| 1 | dimitri | 1.1 | C $Header: /u/gcmpack/MITgcm/pkg/seaice/dynsolver.F,v 1.13 2004/05/05 00:23:37 dimitri Exp $ | 
| 2 |  |  | C $Name:  $ | 
| 3 |  |  |  | 
| 4 |  |  | #include "SEAICE_OPTIONS.h" | 
| 5 |  |  |  | 
| 6 |  |  | CStartOfInterface | 
| 7 |  |  | SUBROUTINE dynsolver( myTime, myIter, myThid ) | 
| 8 |  |  | C     /==========================================================\ | 
| 9 |  |  | C     | SUBROUTINE dynsolver                                     | | 
| 10 |  |  | C     | o Ice dynamics using LSR solver                          | | 
| 11 |  |  | C     |   Zhang and Hibler,   JGR, 102, 8691-8702, 1997          | | 
| 12 |  |  | C     |==========================================================| | 
| 13 |  |  | C     \==========================================================/ | 
| 14 |  |  | IMPLICIT NONE | 
| 15 |  |  |  | 
| 16 |  |  | C     === Global variables === | 
| 17 |  |  | #include "SIZE.h" | 
| 18 |  |  | #include "EEPARAMS.h" | 
| 19 |  |  | #include "PARAMS.h" | 
| 20 |  |  | #include "FFIELDS.h" | 
| 21 |  |  | #include "SEAICE.h" | 
| 22 |  |  | #include "SEAICE_GRID.h" | 
| 23 |  |  | #include "SEAICE_PARAMS.h" | 
| 24 |  |  | #include "SEAICE_FFIELDS.h" | 
| 25 |  |  |  | 
| 26 |  |  | #ifdef ALLOW_AUTODIFF_TAMC | 
| 27 |  |  | # include "tamc.h" | 
| 28 |  |  | #endif | 
| 29 |  |  |  | 
| 30 |  |  | C     === Routine arguments === | 
| 31 |  |  | C     myTime - Simulation time | 
| 32 |  |  | C     myIter - Simulation timestep number | 
| 33 |  |  | C     myThid - Thread no. that called this routine. | 
| 34 |  |  | _RL     myTime | 
| 35 |  |  | INTEGER myIter | 
| 36 |  |  | INTEGER myThid | 
| 37 |  |  | CEndOfInterface | 
| 38 |  |  |  | 
| 39 |  |  | #ifdef ALLOW_SEAICE | 
| 40 |  |  |  | 
| 41 |  |  | C     === Local variables === | 
| 42 |  |  | C     i,j,bi,bj - Loop counters | 
| 43 |  |  |  | 
| 44 |  |  | INTEGER i, j, bi, bj, kii | 
| 45 |  |  | _RL DWAT, DAIR, RHOICE, RHOAIR, SINWIN, COSWIN, SINWAT, COSWAT | 
| 46 |  |  | _RL GRAV, ECCEN, ECM2, RADIUS, DELT1, DELT2, PSTAR, AAA | 
| 47 |  |  | _RL TEMPVAR, U1, V1 | 
| 48 |  |  |  | 
| 49 |  |  | _RL PRESS      (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 50 |  |  | _RL PRESS0     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 51 |  |  | _RL DAIRN      (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 52 |  |  | _RL DWATN      (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 53 |  |  | _RL FORCEX0    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 54 |  |  | _RL FORCEY0    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 55 |  |  | _RL E11        (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 56 |  |  | _RL E22        (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 57 |  |  | _RL E12        (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 58 |  |  | _RL COR_ICE    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 59 |  |  | _RL ZMAX       (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 60 |  |  | _RL ZMIN       (1-OLx:sNx+OLx,1-OLy:sNy+OLy,  nSx,nSy) | 
| 61 |  |  |  | 
| 62 |  |  | _RL mymin_R8, mymax_R8 | 
| 63 |  |  | external mymin_R8, mymax_R8 | 
| 64 |  |  |  | 
| 65 |  |  | C--   FIRST SET UP BASIC CONSTANTS | 
| 66 |  |  | DWAT=0.59 _d 0 | 
| 67 |  |  | DAIR=0.01462 _d 0 | 
| 68 |  |  | RHOICE=0.91 _d +03 | 
| 69 |  |  | RHOAIR=1.3 _d 0 | 
| 70 |  |  | GRAV=9.832 _d 0 | 
| 71 |  |  | ECCEN=TWO | 
| 72 |  |  | ECM2=ONE/(ECCEN**2) | 
| 73 |  |  | RADIUS=6370. _d 3 | 
| 74 |  |  | PSTAR=SEAICE_strength | 
| 75 |  |  |  | 
| 76 |  |  | C--   25 DEG GIVES SIN EQUAL TO 0.4226 | 
| 77 |  |  | SINWIN=0.4226 _d 0 | 
| 78 |  |  | COSWIN=0.9063 _d 0 | 
| 79 |  |  | SINWAT=0.4226 _d 0 | 
| 80 |  |  | COSWAT=0.9063 _d 0 | 
| 81 |  |  |  | 
| 82 |  |  | C--   Do not introduce turning angle | 
| 83 |  |  | SINWIN=ZERO | 
| 84 |  |  | COSWIN=ONE | 
| 85 |  |  | SINWAT=ZERO | 
| 86 |  |  | COSWAT=ONE | 
| 87 |  |  |  | 
| 88 |  |  | C--   NOW SET UP MASS PER UNIT AREA AND CORIOLIS TERM | 
| 89 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 90 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 91 |  |  | DO j=1,sNy | 
| 92 |  |  | DO i=1,sNx | 
| 93 |  |  | AMASS(I,J,bi,bj)=RHOICE*QUART*(HEFF(i,j,1,bi,bj) | 
| 94 |  |  | &           +HEFF(i-1,j,1,bi,bj) | 
| 95 |  |  | &           +HEFF(i,j-1,1,bi,bj) | 
| 96 |  |  | &           +HEFF(i-1,j-1,1,bi,bj)) | 
| 97 |  |  | COR_ICE(I,J,bi,bj)=AMASS(I,J,bi,bj) | 
| 98 |  |  | &         *TWO*OMEGA*SINEICE(I,J,bi,bj) | 
| 99 |  |  | ENDDO | 
| 100 |  |  | ENDDO | 
| 101 |  |  | ENDDO | 
| 102 |  |  | ENDDO | 
| 103 |  |  |  | 
| 104 |  |  | C--   NOW SET UP FORCING FIELDS | 
| 105 |  |  |  | 
| 106 |  |  | C--   Wind stress is computed on South-West B-grid U/V | 
| 107 |  |  | C     locations from wind on tracer locations | 
| 108 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 109 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 110 |  |  | DO j=1,sNy | 
| 111 |  |  | DO i=1,sNx | 
| 112 |  |  | U1=QUART*(UWIND(I-1,J-1,bi,bj)+UWIND(I-1,J,bi,bj) | 
| 113 |  |  | &             +UWIND(I  ,J-1,bi,bj)+UWIND(I  ,J,bi,bj)) | 
| 114 |  |  | V1=QUART*(VWIND(I-1,J-1,bi,bj)+VWIND(I-1,J,bi,bj) | 
| 115 |  |  | &             +VWIND(I  ,J-1,bi,bj)+VWIND(I  ,J,bi,bj)) | 
| 116 |  |  | AAA=U1**2+V1**2 | 
| 117 |  |  | IF ( AAA .LE. SEAICE_EPS_SQ ) THEN | 
| 118 |  |  | AAA=SEAICE_EPS | 
| 119 |  |  | ELSE | 
| 120 |  |  | AAA=SQRT(AAA) | 
| 121 |  |  | ENDIF | 
| 122 |  |  | C first ocean surface stress | 
| 123 |  |  | DAIRN(I,J,bi,bj)=RHOAIR*OCEAN_drag | 
| 124 |  |  | &         *(2.70 _d 0+0.142 _d 0*AAA+0.0764 _d 0*AAA*AAA) | 
| 125 |  |  | WINDX(I,J,bi,bj)=DAIRN(I,J,bi,bj)*(COSWIN*U1-SINWIN*V1) | 
| 126 |  |  | WINDY(I,J,bi,bj)=DAIRN(I,J,bi,bj)*(SINWIN*U1+COSWIN*V1) | 
| 127 |  |  |  | 
| 128 |  |  | C now ice surface stress | 
| 129 |  |  | DAIRN(I,J,bi,bj)=RHOAIR*(SEAICE_drag*AAA*AREA(I,J,1,bi,bj) | 
| 130 |  |  | &         +OCEAN_drag*(2.70 _d 0+0.142 _d 0*AAA | 
| 131 |  |  | &         +0.0764 _d 0*AAA*AAA)*(ONE-AREA(I,J,1,bi,bj))) | 
| 132 |  |  | FORCEX(I,J,bi,bj)=DAIRN(I,J,bi,bj)*(COSWIN*U1-SINWIN*V1) | 
| 133 |  |  | FORCEY(I,J,bi,bj)=DAIRN(I,J,bi,bj)*(SINWIN*U1+COSWIN*V1) | 
| 134 |  |  | ENDDO | 
| 135 |  |  | ENDDO | 
| 136 |  |  | ENDDO | 
| 137 |  |  | ENDDO | 
| 138 |  |  |  | 
| 139 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 140 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 141 |  |  | DO j=1,sNy | 
| 142 |  |  | DO i=1,sNx | 
| 143 |  |  | C--   NOW ADD IN TILT | 
| 144 |  |  | FORCEX(I,J,bi,bj)=FORCEX(I,J,bi,bj) | 
| 145 |  |  | &         -COR_ICE(I,J,bi,bj)*GWATY(I,J,bi,bj) | 
| 146 |  |  | FORCEY(I,J,bi,bj)=FORCEY(I,J,bi,bj) | 
| 147 |  |  | &         +COR_ICE(I,J,bi,bj)*GWATX(I,J,bi,bj) | 
| 148 |  |  | C NOW KEEP FORCEX0 | 
| 149 |  |  | FORCEX0(I,J,bi,bj)=FORCEX(I,J,bi,bj) | 
| 150 |  |  | FORCEY0(I,J,bi,bj)=FORCEY(I,J,bi,bj) | 
| 151 |  |  | C--   NOW SET UP ICE PRESSURE AND VISCOSITIES | 
| 152 |  |  | PRESS0(I,J,bi,bj)=PSTAR*HEFF(I,J,1,bi,bj) | 
| 153 |  |  | &         *EXP(-20.0 _d 0*(ONE-AREA(I,J,1,bi,bj))) | 
| 154 |  |  | ZMAX(I,J,bi,bj)=(5.0 _d +12/(2.0 _d +04))*PRESS0(I,J,bi,bj) | 
| 155 |  |  | ZMIN(I,J,bi,bj)=4.0 _d +08 | 
| 156 |  |  | PRESS0(I,J,bi,bj)=PRESS0(I,J,bi,bj)*HEFFM(I,J,bi,bj) | 
| 157 |  |  | ENDDO | 
| 158 |  |  | ENDDO | 
| 159 |  |  | ENDDO | 
| 160 |  |  | ENDDO | 
| 161 |  |  |  | 
| 162 |  |  | #ifdef SEAICE_ALLOW_DYNAMICS | 
| 163 |  |  |  | 
| 164 |  |  | IF ( SEAICEuseDYNAMICS ) THEN | 
| 165 |  |  |  | 
| 166 |  |  | #ifdef ALLOW_AUTODIFF_TAMC | 
| 167 |  |  | CADJ STORE uice = comlev1, key=ikey_dynamics | 
| 168 |  |  | CADJ STORE vice = comlev1, key=ikey_dynamics | 
| 169 |  |  | #endif /* ALLOW_AUTODIFF_TAMC */ | 
| 170 |  |  |  | 
| 171 |  |  | crg what about DWAIN,DRAGS,DRAGA,ETA,ZETA | 
| 172 |  |  |  | 
| 173 |  |  | crg later c$taf loop = iteration uice,vice | 
| 174 |  |  |  | 
| 175 |  |  | cdm c$taf store uice,vice = comlev1_seaice_ds, | 
| 176 |  |  | cdm c$taf&                key = kii + (ikey_dynamics-1) | 
| 177 |  |  | C NOW DO PREDICTOR TIME STEP | 
| 178 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 179 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 180 |  |  | DO j=1-OLy,sNy+OLy | 
| 181 |  |  | DO i=1-OLx,sNx+OLx | 
| 182 |  |  | UICE(I,J,2,bi,bj)=UICE(I,J,1,bi,bj) | 
| 183 |  |  | VICE(I,J,2,bi,bj)=VICE(I,J,1,bi,bj) | 
| 184 |  |  | UICEC(I,J,bi,bj)=UICE(I,J,1,bi,bj) | 
| 185 |  |  | VICEC(I,J,bi,bj)=VICE(I,J,1,bi,bj) | 
| 186 |  |  | ENDDO | 
| 187 |  |  | ENDDO | 
| 188 |  |  | ENDDO | 
| 189 |  |  | ENDDO | 
| 190 |  |  |  | 
| 191 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 192 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 193 |  |  | DO j=1,sNy | 
| 194 |  |  | DO i=1,sNx | 
| 195 |  |  | C NOW EVALUATE STRAIN RATES | 
| 196 |  |  | E11(I,J,bi,bj)=HALF/(DXTICE(I,J,bi,bj)*CSTICE(I,J,bi,bj)) | 
| 197 |  |  | &                *(UICE(I+1,J+1,1,bi,bj)+UICE(I+1,J,1,bi,bj) | 
| 198 |  |  | &                -UICE(I,J+1,1,bi,bj)-UICE(I,J,1,bi,bj)) | 
| 199 |  |  | &                -QUART*(VICE(I+1,J+1,1,bi,bj)+VICE(I,J+1,1,bi,bj) | 
| 200 |  |  | &                +VICE(I,J,1,bi,bj)+VICE(I+1,J,1,bi,bj)) | 
| 201 |  |  | &                *TNGTICE(I,J,bi,bj)/RADIUS | 
| 202 |  |  | E22(I,J,bi,bj)=HALF/DYTICE(I,J,bi,bj) | 
| 203 |  |  | &                *(VICE(I+1,J+1,1,bi,bj)+VICE(I,J+1,1,bi,bj) | 
| 204 |  |  | &                -VICE(I+1,J,1,bi,bj)-VICE(I,J,1,bi,bj)) | 
| 205 |  |  | E12(I,J,bi,bj)=HALF*(HALF/DYTICE(I,J,bi,bj) | 
| 206 |  |  | &                *(UICE(I+1,J+1,1,bi,bj)+UICE(I,J+1,1,bi,bj) | 
| 207 |  |  | &                -UICE(I+1,J,1,bi,bj)-UICE(I,J,1,bi,bj)) | 
| 208 |  |  | &                +HALF/(DXTICE(I,J,bi,bj)*CSTICE(I,J,bi,bj)) | 
| 209 |  |  | &                *(VICE(I+1,J+1,1,bi,bj)+VICE(I+1,J,1,bi,bj) | 
| 210 |  |  | &                -VICE(I,J+1,1,bi,bj)-VICE(I,J,1,bi,bj)) | 
| 211 |  |  | &                +QUART*(UICE(I+1,J+1,1,bi,bj)+UICE(I,J+1,1,bi,bj) | 
| 212 |  |  | &                +UICE(I,J,1,bi,bj)+UICE(I+1,J,1,bi,bj)) | 
| 213 |  |  | &                *TNGTICE(I,J,bi,bj)/RADIUS) | 
| 214 |  |  | C  NOW EVALUATE VISCOSITIES | 
| 215 |  |  | DELT1=(E11(I,J,bi,bj)**2+E22(I,J,bi,bj)**2)*(ONE+ECM2) | 
| 216 |  |  | &        +4.0 _d 0*ECM2*E12(I,J,bi,bj)**2 | 
| 217 |  |  | 1        +TWO*E11(I,J,bi,bj)*E22(I,J,bi,bj)*(ONE-ECM2) | 
| 218 |  |  | IF ( DELT1 .LE. SEAICE_EPS_SQ ) THEN | 
| 219 |  |  | DELT2=SEAICE_EPS | 
| 220 |  |  | ELSE | 
| 221 |  |  | DELT2=SQRT(DELT1) | 
| 222 |  |  | ENDIF | 
| 223 |  |  | ZETA(I,J,bi,bj)=HALF*PRESS0(I,J,bi,bj)/DELT2 | 
| 224 |  |  | C NOW PUT MIN AND MAX VISCOSITIES IN | 
| 225 |  |  | ZETA(I,J,bi,bj)=MYMIN_R8(ZMAX(I,J,bi,bj),ZETA(I,J,bi,bj)) | 
| 226 |  |  | ZETA(I,J,bi,bj)=MYMAX_R8(ZMIN(I,J,bi,bj),ZETA(I,J,bi,bj)) | 
| 227 |  |  | C NOW SET VISCOSITIES TO ZERO AT HEFFMFLOW PTS | 
| 228 |  |  | ZETA(I,J,bi,bj)=ZETA(I,J,bi,bj)*HEFFM(I,J,bi,bj) | 
| 229 |  |  | ETA(I,J,bi,bj)=ECM2*ZETA(I,J,bi,bj) | 
| 230 |  |  | PRESS(I,J,bi,bj)=TWO*ZETA(I,J,bi,bj)*DELT2 | 
| 231 |  |  | ENDDO | 
| 232 |  |  | ENDDO | 
| 233 |  |  | ENDDO | 
| 234 |  |  | ENDDO | 
| 235 |  |  |  | 
| 236 |  |  | C--   Update overlap regions | 
| 237 |  |  | _EXCH_XY_R8(ETA, myThid) | 
| 238 |  |  | _EXCH_XY_R8(ZETA, myThid) | 
| 239 |  |  | _EXCH_XY_R8(PRESS, myThid) | 
| 240 |  |  |  | 
| 241 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 242 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 243 |  |  | DO j=1,sNy | 
| 244 |  |  | DO i=1,sNx | 
| 245 |  |  | C NOW SET UP NON-LINEAR WATER DRAG, FORCEX, FORCEY | 
| 246 |  |  | TEMPVAR=(UICE(I,J,1,bi,bj)-GWATX(I,J,bi,bj))**2 | 
| 247 |  |  | &           +(VICE(I,J,1,bi,bj)-GWATY(I,J,bi,bj))**2 | 
| 248 |  |  | IF ( TEMPVAR .LE. (QUART/SEAICE_waterDrag)**2 ) THEN | 
| 249 |  |  | DWATN(I,J,bi,bj)=QUART | 
| 250 |  |  | ELSE | 
| 251 |  |  | DWATN(I,J,bi,bj)=SEAICE_waterDrag*SQRT(TEMPVAR) | 
| 252 |  |  | ENDIF | 
| 253 |  |  | C NOW SET UP SYMMETTRIC DRAG | 
| 254 |  |  | DRAGS(I,J,bi,bj)=DWATN(I,J,bi,bj)*COSWAT | 
| 255 |  |  | C NOW SET UP ANTI SYMMETTRIC DRAG PLUS CORIOLIS | 
| 256 |  |  | DRAGA(I,J,bi,bj)=DWATN(I,J,bi,bj)*SINWAT+COR_ICE(I,J,bi,bj) | 
| 257 |  |  | C NOW ADD IN CURRENT FORCE | 
| 258 |  |  | FORCEX(I,J,bi,bj)=FORCEX0(I,J,bi,bj)+DWATN(I,J,bi,bj) | 
| 259 |  |  | &                     *(COSWAT*GWATX(I,J,bi,bj) | 
| 260 |  |  | &                     -SINWAT*GWATY(I,J,bi,bj)) | 
| 261 |  |  | FORCEY(I,J,bi,bj)=FORCEY0(I,J,bi,bj)+DWATN(I,J,bi,bj) | 
| 262 |  |  | &                     *(SINWAT*GWATX(I,J,bi,bj) | 
| 263 |  |  | &                     +COSWAT*GWATY(I,J,bi,bj)) | 
| 264 |  |  | C NOW CALCULATE PRESSURE FORCE AND ADD TO EXTERNAL FORCE | 
| 265 |  |  | FORCEX(I,J,bi,bj)=FORCEX(I,J,bi,bj) | 
| 266 |  |  | &          -(QUART/(DXUICE(I,J,bi,bj)*CSUICE(I,J,bi,bj))) | 
| 267 |  |  | &          *(PRESS(I,J,bi,bj)+PRESS(I,J-1,bi,bj) | 
| 268 |  |  | &          -PRESS(I-1,J,bi,bj)-PRESS(I-1,J-1,bi,bj)) | 
| 269 |  |  | FORCEY(I,J,bi,bj)=FORCEY(I,J,bi,bj)-QUART/DYUICE(I,J,bi,bj) | 
| 270 |  |  | &          *(PRESS(I,J,bi,bj)+PRESS(I-1,J,bi,bj) | 
| 271 |  |  | &          -PRESS(I,J-1,bi,bj)-PRESS(I-1,J-1,bi,bj)) | 
| 272 |  |  | ENDDO | 
| 273 |  |  | ENDDO | 
| 274 |  |  | ENDDO | 
| 275 |  |  | ENDDO | 
| 276 |  |  |  | 
| 277 |  |  | C NOW LSR SCHEME (ZHANG-J/HIBLER 1997) | 
| 278 |  |  | CADJ STORE uice = comlev1, key=ikey_dynamics | 
| 279 |  |  | CADJ STORE vice = comlev1, key=ikey_dynamics | 
| 280 |  |  | CALL LSR( 1, myThid ) | 
| 281 |  |  | CADJ STORE uice = comlev1, key=ikey_dynamics | 
| 282 |  |  | CADJ STORE vice = comlev1, key=ikey_dynamics | 
| 283 |  |  |  | 
| 284 |  |  | C NOW DO MODIFIED EULER STEP | 
| 285 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 286 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 287 |  |  | DO j=1-OLy,sNy+OLy | 
| 288 |  |  | DO i=1-OLx,sNx+OLx | 
| 289 |  |  | UICE(I,J,1,bi,bj)=HALF*(UICE(I,J,1,bi,bj)+UICE(I,J,2,bi,bj)) | 
| 290 |  |  | VICE(I,J,1,bi,bj)=HALF*(VICE(I,J,1,bi,bj)+VICE(I,J,2,bi,bj)) | 
| 291 |  |  | UICEC(I,J,bi,bj)=UICE(I,J,1,bi,bj) | 
| 292 |  |  | VICEC(I,J,bi,bj)=VICE(I,J,1,bi,bj) | 
| 293 |  |  | ENDDO | 
| 294 |  |  | ENDDO | 
| 295 |  |  | ENDDO | 
| 296 |  |  | ENDDO | 
| 297 |  |  |  | 
| 298 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 299 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 300 |  |  | DO j=1,sNy | 
| 301 |  |  | DO i=1,sNx | 
| 302 |  |  | C NOW EVALUATE STRAIN RATES | 
| 303 |  |  | E11(I,J,bi,bj)=HALF/(DXTICE(I,J,bi,bj)*CSTICE(I,J,bi,bj)) | 
| 304 |  |  | &                *(UICE(I+1,J+1,1,bi,bj)+UICE(I+1,J,1,bi,bj) | 
| 305 |  |  | &                -UICE(I,J+1,1,bi,bj)-UICE(I,J,1,bi,bj)) | 
| 306 |  |  | &                -QUART*(VICE(I+1,J+1,1,bi,bj)+VICE(I,J+1,1,bi,bj) | 
| 307 |  |  | &                +VICE(I,J,1,bi,bj)+VICE(I+1,J,1,bi,bj)) | 
| 308 |  |  | &                *TNGTICE(I,J,bi,bj)/RADIUS | 
| 309 |  |  | E22(I,J,bi,bj)=HALF/DYTICE(I,J,bi,bj) | 
| 310 |  |  | &                *(VICE(I+1,J+1,1,bi,bj)+VICE(I,J+1,1,bi,bj) | 
| 311 |  |  | &                -VICE(I+1,J,1,bi,bj)-VICE(I,J,1,bi,bj)) | 
| 312 |  |  | E12(I,J,bi,bj)=HALF*(HALF/DYTICE(I,J,bi,bj) | 
| 313 |  |  | &                *(UICE(I+1,J+1,1,bi,bj)+UICE(I,J+1,1,bi,bj) | 
| 314 |  |  | &                -UICE(I+1,J,1,bi,bj)-UICE(I,J,1,bi,bj)) | 
| 315 |  |  | &                +HALF/(DXTICE(I,J,bi,bj)*CSTICE(I,J,bi,bj)) | 
| 316 |  |  | &                *(VICE(I+1,J+1,1,bi,bj)+VICE(I+1,J,1,bi,bj) | 
| 317 |  |  | &                -VICE(I,J+1,1,bi,bj)-VICE(I,J,1,bi,bj)) | 
| 318 |  |  | &                +QUART*(UICE(I+1,J+1,1,bi,bj)+UICE(I,J+1,1,bi,bj) | 
| 319 |  |  | &                +UICE(I,J,1,bi,bj)+UICE(I+1,J,1,bi,bj)) | 
| 320 |  |  | &                *TNGTICE(I,J,bi,bj)/RADIUS) | 
| 321 |  |  | C  NOW EVALUATE VISCOSITIES | 
| 322 |  |  | DELT1=(E11(I,J,bi,bj)**2+E22(I,J,bi,bj)**2)*(ONE+ECM2) | 
| 323 |  |  | &        +4. _d 0*ECM2*E12(I,J,bi,bj)**2 | 
| 324 |  |  | 1        +TWO*E11(I,J,bi,bj)*E22(I,J,bi,bj)*(ONE-ECM2) | 
| 325 |  |  | IF ( DELT1 .LE. SEAICE_EPS_SQ ) THEN | 
| 326 |  |  | DELT2=SEAICE_EPS | 
| 327 |  |  | ELSE | 
| 328 |  |  | DELT2=SQRT(DELT1) | 
| 329 |  |  | ENDIF | 
| 330 |  |  | ZETA(I,J,bi,bj)=HALF*PRESS0(I,J,bi,bj)/DELT2 | 
| 331 |  |  | C NOW PUT MIN AND MAX VISCOSITIES IN | 
| 332 |  |  | ZETA(I,J,bi,bj)=MYMIN_R8(ZMAX(I,J,bi,bj),ZETA(I,J,bi,bj)) | 
| 333 |  |  | ZETA(I,J,bi,bj)=MYMAX_R8(ZMIN(I,J,bi,bj),ZETA(I,J,bi,bj)) | 
| 334 |  |  | C NOW SET VISCOSITIES TO ZERO AT HEFFMFLOW PTS | 
| 335 |  |  | ZETA(I,J,bi,bj)=ZETA(I,J,bi,bj)*HEFFM(I,J,bi,bj) | 
| 336 |  |  | ETA(I,J,bi,bj)=ECM2*ZETA(I,J,bi,bj) | 
| 337 |  |  | PRESS(I,J,bi,bj)=TWO*ZETA(I,J,bi,bj)*DELT2 | 
| 338 |  |  | ENDDO | 
| 339 |  |  | ENDDO | 
| 340 |  |  | ENDDO | 
| 341 |  |  | ENDDO | 
| 342 |  |  |  | 
| 343 |  |  | C--   Update overlap regions | 
| 344 |  |  | _EXCH_XY_R8(ETA, myThid) | 
| 345 |  |  | _EXCH_XY_R8(ZETA, myThid) | 
| 346 |  |  | _EXCH_XY_R8(PRESS, myThid) | 
| 347 |  |  |  | 
| 348 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 349 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 350 |  |  | DO j=1,sNy | 
| 351 |  |  | DO i=1,sNx | 
| 352 |  |  | C NOW SET UP NON-LINEAR WATER DRAG, FORCEX, FORCEY | 
| 353 |  |  | TEMPVAR=(UICE(I,J,1,bi,bj)-GWATX(I,J,bi,bj))**2 | 
| 354 |  |  | &           +(VICE(I,J,1,bi,bj)-GWATY(I,J,bi,bj))**2 | 
| 355 |  |  | IF ( TEMPVAR .LE. (QUART/SEAICE_waterDrag)**2 ) THEN | 
| 356 |  |  | DWATN(I,J,bi,bj)=QUART | 
| 357 |  |  | ELSE | 
| 358 |  |  | DWATN(I,J,bi,bj)=SEAICE_waterDrag*SQRT(TEMPVAR) | 
| 359 |  |  | ENDIF | 
| 360 |  |  | C NOW SET UP SYMMETTRIC DRAG | 
| 361 |  |  | DRAGS(I,J,bi,bj)=DWATN(I,J,bi,bj)*COSWAT | 
| 362 |  |  | C NOW SET UP ANTI SYMMETTRIC DRAG PLUS CORIOLIS | 
| 363 |  |  | DRAGA(I,J,bi,bj)=DWATN(I,J,bi,bj)*SINWAT+COR_ICE(I,J,bi,bj) | 
| 364 |  |  | C NOW ADD IN CURRENT FORCE | 
| 365 |  |  | FORCEX(I,J,bi,bj)=FORCEX0(I,J,bi,bj)+DWATN(I,J,bi,bj) | 
| 366 |  |  | &                     *(COSWAT*GWATX(I,J,bi,bj) | 
| 367 |  |  | &                     -SINWAT*GWATY(I,J,bi,bj)) | 
| 368 |  |  | FORCEY(I,J,bi,bj)=FORCEY0(I,J,bi,bj)+DWATN(I,J,bi,bj) | 
| 369 |  |  | &                     *(SINWAT*GWATX(I,J,bi,bj) | 
| 370 |  |  | &                     +COSWAT*GWATY(I,J,bi,bj)) | 
| 371 |  |  | C NOW CALCULATE PRESSURE FORCE AND ADD TO EXTERNAL FORCE | 
| 372 |  |  | FORCEX(I,J,bi,bj)=FORCEX(I,J,bi,bj) | 
| 373 |  |  | &          -(QUART/(DXUICE(I,J,bi,bj)*CSUICE(I,J,bi,bj))) | 
| 374 |  |  | &          *(PRESS(I,J,bi,bj)+PRESS(I,J-1,bi,bj) | 
| 375 |  |  | &          -PRESS(I-1,J,bi,bj)-PRESS(I-1,J-1,bi,bj)) | 
| 376 |  |  | FORCEY(I,J,bi,bj)=FORCEY(I,J,bi,bj)-QUART/DYUICE(I,J,bi,bj) | 
| 377 |  |  | &          *(PRESS(I,J,bi,bj)+PRESS(I-1,J,bi,bj) | 
| 378 |  |  | &          -PRESS(I,J-1,bi,bj)-PRESS(I-1,J-1,bi,bj)) | 
| 379 |  |  | ENDDO | 
| 380 |  |  | ENDDO | 
| 381 |  |  | ENDDO | 
| 382 |  |  | ENDDO | 
| 383 |  |  |  | 
| 384 |  |  | C NOW LSR SCHEME (ZHANG-J/HIBLER 1997) | 
| 385 |  |  | CALL LSR( 2, myThid ) | 
| 386 |  |  |  | 
| 387 |  |  | cdm c$taf store uice,vice = comlev1, key=ikey_dynamics | 
| 388 |  |  |  | 
| 389 |  |  | ENDIF | 
| 390 |  |  | #endif /* SEAICE_ALLOW_DYNAMICS */ | 
| 391 |  |  |  | 
| 392 |  |  | C Calculate ocean surface stress | 
| 393 |  |  | CALL OSTRES ( DWATN, COR_ICE, myThid ) | 
| 394 |  |  |  | 
| 395 |  |  | #ifdef SEAICE_ALLOW_DYNAMICS | 
| 396 |  |  |  | 
| 397 |  |  | IF ( SEAICEuseDYNAMICS ) THEN | 
| 398 |  |  |  | 
| 399 |  |  | #ifdef ALLOW_AUTODIFF_TAMC | 
| 400 |  |  | CADJ STORE uice = comlev1, key=ikey_dynamics | 
| 401 |  |  | CADJ STORE vice = comlev1, key=ikey_dynamics | 
| 402 |  |  | #endif /* ALLOW_AUTODIFF_TAMC */ | 
| 403 |  |  | c Put a cap on ice velocity | 
| 404 |  |  | c limit velocity to 0.40 m s-1 to avoid potential CFL violations | 
| 405 |  |  | c in open water areas (drift of zero thickness ice) | 
| 406 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 407 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 408 |  |  | DO j=1-OLy,sNy+OLy | 
| 409 |  |  | DO i=1-OLx,sNx+OLx | 
| 410 |  |  | #ifdef SEAICE_DEBUG | 
| 411 |  |  | c          write(*,'(2i4,2i2,f7.1,7f12.3)') | 
| 412 |  |  | c     &      i,j,bi,bj,UVM(I,J,bi,bj),amass(i,j,bi,bj) | 
| 413 |  |  | c     &     ,gwatx(I,J,bi,bj),gwaty(i,j,bi,bj) | 
| 414 |  |  | c     &     ,forcex(I,J,bi,bj),forcey(i,j,bi,bj) | 
| 415 |  |  | c     &     ,uice(i,j,1,bi,bj) | 
| 416 |  |  | c     &     ,vice(i,j,1,bi,bj) | 
| 417 |  |  | #endif /* SEAICE_DEBUG */ | 
| 418 |  |  | UICE(i,j,1,bi,bj)=mymin_R8(UICE(i,j,1,bi,bj),0.40 _d +00) | 
| 419 |  |  | VICE(i,j,1,bi,bj)=mymin_R8(VICE(i,j,1,bi,bj),0.40 _d +00) | 
| 420 |  |  | ENDDO | 
| 421 |  |  | ENDDO | 
| 422 |  |  | ENDDO | 
| 423 |  |  | ENDDO | 
| 424 |  |  | #ifdef ALLOW_AUTODIFF_TAMC | 
| 425 |  |  | CADJ STORE uice = comlev1, key=ikey_dynamics | 
| 426 |  |  | CADJ STORE vice = comlev1, key=ikey_dynamics | 
| 427 |  |  | #endif /* ALLOW_AUTODIFF_TAMC */ | 
| 428 |  |  | DO bj=myByLo(myThid),myByHi(myThid) | 
| 429 |  |  | DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 430 |  |  | DO j=1-OLy,sNy+OLy | 
| 431 |  |  | DO i=1-OLx,sNx+OLx | 
| 432 |  |  | UICE(i,j,1,bi,bj)=mymax_R8(UICE(i,j,1,bi,bj),-0.40 _d +00) | 
| 433 |  |  | VICE(i,j,1,bi,bj)=mymax_R8(VICE(i,j,1,bi,bj),-0.40 _d +00) | 
| 434 |  |  | ENDDO | 
| 435 |  |  | ENDDO | 
| 436 |  |  | ENDDO | 
| 437 |  |  | ENDDO | 
| 438 |  |  |  | 
| 439 |  |  | ENDIF | 
| 440 |  |  | #endif /* SEAICE_ALLOW_DYNAMICS */ | 
| 441 |  |  |  | 
| 442 |  |  | #endif /* ALLOW_SEAICE */ | 
| 443 |  |  |  | 
| 444 |  |  | RETURN | 
| 445 |  |  | END |