| 1 |
dimitri |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/dynsolver.F,v 1.13 2004/05/05 00:23:37 dimitri Exp $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "SEAICE_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
CStartOfInterface |
| 7 |
|
|
SUBROUTINE dynsolver( myTime, myIter, myThid ) |
| 8 |
|
|
C /==========================================================\ |
| 9 |
|
|
C | SUBROUTINE dynsolver | |
| 10 |
|
|
C | o Ice dynamics using LSR solver | |
| 11 |
|
|
C | Zhang and Hibler, JGR, 102, 8691-8702, 1997 | |
| 12 |
|
|
C |==========================================================| |
| 13 |
|
|
C \==========================================================/ |
| 14 |
|
|
IMPLICIT NONE |
| 15 |
|
|
|
| 16 |
|
|
C === Global variables === |
| 17 |
|
|
#include "SIZE.h" |
| 18 |
|
|
#include "EEPARAMS.h" |
| 19 |
|
|
#include "PARAMS.h" |
| 20 |
|
|
#include "FFIELDS.h" |
| 21 |
|
|
#include "SEAICE.h" |
| 22 |
|
|
#include "SEAICE_GRID.h" |
| 23 |
|
|
#include "SEAICE_PARAMS.h" |
| 24 |
|
|
#include "SEAICE_FFIELDS.h" |
| 25 |
|
|
|
| 26 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 27 |
|
|
# include "tamc.h" |
| 28 |
|
|
#endif |
| 29 |
|
|
|
| 30 |
|
|
C === Routine arguments === |
| 31 |
|
|
C myTime - Simulation time |
| 32 |
|
|
C myIter - Simulation timestep number |
| 33 |
|
|
C myThid - Thread no. that called this routine. |
| 34 |
|
|
_RL myTime |
| 35 |
|
|
INTEGER myIter |
| 36 |
|
|
INTEGER myThid |
| 37 |
|
|
CEndOfInterface |
| 38 |
|
|
|
| 39 |
|
|
#ifdef ALLOW_SEAICE |
| 40 |
|
|
|
| 41 |
|
|
C === Local variables === |
| 42 |
|
|
C i,j,bi,bj - Loop counters |
| 43 |
|
|
|
| 44 |
|
|
INTEGER i, j, bi, bj, kii |
| 45 |
|
|
_RL DWAT, DAIR, RHOICE, RHOAIR, SINWIN, COSWIN, SINWAT, COSWAT |
| 46 |
|
|
_RL GRAV, ECCEN, ECM2, RADIUS, DELT1, DELT2, PSTAR, AAA |
| 47 |
|
|
_RL TEMPVAR, U1, V1 |
| 48 |
|
|
|
| 49 |
|
|
_RL PRESS (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 50 |
|
|
_RL PRESS0 (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 51 |
|
|
_RL DAIRN (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 52 |
|
|
_RL DWATN (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 53 |
|
|
_RL FORCEX0 (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 54 |
|
|
_RL FORCEY0 (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 55 |
|
|
_RL E11 (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 56 |
|
|
_RL E22 (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 57 |
|
|
_RL E12 (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 58 |
|
|
_RL COR_ICE (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 59 |
|
|
_RL ZMAX (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 60 |
|
|
_RL ZMIN (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
| 61 |
|
|
|
| 62 |
|
|
_RL mymin_R8, mymax_R8 |
| 63 |
|
|
external mymin_R8, mymax_R8 |
| 64 |
|
|
|
| 65 |
|
|
C-- FIRST SET UP BASIC CONSTANTS |
| 66 |
|
|
DWAT=0.59 _d 0 |
| 67 |
|
|
DAIR=0.01462 _d 0 |
| 68 |
|
|
RHOICE=0.91 _d +03 |
| 69 |
|
|
RHOAIR=1.3 _d 0 |
| 70 |
|
|
GRAV=9.832 _d 0 |
| 71 |
|
|
ECCEN=TWO |
| 72 |
|
|
ECM2=ONE/(ECCEN**2) |
| 73 |
|
|
RADIUS=6370. _d 3 |
| 74 |
|
|
PSTAR=SEAICE_strength |
| 75 |
|
|
|
| 76 |
|
|
C-- 25 DEG GIVES SIN EQUAL TO 0.4226 |
| 77 |
|
|
SINWIN=0.4226 _d 0 |
| 78 |
|
|
COSWIN=0.9063 _d 0 |
| 79 |
|
|
SINWAT=0.4226 _d 0 |
| 80 |
|
|
COSWAT=0.9063 _d 0 |
| 81 |
|
|
|
| 82 |
|
|
C-- Do not introduce turning angle |
| 83 |
|
|
SINWIN=ZERO |
| 84 |
|
|
COSWIN=ONE |
| 85 |
|
|
SINWAT=ZERO |
| 86 |
|
|
COSWAT=ONE |
| 87 |
|
|
|
| 88 |
|
|
C-- NOW SET UP MASS PER UNIT AREA AND CORIOLIS TERM |
| 89 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 90 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 91 |
|
|
DO j=1,sNy |
| 92 |
|
|
DO i=1,sNx |
| 93 |
|
|
AMASS(I,J,bi,bj)=RHOICE*QUART*(HEFF(i,j,1,bi,bj) |
| 94 |
|
|
& +HEFF(i-1,j,1,bi,bj) |
| 95 |
|
|
& +HEFF(i,j-1,1,bi,bj) |
| 96 |
|
|
& +HEFF(i-1,j-1,1,bi,bj)) |
| 97 |
|
|
COR_ICE(I,J,bi,bj)=AMASS(I,J,bi,bj) |
| 98 |
|
|
& *TWO*OMEGA*SINEICE(I,J,bi,bj) |
| 99 |
|
|
ENDDO |
| 100 |
|
|
ENDDO |
| 101 |
|
|
ENDDO |
| 102 |
|
|
ENDDO |
| 103 |
|
|
|
| 104 |
|
|
C-- NOW SET UP FORCING FIELDS |
| 105 |
|
|
|
| 106 |
|
|
C-- Wind stress is computed on South-West B-grid U/V |
| 107 |
|
|
C locations from wind on tracer locations |
| 108 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 109 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 110 |
|
|
DO j=1,sNy |
| 111 |
|
|
DO i=1,sNx |
| 112 |
|
|
U1=QUART*(UWIND(I-1,J-1,bi,bj)+UWIND(I-1,J,bi,bj) |
| 113 |
|
|
& +UWIND(I ,J-1,bi,bj)+UWIND(I ,J,bi,bj)) |
| 114 |
|
|
V1=QUART*(VWIND(I-1,J-1,bi,bj)+VWIND(I-1,J,bi,bj) |
| 115 |
|
|
& +VWIND(I ,J-1,bi,bj)+VWIND(I ,J,bi,bj)) |
| 116 |
|
|
AAA=U1**2+V1**2 |
| 117 |
|
|
IF ( AAA .LE. SEAICE_EPS_SQ ) THEN |
| 118 |
|
|
AAA=SEAICE_EPS |
| 119 |
|
|
ELSE |
| 120 |
|
|
AAA=SQRT(AAA) |
| 121 |
|
|
ENDIF |
| 122 |
|
|
C first ocean surface stress |
| 123 |
|
|
DAIRN(I,J,bi,bj)=RHOAIR*OCEAN_drag |
| 124 |
|
|
& *(2.70 _d 0+0.142 _d 0*AAA+0.0764 _d 0*AAA*AAA) |
| 125 |
|
|
WINDX(I,J,bi,bj)=DAIRN(I,J,bi,bj)*(COSWIN*U1-SINWIN*V1) |
| 126 |
|
|
WINDY(I,J,bi,bj)=DAIRN(I,J,bi,bj)*(SINWIN*U1+COSWIN*V1) |
| 127 |
|
|
|
| 128 |
|
|
C now ice surface stress |
| 129 |
|
|
DAIRN(I,J,bi,bj)=RHOAIR*(SEAICE_drag*AAA*AREA(I,J,1,bi,bj) |
| 130 |
|
|
& +OCEAN_drag*(2.70 _d 0+0.142 _d 0*AAA |
| 131 |
|
|
& +0.0764 _d 0*AAA*AAA)*(ONE-AREA(I,J,1,bi,bj))) |
| 132 |
|
|
FORCEX(I,J,bi,bj)=DAIRN(I,J,bi,bj)*(COSWIN*U1-SINWIN*V1) |
| 133 |
|
|
FORCEY(I,J,bi,bj)=DAIRN(I,J,bi,bj)*(SINWIN*U1+COSWIN*V1) |
| 134 |
|
|
ENDDO |
| 135 |
|
|
ENDDO |
| 136 |
|
|
ENDDO |
| 137 |
|
|
ENDDO |
| 138 |
|
|
|
| 139 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 140 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 141 |
|
|
DO j=1,sNy |
| 142 |
|
|
DO i=1,sNx |
| 143 |
|
|
C-- NOW ADD IN TILT |
| 144 |
|
|
FORCEX(I,J,bi,bj)=FORCEX(I,J,bi,bj) |
| 145 |
|
|
& -COR_ICE(I,J,bi,bj)*GWATY(I,J,bi,bj) |
| 146 |
|
|
FORCEY(I,J,bi,bj)=FORCEY(I,J,bi,bj) |
| 147 |
|
|
& +COR_ICE(I,J,bi,bj)*GWATX(I,J,bi,bj) |
| 148 |
|
|
C NOW KEEP FORCEX0 |
| 149 |
|
|
FORCEX0(I,J,bi,bj)=FORCEX(I,J,bi,bj) |
| 150 |
|
|
FORCEY0(I,J,bi,bj)=FORCEY(I,J,bi,bj) |
| 151 |
|
|
C-- NOW SET UP ICE PRESSURE AND VISCOSITIES |
| 152 |
|
|
PRESS0(I,J,bi,bj)=PSTAR*HEFF(I,J,1,bi,bj) |
| 153 |
|
|
& *EXP(-20.0 _d 0*(ONE-AREA(I,J,1,bi,bj))) |
| 154 |
|
|
ZMAX(I,J,bi,bj)=(5.0 _d +12/(2.0 _d +04))*PRESS0(I,J,bi,bj) |
| 155 |
|
|
ZMIN(I,J,bi,bj)=4.0 _d +08 |
| 156 |
|
|
PRESS0(I,J,bi,bj)=PRESS0(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
| 157 |
|
|
ENDDO |
| 158 |
|
|
ENDDO |
| 159 |
|
|
ENDDO |
| 160 |
|
|
ENDDO |
| 161 |
|
|
|
| 162 |
|
|
#ifdef SEAICE_ALLOW_DYNAMICS |
| 163 |
|
|
|
| 164 |
|
|
IF ( SEAICEuseDYNAMICS ) THEN |
| 165 |
|
|
|
| 166 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 167 |
|
|
CADJ STORE uice = comlev1, key=ikey_dynamics |
| 168 |
|
|
CADJ STORE vice = comlev1, key=ikey_dynamics |
| 169 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 170 |
|
|
|
| 171 |
|
|
crg what about DWAIN,DRAGS,DRAGA,ETA,ZETA |
| 172 |
|
|
|
| 173 |
|
|
crg later c$taf loop = iteration uice,vice |
| 174 |
|
|
|
| 175 |
|
|
cdm c$taf store uice,vice = comlev1_seaice_ds, |
| 176 |
|
|
cdm c$taf& key = kii + (ikey_dynamics-1) |
| 177 |
|
|
C NOW DO PREDICTOR TIME STEP |
| 178 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 179 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 180 |
|
|
DO j=1-OLy,sNy+OLy |
| 181 |
|
|
DO i=1-OLx,sNx+OLx |
| 182 |
|
|
UICE(I,J,2,bi,bj)=UICE(I,J,1,bi,bj) |
| 183 |
|
|
VICE(I,J,2,bi,bj)=VICE(I,J,1,bi,bj) |
| 184 |
|
|
UICEC(I,J,bi,bj)=UICE(I,J,1,bi,bj) |
| 185 |
|
|
VICEC(I,J,bi,bj)=VICE(I,J,1,bi,bj) |
| 186 |
|
|
ENDDO |
| 187 |
|
|
ENDDO |
| 188 |
|
|
ENDDO |
| 189 |
|
|
ENDDO |
| 190 |
|
|
|
| 191 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 192 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 193 |
|
|
DO j=1,sNy |
| 194 |
|
|
DO i=1,sNx |
| 195 |
|
|
C NOW EVALUATE STRAIN RATES |
| 196 |
|
|
E11(I,J,bi,bj)=HALF/(DXTICE(I,J,bi,bj)*CSTICE(I,J,bi,bj)) |
| 197 |
|
|
& *(UICE(I+1,J+1,1,bi,bj)+UICE(I+1,J,1,bi,bj) |
| 198 |
|
|
& -UICE(I,J+1,1,bi,bj)-UICE(I,J,1,bi,bj)) |
| 199 |
|
|
& -QUART*(VICE(I+1,J+1,1,bi,bj)+VICE(I,J+1,1,bi,bj) |
| 200 |
|
|
& +VICE(I,J,1,bi,bj)+VICE(I+1,J,1,bi,bj)) |
| 201 |
|
|
& *TNGTICE(I,J,bi,bj)/RADIUS |
| 202 |
|
|
E22(I,J,bi,bj)=HALF/DYTICE(I,J,bi,bj) |
| 203 |
|
|
& *(VICE(I+1,J+1,1,bi,bj)+VICE(I,J+1,1,bi,bj) |
| 204 |
|
|
& -VICE(I+1,J,1,bi,bj)-VICE(I,J,1,bi,bj)) |
| 205 |
|
|
E12(I,J,bi,bj)=HALF*(HALF/DYTICE(I,J,bi,bj) |
| 206 |
|
|
& *(UICE(I+1,J+1,1,bi,bj)+UICE(I,J+1,1,bi,bj) |
| 207 |
|
|
& -UICE(I+1,J,1,bi,bj)-UICE(I,J,1,bi,bj)) |
| 208 |
|
|
& +HALF/(DXTICE(I,J,bi,bj)*CSTICE(I,J,bi,bj)) |
| 209 |
|
|
& *(VICE(I+1,J+1,1,bi,bj)+VICE(I+1,J,1,bi,bj) |
| 210 |
|
|
& -VICE(I,J+1,1,bi,bj)-VICE(I,J,1,bi,bj)) |
| 211 |
|
|
& +QUART*(UICE(I+1,J+1,1,bi,bj)+UICE(I,J+1,1,bi,bj) |
| 212 |
|
|
& +UICE(I,J,1,bi,bj)+UICE(I+1,J,1,bi,bj)) |
| 213 |
|
|
& *TNGTICE(I,J,bi,bj)/RADIUS) |
| 214 |
|
|
C NOW EVALUATE VISCOSITIES |
| 215 |
|
|
DELT1=(E11(I,J,bi,bj)**2+E22(I,J,bi,bj)**2)*(ONE+ECM2) |
| 216 |
|
|
& +4.0 _d 0*ECM2*E12(I,J,bi,bj)**2 |
| 217 |
|
|
1 +TWO*E11(I,J,bi,bj)*E22(I,J,bi,bj)*(ONE-ECM2) |
| 218 |
|
|
IF ( DELT1 .LE. SEAICE_EPS_SQ ) THEN |
| 219 |
|
|
DELT2=SEAICE_EPS |
| 220 |
|
|
ELSE |
| 221 |
|
|
DELT2=SQRT(DELT1) |
| 222 |
|
|
ENDIF |
| 223 |
|
|
ZETA(I,J,bi,bj)=HALF*PRESS0(I,J,bi,bj)/DELT2 |
| 224 |
|
|
C NOW PUT MIN AND MAX VISCOSITIES IN |
| 225 |
|
|
ZETA(I,J,bi,bj)=MYMIN_R8(ZMAX(I,J,bi,bj),ZETA(I,J,bi,bj)) |
| 226 |
|
|
ZETA(I,J,bi,bj)=MYMAX_R8(ZMIN(I,J,bi,bj),ZETA(I,J,bi,bj)) |
| 227 |
|
|
C NOW SET VISCOSITIES TO ZERO AT HEFFMFLOW PTS |
| 228 |
|
|
ZETA(I,J,bi,bj)=ZETA(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
| 229 |
|
|
ETA(I,J,bi,bj)=ECM2*ZETA(I,J,bi,bj) |
| 230 |
|
|
PRESS(I,J,bi,bj)=TWO*ZETA(I,J,bi,bj)*DELT2 |
| 231 |
|
|
ENDDO |
| 232 |
|
|
ENDDO |
| 233 |
|
|
ENDDO |
| 234 |
|
|
ENDDO |
| 235 |
|
|
|
| 236 |
|
|
C-- Update overlap regions |
| 237 |
|
|
_EXCH_XY_R8(ETA, myThid) |
| 238 |
|
|
_EXCH_XY_R8(ZETA, myThid) |
| 239 |
|
|
_EXCH_XY_R8(PRESS, myThid) |
| 240 |
|
|
|
| 241 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 242 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 243 |
|
|
DO j=1,sNy |
| 244 |
|
|
DO i=1,sNx |
| 245 |
|
|
C NOW SET UP NON-LINEAR WATER DRAG, FORCEX, FORCEY |
| 246 |
|
|
TEMPVAR=(UICE(I,J,1,bi,bj)-GWATX(I,J,bi,bj))**2 |
| 247 |
|
|
& +(VICE(I,J,1,bi,bj)-GWATY(I,J,bi,bj))**2 |
| 248 |
|
|
IF ( TEMPVAR .LE. (QUART/SEAICE_waterDrag)**2 ) THEN |
| 249 |
|
|
DWATN(I,J,bi,bj)=QUART |
| 250 |
|
|
ELSE |
| 251 |
|
|
DWATN(I,J,bi,bj)=SEAICE_waterDrag*SQRT(TEMPVAR) |
| 252 |
|
|
ENDIF |
| 253 |
|
|
C NOW SET UP SYMMETTRIC DRAG |
| 254 |
|
|
DRAGS(I,J,bi,bj)=DWATN(I,J,bi,bj)*COSWAT |
| 255 |
|
|
C NOW SET UP ANTI SYMMETTRIC DRAG PLUS CORIOLIS |
| 256 |
|
|
DRAGA(I,J,bi,bj)=DWATN(I,J,bi,bj)*SINWAT+COR_ICE(I,J,bi,bj) |
| 257 |
|
|
C NOW ADD IN CURRENT FORCE |
| 258 |
|
|
FORCEX(I,J,bi,bj)=FORCEX0(I,J,bi,bj)+DWATN(I,J,bi,bj) |
| 259 |
|
|
& *(COSWAT*GWATX(I,J,bi,bj) |
| 260 |
|
|
& -SINWAT*GWATY(I,J,bi,bj)) |
| 261 |
|
|
FORCEY(I,J,bi,bj)=FORCEY0(I,J,bi,bj)+DWATN(I,J,bi,bj) |
| 262 |
|
|
& *(SINWAT*GWATX(I,J,bi,bj) |
| 263 |
|
|
& +COSWAT*GWATY(I,J,bi,bj)) |
| 264 |
|
|
C NOW CALCULATE PRESSURE FORCE AND ADD TO EXTERNAL FORCE |
| 265 |
|
|
FORCEX(I,J,bi,bj)=FORCEX(I,J,bi,bj) |
| 266 |
|
|
& -(QUART/(DXUICE(I,J,bi,bj)*CSUICE(I,J,bi,bj))) |
| 267 |
|
|
& *(PRESS(I,J,bi,bj)+PRESS(I,J-1,bi,bj) |
| 268 |
|
|
& -PRESS(I-1,J,bi,bj)-PRESS(I-1,J-1,bi,bj)) |
| 269 |
|
|
FORCEY(I,J,bi,bj)=FORCEY(I,J,bi,bj)-QUART/DYUICE(I,J,bi,bj) |
| 270 |
|
|
& *(PRESS(I,J,bi,bj)+PRESS(I-1,J,bi,bj) |
| 271 |
|
|
& -PRESS(I,J-1,bi,bj)-PRESS(I-1,J-1,bi,bj)) |
| 272 |
|
|
ENDDO |
| 273 |
|
|
ENDDO |
| 274 |
|
|
ENDDO |
| 275 |
|
|
ENDDO |
| 276 |
|
|
|
| 277 |
|
|
C NOW LSR SCHEME (ZHANG-J/HIBLER 1997) |
| 278 |
|
|
CADJ STORE uice = comlev1, key=ikey_dynamics |
| 279 |
|
|
CADJ STORE vice = comlev1, key=ikey_dynamics |
| 280 |
|
|
CALL LSR( 1, myThid ) |
| 281 |
|
|
CADJ STORE uice = comlev1, key=ikey_dynamics |
| 282 |
|
|
CADJ STORE vice = comlev1, key=ikey_dynamics |
| 283 |
|
|
|
| 284 |
|
|
C NOW DO MODIFIED EULER STEP |
| 285 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 286 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 287 |
|
|
DO j=1-OLy,sNy+OLy |
| 288 |
|
|
DO i=1-OLx,sNx+OLx |
| 289 |
|
|
UICE(I,J,1,bi,bj)=HALF*(UICE(I,J,1,bi,bj)+UICE(I,J,2,bi,bj)) |
| 290 |
|
|
VICE(I,J,1,bi,bj)=HALF*(VICE(I,J,1,bi,bj)+VICE(I,J,2,bi,bj)) |
| 291 |
|
|
UICEC(I,J,bi,bj)=UICE(I,J,1,bi,bj) |
| 292 |
|
|
VICEC(I,J,bi,bj)=VICE(I,J,1,bi,bj) |
| 293 |
|
|
ENDDO |
| 294 |
|
|
ENDDO |
| 295 |
|
|
ENDDO |
| 296 |
|
|
ENDDO |
| 297 |
|
|
|
| 298 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 299 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 300 |
|
|
DO j=1,sNy |
| 301 |
|
|
DO i=1,sNx |
| 302 |
|
|
C NOW EVALUATE STRAIN RATES |
| 303 |
|
|
E11(I,J,bi,bj)=HALF/(DXTICE(I,J,bi,bj)*CSTICE(I,J,bi,bj)) |
| 304 |
|
|
& *(UICE(I+1,J+1,1,bi,bj)+UICE(I+1,J,1,bi,bj) |
| 305 |
|
|
& -UICE(I,J+1,1,bi,bj)-UICE(I,J,1,bi,bj)) |
| 306 |
|
|
& -QUART*(VICE(I+1,J+1,1,bi,bj)+VICE(I,J+1,1,bi,bj) |
| 307 |
|
|
& +VICE(I,J,1,bi,bj)+VICE(I+1,J,1,bi,bj)) |
| 308 |
|
|
& *TNGTICE(I,J,bi,bj)/RADIUS |
| 309 |
|
|
E22(I,J,bi,bj)=HALF/DYTICE(I,J,bi,bj) |
| 310 |
|
|
& *(VICE(I+1,J+1,1,bi,bj)+VICE(I,J+1,1,bi,bj) |
| 311 |
|
|
& -VICE(I+1,J,1,bi,bj)-VICE(I,J,1,bi,bj)) |
| 312 |
|
|
E12(I,J,bi,bj)=HALF*(HALF/DYTICE(I,J,bi,bj) |
| 313 |
|
|
& *(UICE(I+1,J+1,1,bi,bj)+UICE(I,J+1,1,bi,bj) |
| 314 |
|
|
& -UICE(I+1,J,1,bi,bj)-UICE(I,J,1,bi,bj)) |
| 315 |
|
|
& +HALF/(DXTICE(I,J,bi,bj)*CSTICE(I,J,bi,bj)) |
| 316 |
|
|
& *(VICE(I+1,J+1,1,bi,bj)+VICE(I+1,J,1,bi,bj) |
| 317 |
|
|
& -VICE(I,J+1,1,bi,bj)-VICE(I,J,1,bi,bj)) |
| 318 |
|
|
& +QUART*(UICE(I+1,J+1,1,bi,bj)+UICE(I,J+1,1,bi,bj) |
| 319 |
|
|
& +UICE(I,J,1,bi,bj)+UICE(I+1,J,1,bi,bj)) |
| 320 |
|
|
& *TNGTICE(I,J,bi,bj)/RADIUS) |
| 321 |
|
|
C NOW EVALUATE VISCOSITIES |
| 322 |
|
|
DELT1=(E11(I,J,bi,bj)**2+E22(I,J,bi,bj)**2)*(ONE+ECM2) |
| 323 |
|
|
& +4. _d 0*ECM2*E12(I,J,bi,bj)**2 |
| 324 |
|
|
1 +TWO*E11(I,J,bi,bj)*E22(I,J,bi,bj)*(ONE-ECM2) |
| 325 |
|
|
IF ( DELT1 .LE. SEAICE_EPS_SQ ) THEN |
| 326 |
|
|
DELT2=SEAICE_EPS |
| 327 |
|
|
ELSE |
| 328 |
|
|
DELT2=SQRT(DELT1) |
| 329 |
|
|
ENDIF |
| 330 |
|
|
ZETA(I,J,bi,bj)=HALF*PRESS0(I,J,bi,bj)/DELT2 |
| 331 |
|
|
C NOW PUT MIN AND MAX VISCOSITIES IN |
| 332 |
|
|
ZETA(I,J,bi,bj)=MYMIN_R8(ZMAX(I,J,bi,bj),ZETA(I,J,bi,bj)) |
| 333 |
|
|
ZETA(I,J,bi,bj)=MYMAX_R8(ZMIN(I,J,bi,bj),ZETA(I,J,bi,bj)) |
| 334 |
|
|
C NOW SET VISCOSITIES TO ZERO AT HEFFMFLOW PTS |
| 335 |
|
|
ZETA(I,J,bi,bj)=ZETA(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
| 336 |
|
|
ETA(I,J,bi,bj)=ECM2*ZETA(I,J,bi,bj) |
| 337 |
|
|
PRESS(I,J,bi,bj)=TWO*ZETA(I,J,bi,bj)*DELT2 |
| 338 |
|
|
ENDDO |
| 339 |
|
|
ENDDO |
| 340 |
|
|
ENDDO |
| 341 |
|
|
ENDDO |
| 342 |
|
|
|
| 343 |
|
|
C-- Update overlap regions |
| 344 |
|
|
_EXCH_XY_R8(ETA, myThid) |
| 345 |
|
|
_EXCH_XY_R8(ZETA, myThid) |
| 346 |
|
|
_EXCH_XY_R8(PRESS, myThid) |
| 347 |
|
|
|
| 348 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 349 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 350 |
|
|
DO j=1,sNy |
| 351 |
|
|
DO i=1,sNx |
| 352 |
|
|
C NOW SET UP NON-LINEAR WATER DRAG, FORCEX, FORCEY |
| 353 |
|
|
TEMPVAR=(UICE(I,J,1,bi,bj)-GWATX(I,J,bi,bj))**2 |
| 354 |
|
|
& +(VICE(I,J,1,bi,bj)-GWATY(I,J,bi,bj))**2 |
| 355 |
|
|
IF ( TEMPVAR .LE. (QUART/SEAICE_waterDrag)**2 ) THEN |
| 356 |
|
|
DWATN(I,J,bi,bj)=QUART |
| 357 |
|
|
ELSE |
| 358 |
|
|
DWATN(I,J,bi,bj)=SEAICE_waterDrag*SQRT(TEMPVAR) |
| 359 |
|
|
ENDIF |
| 360 |
|
|
C NOW SET UP SYMMETTRIC DRAG |
| 361 |
|
|
DRAGS(I,J,bi,bj)=DWATN(I,J,bi,bj)*COSWAT |
| 362 |
|
|
C NOW SET UP ANTI SYMMETTRIC DRAG PLUS CORIOLIS |
| 363 |
|
|
DRAGA(I,J,bi,bj)=DWATN(I,J,bi,bj)*SINWAT+COR_ICE(I,J,bi,bj) |
| 364 |
|
|
C NOW ADD IN CURRENT FORCE |
| 365 |
|
|
FORCEX(I,J,bi,bj)=FORCEX0(I,J,bi,bj)+DWATN(I,J,bi,bj) |
| 366 |
|
|
& *(COSWAT*GWATX(I,J,bi,bj) |
| 367 |
|
|
& -SINWAT*GWATY(I,J,bi,bj)) |
| 368 |
|
|
FORCEY(I,J,bi,bj)=FORCEY0(I,J,bi,bj)+DWATN(I,J,bi,bj) |
| 369 |
|
|
& *(SINWAT*GWATX(I,J,bi,bj) |
| 370 |
|
|
& +COSWAT*GWATY(I,J,bi,bj)) |
| 371 |
|
|
C NOW CALCULATE PRESSURE FORCE AND ADD TO EXTERNAL FORCE |
| 372 |
|
|
FORCEX(I,J,bi,bj)=FORCEX(I,J,bi,bj) |
| 373 |
|
|
& -(QUART/(DXUICE(I,J,bi,bj)*CSUICE(I,J,bi,bj))) |
| 374 |
|
|
& *(PRESS(I,J,bi,bj)+PRESS(I,J-1,bi,bj) |
| 375 |
|
|
& -PRESS(I-1,J,bi,bj)-PRESS(I-1,J-1,bi,bj)) |
| 376 |
|
|
FORCEY(I,J,bi,bj)=FORCEY(I,J,bi,bj)-QUART/DYUICE(I,J,bi,bj) |
| 377 |
|
|
& *(PRESS(I,J,bi,bj)+PRESS(I-1,J,bi,bj) |
| 378 |
|
|
& -PRESS(I,J-1,bi,bj)-PRESS(I-1,J-1,bi,bj)) |
| 379 |
|
|
ENDDO |
| 380 |
|
|
ENDDO |
| 381 |
|
|
ENDDO |
| 382 |
|
|
ENDDO |
| 383 |
|
|
|
| 384 |
|
|
C NOW LSR SCHEME (ZHANG-J/HIBLER 1997) |
| 385 |
|
|
CALL LSR( 2, myThid ) |
| 386 |
|
|
|
| 387 |
|
|
cdm c$taf store uice,vice = comlev1, key=ikey_dynamics |
| 388 |
|
|
|
| 389 |
|
|
ENDIF |
| 390 |
|
|
#endif /* SEAICE_ALLOW_DYNAMICS */ |
| 391 |
|
|
|
| 392 |
|
|
C Calculate ocean surface stress |
| 393 |
|
|
CALL OSTRES ( DWATN, COR_ICE, myThid ) |
| 394 |
|
|
|
| 395 |
|
|
#ifdef SEAICE_ALLOW_DYNAMICS |
| 396 |
|
|
|
| 397 |
|
|
IF ( SEAICEuseDYNAMICS ) THEN |
| 398 |
|
|
|
| 399 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 400 |
|
|
CADJ STORE uice = comlev1, key=ikey_dynamics |
| 401 |
|
|
CADJ STORE vice = comlev1, key=ikey_dynamics |
| 402 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 403 |
|
|
c Put a cap on ice velocity |
| 404 |
|
|
c limit velocity to 0.40 m s-1 to avoid potential CFL violations |
| 405 |
|
|
c in open water areas (drift of zero thickness ice) |
| 406 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 407 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 408 |
|
|
DO j=1-OLy,sNy+OLy |
| 409 |
|
|
DO i=1-OLx,sNx+OLx |
| 410 |
|
|
#ifdef SEAICE_DEBUG |
| 411 |
|
|
c write(*,'(2i4,2i2,f7.1,7f12.3)') |
| 412 |
|
|
c & i,j,bi,bj,UVM(I,J,bi,bj),amass(i,j,bi,bj) |
| 413 |
|
|
c & ,gwatx(I,J,bi,bj),gwaty(i,j,bi,bj) |
| 414 |
|
|
c & ,forcex(I,J,bi,bj),forcey(i,j,bi,bj) |
| 415 |
|
|
c & ,uice(i,j,1,bi,bj) |
| 416 |
|
|
c & ,vice(i,j,1,bi,bj) |
| 417 |
|
|
#endif /* SEAICE_DEBUG */ |
| 418 |
|
|
UICE(i,j,1,bi,bj)=mymin_R8(UICE(i,j,1,bi,bj),0.40 _d +00) |
| 419 |
|
|
VICE(i,j,1,bi,bj)=mymin_R8(VICE(i,j,1,bi,bj),0.40 _d +00) |
| 420 |
|
|
ENDDO |
| 421 |
|
|
ENDDO |
| 422 |
|
|
ENDDO |
| 423 |
|
|
ENDDO |
| 424 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 425 |
|
|
CADJ STORE uice = comlev1, key=ikey_dynamics |
| 426 |
|
|
CADJ STORE vice = comlev1, key=ikey_dynamics |
| 427 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 428 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 429 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 430 |
|
|
DO j=1-OLy,sNy+OLy |
| 431 |
|
|
DO i=1-OLx,sNx+OLx |
| 432 |
|
|
UICE(i,j,1,bi,bj)=mymax_R8(UICE(i,j,1,bi,bj),-0.40 _d +00) |
| 433 |
|
|
VICE(i,j,1,bi,bj)=mymax_R8(VICE(i,j,1,bi,bj),-0.40 _d +00) |
| 434 |
|
|
ENDDO |
| 435 |
|
|
ENDDO |
| 436 |
|
|
ENDDO |
| 437 |
|
|
ENDDO |
| 438 |
|
|
|
| 439 |
|
|
ENDIF |
| 440 |
|
|
#endif /* SEAICE_ALLOW_DYNAMICS */ |
| 441 |
|
|
|
| 442 |
|
|
#endif /* ALLOW_SEAICE */ |
| 443 |
|
|
|
| 444 |
|
|
RETURN |
| 445 |
|
|
END |