif |
| 29 |
C === Routine arguments === |
| 30 |
C myTime - Simulation time |
| 31 |
C myIter - Simulation timestep number |
| 32 |
C myThid - Thread no. that called this routine. |
| 33 |
_RL myTime |
| 34 |
INTEGER myIter, myThid |
| 35 |
CEndOfInterface |
| 36 |
|
| 37 |
#ifdef ALLOW_SEAICE |
| 38 |
|
| 39 |
C === Local variables === |
| 40 |
C i,j,bi,bj - Loop counters |
| 41 |
|
| 42 |
INTEGER i, j, bi, bj |
| 43 |
_RL TBC, salinity_ice, SDF, Q0, QS |
| 44 |
_RL GAREA( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
| 45 |
_RL GHEFF( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
| 46 |
_RL AR ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, nSx, nSy ) |
| 47 |
|
| 48 |
C number of surface interface layer |
| 49 |
INTEGER kSurface |
| 50 |
|
| 51 |
_RL mymin_R8, mymax_R8 |
| 52 |
external mymin_R8, mymax_R8 |
| 53 |
|
| 54 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
| 55 |
kSurface = Nr |
| 56 |
else |
| 57 |
kSurface = 1 |
| 58 |
endif |
| 59 |
|
| 60 |
salinity_ice=4.0 _d 0 ! ICE SALINITY |
| 61 |
TBC=271.2 _d 0-273.16 _d 0 ! FREEZING TEMP. OF SEA WATER |
| 62 |
SDF=1000.0 _d 0/330.0 _d 0 ! RATIO OF WATER DESITY AND SNOW DENSITY |
| 63 |
Q0=1.0D-06/302.0 _d +00 ! INVERSE HEAT OF FUSION OF ICE |
| 64 |
QS=1.1 _d +08 ! HEAT OF FUSION OF SNOW |
| 65 |
|
| 66 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 67 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 68 |
c |
| 69 |
cph( |
| 70 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 71 |
act1 = bi - myBxLo(myThid) |
| 72 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
| 73 |
act2 = bj - myByLo(myThid) |
| 74 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
| 75 |
act3 = myThid - 1 |
| 76 |
max3 = nTx*nTy |
| 77 |
act4 = ikey_dynamics - 1 |
| 78 |
iicekey = (act1 + 1) + act2*max1 |
| 79 |
& + act3*max1*max2 |
| 80 |
& + act4*max1*max2*max3 |
| 81 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 82 |
c |
| 83 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 84 |
CADJ STORE theta(:,:,:,bi,bj)= comlev1_bibj, |
| 85 |
CADJ & key = iicekey, byte = isbyte |
| 86 |
CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj, |
| 87 |
CADJ & key = iicekey, byte = isbyte |
| 88 |
CADJ STORE atemp(:,:,bi,bj) = comlev1_bibj, |
| 89 |
CADJ & key = iicekey, byte = isbyte |
| 90 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 91 |
cph) |
| 92 |
DO J=1,sNy |
| 93 |
DO I=1,sNx |
| 94 |
SEAICE_SALT(I,J,bi,bj)=ZERO |
| 95 |
ENDDO |
| 96 |
ENDDO |
| 97 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 98 |
CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj, |
| 99 |
CADJ & key = iicekey, byte = isbyte |
| 100 |
CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj, |
| 101 |
CADJ & key = iicekey, byte = isbyte |
| 102 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 103 |
DO J=1,sNy |
| 104 |
DO I=1,sNx |
| 105 |
AR(I,J,bi,bj)=MYMIN_R8(AREA(I,J,2,bi,bj), |
| 106 |
& HEFF(I,J,2,bi,bj)*1.0 _d +04) |
| 107 |
ENDDO |
| 108 |
ENDDO |
| 109 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 110 |
CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj, |
| 111 |
CADJ & key = iicekey, byte = isbyte |
| 112 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 113 |
DO J=1,sNy |
| 114 |
DO I=1,sNx |
| 115 |
C-- Create or melt sea-ice so that first-level oceanic temperature |
| 116 |
C is approximately at the freezing point when there is sea-ice. |
| 117 |
C Initially the units of YNEG are m of sea-ice. |
| 118 |
C The factor dRf(1)/72.0764, used to convert temperature |
| 119 |
C change in deg K to m of sea-ice, is approximately: |
| 120 |
C dRf(1) * (sea water heat capacity = 3996 J/kg/K) |
| 121 |
C * (density of sea-water = 1026 kg/m^3) |
| 122 |
C / (latent heat of fusion of sea-ice = 334000 J/kg) |
| 123 |
C / (density of sea-ice = 910 kg/m^3) |
| 124 |
C Negative YNEG leads to ice growth. |
| 125 |
C Positive YNEG leads to ice melting. |
| 126 |
YNEG(I,J,bi,bj)=(theta(I,J,1,bi,bj)-TBC)*.01 |
| 127 |
& *dRf(1)/72.0764 _d 0 |
| 128 |
GHEFF(I,J)=HEFF(I,J,1,bi,bj) |
| 129 |
HEFF(I,J,1,bi,bj)=MYMAX_R8(ZERO,HEFF(I,J,1,bi,bj)-YNEG(I,J,bi,bj)) |
| 130 |
YNEG(I,J,bi,bj)=GHEFF(I,J)-HEFF(I,J,1,bi,bj) |
| 131 |
SEAICE_SALT(I,J,bi,bj)=SEAICE_SALT(I,J,bi,bj)-YNEG(I,J,bi,bj) |
| 132 |
C-- Now convert YNEG back to deg K. |
| 133 |
YNEG(I,J,bi,bj)=YNEG(I,J,bi,bj)*recip_dRf(1)*72.0764 _d 0 |
| 134 |
ENDDO |
| 135 |
ENDDO |
| 136 |
c |
| 137 |
ENDDO |
| 138 |
ENDDO |
| 139 |
|
| 140 |
cph( |
| 141 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 142 |
CADJ STORE area = comlev1, key = ikey_dynamics |
| 143 |
CADJ STORE atemp = comlev1, key = ikey_dynamics |
| 144 |
CADJ STORE heff = comlev1, key = ikey_dynamics |
| 145 |
CADJ STORE hsnow = comlev1, key = ikey_dynamics |
| 146 |
CADJ STORE lwdown = comlev1, key = ikey_dynamics |
| 147 |
CADJ STORE tice = comlev1, key = ikey_dynamics |
| 148 |
CADJ STORE uwind = comlev1, key = ikey_dynamics |
| 149 |
CADJ STORE vwind = comlev1, key = ikey_dynamics |
| 150 |
# ifdef SEAICE_MULTILEVEL |
| 151 |
CADJ STORE tices = comlev1, key = ikey_dynamics |
| 152 |
# endif |
| 153 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 154 |
cph) |
| 155 |
C GROWTH SUBROUTINE CALCULATES TOTAL GROWTH TENDENCIES, |
| 156 |
C INCLUDING SNOWFALL |
| 157 |
CALL GROATB(A22,myThid) |
| 158 |
|
| 159 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 160 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 161 |
cph( |
| 162 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 163 |
act1 = bi - myBxLo(myThid) |
| 164 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
| 165 |
act2 = bj - myByLo(myThid) |
| 166 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
| 167 |
act3 = myThid - 1 |
| 168 |
max3 = nTx*nTy |
| 169 |
act4 = ikey_dynamics - 1 |
| 170 |
iicekey = (act1 + 1) + act2*max1 |
| 171 |
& + act3*max1*max2 |
| 172 |
& + act4*max1*max2*max3 |
| 173 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 174 |
c |
| 175 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 176 |
CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj, |
| 177 |
CADJ & key = iicekey, byte = isbyte |
| 178 |
CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj, |
| 179 |
CADJ & key = iicekey, byte = isbyte |
| 180 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, |
| 181 |
CADJ & key = iicekey, byte = isbyte |
| 182 |
CADJ STORE fo(:,:,bi,bj) = comlev1_bibj, |
| 183 |
CADJ & key = iicekey, byte = isbyte |
| 184 |
CADJ STORE fice(:,:,bi,bj) = comlev1_bibj, |
| 185 |
CADJ & key = iicekey, byte = isbyte |
| 186 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 187 |
cph) |
| 188 |
C NOW CALCULATE CORRECTED GROWTH |
| 189 |
DO J=1,sNy |
| 190 |
DO I=1,sNx |
| 191 |
GHEFF(I,J)=-SEAICE_deltaTtherm*FICE(I,J,bi,bj) |
| 192 |
GAREA(I,J)=HSNOW(I,J,bi,bj)*QS |
| 193 |
IF(GHEFF(I,J).GT.ZERO.AND.GHEFF(I,J).LE.GAREA(I,J)) THEN |
| 194 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)-GHEFF(I,J)/QS |
| 195 |
C SNOW CONVERTED INTO WATER AND THEN INTO ICE |
| 196 |
C The factor 0.920 is used to convert m of sea-ice to m of freshwater |
| 197 |
SEAICE_SALT(I,J,bi,bj)=SEAICE_SALT(I,J,bi,bj) |
| 198 |
& -(GHEFF(I,J)/QS)/SDF/0.920 _d 0*AR(I,J,bi,bj) |
| 199 |
FICE(I,J,bi,bj)=ZERO |
| 200 |
ELSE IF(GHEFF(I,J).GT.GAREA(I,J)) THEN |
| 201 |
FICE(I,J,bi,bj)=-(GHEFF(I,J)-GAREA(I,J))/SEAICE_deltaTtherm |
| 202 |
SEAICE_SALT(I,J,bi,bj)=SEAICE_SALT(I,J,bi,bj) |
| 203 |
& -HSNOW(I,J,bi,bj)/SDF/0.920 _d 0*AR(I,J,bi,bj) |
| 204 |
HSNOW(I,J,bi,bj)=0.0 |
| 205 |
END IF |
| 206 |
|
| 207 |
ENDDO |
| 208 |
ENDDO |
| 209 |
|
| 210 |
C NOW GET TOTAL GROWTH RATE |
| 211 |
DO J=1,sNy |
| 212 |
DO I=1,sNx |
| 213 |
FHEFF(I,J,bi,bj)=FICE(I,J,bi,bj)*AR(I,J,bi,bj) |
| 214 |
& +(ONE-AR(I,J,bi,bj))*FO(I,J,bi,bj) |
| 215 |
ENDDO |
| 216 |
ENDDO |
| 217 |
|
| 218 |
|
| 219 |
C NOW UPDATE AREA |
| 220 |
DO J=1,sNy |
| 221 |
DO I=1,sNx |
| 222 |
GHEFF(I,J)=-SEAICE_deltaTtherm*FHEFF(I,J,bi,bj)*Q0 |
| 223 |
GAREA(I,J)=SEAICE_deltaTtherm*FO(I,J,bi,bj)*Q0 |
| 224 |
GHEFF(I,J)=-ONE*MYMIN_R8(HEFF(I,J,1,bi,bj),GHEFF(I,J)) |
| 225 |
GAREA(I,J)=MYMAX_R8(ZERO,GAREA(I,J)) |
| 226 |
HCORR(I,J,bi,bj)=MYMIN_R8(ZERO,GHEFF(I,J)) |
| 227 |
ENDDO |
| 228 |
ENDDO |
| 229 |
DO J=1,sNy |
| 230 |
DO I=1,sNx |
| 231 |
GAREA(I,J)=TWO*(ONE-AREA(I,J,2,bi,bj))*GAREA(I,J)/HO |
| 232 |
& +HALF*HCORR(I,J,bi,bj)*AREA(I,J,2,bi,bj) |
| 233 |
& /(HEFF(I,J,1,bi,bj)+.00001 _d 0) |
| 234 |
AREA(I,J,1,bi,bj)=AREA(I,J,1,bi,bj)+GAREA(I,J) |
| 235 |
ENDDO |
| 236 |
ENDDO |
| 237 |
|
| 238 |
C NOW UPDATE HEFF |
| 239 |
DO J=1,sNy |
| 240 |
DO I=1,sNx |
| 241 |
GHEFF(I,J)=-SEAICE_deltaTtherm* |
| 242 |
& FICE(I,J,bi,bj)*Q0*AR(I,J,bi,bj) |
| 243 |
GHEFF(I,J)=-ONE*MYMIN_R8(HEFF(I,J,1,bi,bj),GHEFF(I,J)) |
| 244 |
HEFF(I,J,1,bi,bj)=HEFF(I,J,1,bi,bj)+GHEFF(I,J) |
| 245 |
SEAICE_SALT(I,J,bi,bj)=SEAICE_SALT(I,J,bi,bj)+GHEFF(I,J) |
| 246 |
C NOW CALCULATE QNETI UNDER ICE IF ANY |
| 247 |
QNETI(I,J,bi,bj)=(GHEFF(I,J)-SEAICE_deltaTtherm* |
| 248 |
& FICE(I,J,bi,bj)*Q0*AR(I,J,bi,bj))/Q0/SEAICE_deltaTtherm |
| 249 |
ENDDO |
| 250 |
ENDDO |
| 251 |
|
| 252 |
C NOW GET TOTAL QNET AND QSW |
| 253 |
DO J=1,sNy |
| 254 |
DO I=1,sNx |
| 255 |
QNET(I,J,bi,bj)=QNETI(I,J,bi,bj)*AR(I,J,bi,bj) |
| 256 |
& +(ONE-AR(I,J,bi,bj))*QNETO(I,J,bi,bj) |
| 257 |
QSW(I,J,bi,bj)=QSWI(I,J,bi,bj)*AR(I,J,bi,bj) |
| 258 |
& +(ONE-AR(I,J,bi,bj))*QSWO(I,J,bi,bj) |
| 259 |
#ifndef SHORTWAVE_HEATING |
| 260 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj)+QSW(I,J,bi,bj) |
| 261 |
#endif |
| 262 |
C Add YNEG contribution to QNET |
| 263 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) |
| 264 |
& +YNEG(I,J,bi,bj)/SEAICE_deltaTtherm*maskC(I,J,1,bi,bj) |
| 265 |
& *HeatCapacity_Cp*recip_horiVertRatio*rhoConst |
| 266 |
& *drF(kSurface)*hFacC(i,j,kSurface,bi,bj) |
| 267 |
ENDDO |
| 268 |
ENDDO |
| 269 |
|
| 270 |
C NOW UPDATE OTHER THINGS |
| 271 |
DO J=1,sNy |
| 272 |
DO I=1,sNx |
| 273 |
IF(FICE(I,J,bi,bj).GT.ZERO) THEN |
| 274 |
C FREEZING, PRECIP ADDED AS SNOW |
| 275 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+SEAICE_deltaTtherm* |
| 276 |
& PRECIP(I,J,bi,bj)*AREA(I,J,2,bi,bj)*SDF |
| 277 |
ELSE |
| 278 |
C ADD PRECIP AS RAIN, WATER CONVERTED INTO ICE BY /0.920 _d 0 |
| 279 |
SEAICE_SALT(I,J,bi,bj)=SEAICE_SALT(I,J,bi,bj) |
| 280 |
& -PRECIP(I,J,bi,bj)*AREA(I,J,2,bi,bj)* |
| 281 |
& SEAICE_deltaTtherm/0.920 _d 0 |
| 282 |
ENDIF |
| 283 |
c Now add in precip over open water directly into ocean as negative salt |
| 284 |
SEAICE_SALT(I,J,bi,bj)=SEAICE_SALT(I,J,bi,bj) |
| 285 |
& -PRECIP(I,J,bi,bj)*(ONE-AREA(I,J,2,bi,bj)) |
| 286 |
& *SEAICE_deltaTtherm/0.920 _d 0 |
| 287 |
C NOW GET FRESH WATER FLUX |
| 288 |
EmPmR(I,J,bi,bj)= maskC(I,J,1,bi,bj)*( |
| 289 |
& EVAP(I,J,bi,bj)-RUNOFF(I,J,bi,bj) |
| 290 |
& +SEAICE_SALT(I,J,bi,bj)*0.92 _d 0/SEAICE_deltaTtherm |
| 291 |
& ) |
| 292 |
ENDDO |
| 293 |
ENDDO |
| 294 |
|
| 295 |
#ifdef SEAICE_DEBUG |
| 296 |
c CALL PLOT_FIELD_XYRS( UWIND,'Current UWIND ', myIter, myThid ) |
| 297 |
c CALL PLOT_FIELD_XYRS( VWIND,'Current VWIND ', myIter, myThid ) |
| 298 |
CALL PLOT_FIELD_XYRS( GWATX,'Current GWATX ', myIter, myThid ) |
| 299 |
CALL PLOT_FIELD_XYRS( GWATY,'Current GWATY ', myIter, myThid ) |
| 300 |
CALL PLOT_FIELD_XYRL( FO,'Current FO ', myIter, myThid ) |
| 301 |
CALL PLOT_FIELD_XYRL( FHEFF,'Current FHEFF ', myIter, myThid ) |
| 302 |
CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid ) |
| 303 |
CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid ) |
| 304 |
CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid ) |
| 305 |
DO j=1-OLy,sNy+OLy |
| 306 |
DO i=1-OLx,sNx+OLx |
| 307 |
GHEFF(I,J)=SQRT(UICE(I,J,1,bi,bj)**2+VICE(I,J,1,bi,bj)**2) |
| 308 |
GAREA(I,J)=HEFF(I,J,1,bi,bj) |
| 309 |
print*,'I J QNET:',I, J, QNET(i,j,bi,bj), QSW(I,J,bi,bj) |
| 310 |
ENDDO |
| 311 |
ENDDO |
| 312 |
CALL PLOT_FIELD_XYRL( GHEFF,'Current UICE ', myIter, myThid ) |
| 313 |
CALL PLOT_FIELD_XYRL( GAREA,'Current HEFF ', myIter, myThid ) |
| 314 |
DO j=1-OLy,sNy+OLy |
| 315 |
DO i=1-OLx,sNx+OLx |
| 316 |
if(HEFF(i,j,1,bi,bj).gt.1.) then |
| 317 |
print '(A,2i4,3f10.2)','#### i j heff theta yneg',i,j, |
| 318 |
& HEFF(i,j,1,bi,bj),theta(I,J,1,bi,bj),yneg(I,J,bi,bj) |
| 319 |
print '(A,3f10.2)','QSW, QNET before/after correction', |
| 320 |
& QSW(I,J,bi,bj),QNETI(I,J,bi,bj)*AR(I,J,bi,bj) |
| 321 |
& +(ONE-AR(I,J,bi,bj))*QNETO(I,J,bi,bj), QNET(I,J,bi,bj) |
| 322 |
endif |
| 323 |
ENDDO |
| 324 |
ENDDO |
| 325 |
#endif /* SEAICE_DEBUG */ |
| 326 |
|
| 327 |
crg Added by Ralf Giering: do we need DO_WE_NEED_THIS ? |
| 328 |
#define DO_WE_NEED_THIS |
| 329 |
C NOW ZERO OUTSIDE POINTS |
| 330 |
DO J=1,sNy |
| 331 |
DO I=1,sNx |
| 332 |
C NOW SET AREA(I,J,1,bi,bj)=0 WHERE NO ICE IS |
| 333 |
AREA(I,J,1,bi,bj)=MYMIN_R8(AREA(I,J,1,bi,bj) |
| 334 |
& ,HEFF(I,J,1,bi,bj)/.0001 _d 0) |
| 335 |
ENDDO |
| 336 |
ENDDO |
| 337 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 338 |
CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj, |
| 339 |
CADJ & key = iicekey, byte = isbyte |
| 340 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 341 |
DO J=1,sNy |
| 342 |
DO I=1,sNx |
| 343 |
C NOW TRUNCATE AREA |
| 344 |
#ifdef DO_WE_NEED_THIS |
| 345 |
AREA(I,J,1,bi,bj)=MYMIN_R8(ONE,AREA(I,J,1,bi,bj)) |
| 346 |
ENDDO |
| 347 |
ENDDO |
| 348 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 349 |
CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj, |
| 350 |
CADJ & key = iicekey, byte = isbyte |
| 351 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 352 |
DO J=1,sNy |
| 353 |
DO I=1,sNx |
| 354 |
AREA(I,J,1,bi,bj)=MYMAX_R8(ZERO,AREA(I,J,1,bi,bj)) |
| 355 |
HSNOW(I,J,bi,bj)=MYMAX_R8(ZERO,HSNOW(I,J,bi,bj)) |
| 356 |
#endif |
| 357 |
AREA(I,J,1,bi,bj)=AREA(I,J,1,bi,bj)*HEFFM(I,J,bi,bj) |
| 358 |
HEFF(I,J,1,bi,bj)=HEFF(I,J,1,bi,bj)*HEFFM(I,J,bi,bj) |
| 359 |
#ifdef DO_WE_NEED_THIS |
| 360 |
c HEFF(I,J,1,bi,bj)=MYMIN_R8(MAX_HEFF,HEFF(I,J,1,bi,bj)) |
| 361 |
#endif |
| 362 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
| 363 |
ENDDO |
| 364 |
ENDDO |
| 365 |
|
| 366 |
ENDDO |
| 367 |
ENDDO |
| 368 |
|
| 369 |
#endif /* ALLOW_SEAICE */ |
| 370 |
|
| 371 |
RETURN |
| 372 |
END |