| 1 |
C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.178 2016/11/28 23:05:05 jmc Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "PACKAGES_CONFIG.h" |
| 5 |
#include "CPP_OPTIONS.h" |
| 6 |
#ifdef ALLOW_AUTODIFF |
| 7 |
# include "AUTODIFF_OPTIONS.h" |
| 8 |
#endif |
| 9 |
#ifdef ALLOW_MOM_COMMON |
| 10 |
# include "MOM_COMMON_OPTIONS.h" |
| 11 |
#endif |
| 12 |
#ifdef ALLOW_OBCS |
| 13 |
# include "OBCS_OPTIONS.h" |
| 14 |
#endif |
| 15 |
#ifdef ALLOW_SHELFICE |
| 16 |
# include "SHELFICE_OPTIONS.h" |
| 17 |
#endif |
| 18 |
|
| 19 |
#undef DYNAMICS_GUGV_EXCH_CHECK |
| 20 |
|
| 21 |
CBOP |
| 22 |
C !ROUTINE: DYNAMICS |
| 23 |
C !INTERFACE: |
| 24 |
SUBROUTINE DYNAMICS(myTime, myIter, myThid) |
| 25 |
C !DESCRIPTION: \bv |
| 26 |
C *==========================================================* |
| 27 |
C | SUBROUTINE DYNAMICS |
| 28 |
C | o Controlling routine for the explicit part of the model |
| 29 |
C | dynamics. |
| 30 |
C *==========================================================* |
| 31 |
C \ev |
| 32 |
C !USES: |
| 33 |
IMPLICIT NONE |
| 34 |
C == Global variables === |
| 35 |
#include "SIZE.h" |
| 36 |
#include "EEPARAMS.h" |
| 37 |
#include "PARAMS.h" |
| 38 |
#include "GRID.h" |
| 39 |
#include "DYNVARS.h" |
| 40 |
#ifdef ALLOW_MOM_COMMON |
| 41 |
# include "MOM_VISC.h" |
| 42 |
#endif |
| 43 |
#ifdef ALLOW_CD_CODE |
| 44 |
# include "CD_CODE_VARS.h" |
| 45 |
#endif |
| 46 |
#ifdef ALLOW_AUTODIFF |
| 47 |
# include "tamc.h" |
| 48 |
# include "tamc_keys.h" |
| 49 |
# include "FFIELDS.h" |
| 50 |
# include "EOS.h" |
| 51 |
# ifdef ALLOW_KPP |
| 52 |
# include "KPP.h" |
| 53 |
# endif |
| 54 |
# ifdef ALLOW_PTRACERS |
| 55 |
# include "PTRACERS_SIZE.h" |
| 56 |
# include "PTRACERS_FIELDS.h" |
| 57 |
# endif |
| 58 |
# ifdef ALLOW_OBCS |
| 59 |
# include "OBCS_PARAMS.h" |
| 60 |
# include "OBCS_FIELDS.h" |
| 61 |
# ifdef ALLOW_PTRACERS |
| 62 |
# include "OBCS_PTRACERS.h" |
| 63 |
# endif |
| 64 |
# endif |
| 65 |
# ifdef ALLOW_MOM_FLUXFORM |
| 66 |
# include "MOM_FLUXFORM.h" |
| 67 |
# endif |
| 68 |
#endif /* ALLOW_AUTODIFF */ |
| 69 |
#ifdef ALLOW_SHELFICE_GROUNDED_ICE |
| 70 |
# include "SURFACE.h" |
| 71 |
#endif |
| 72 |
|
| 73 |
C !CALLING SEQUENCE: |
| 74 |
C DYNAMICS() |
| 75 |
C | |
| 76 |
C |-- CALC_EP_FORCING |
| 77 |
C | |
| 78 |
C |-- CALC_GRAD_PHI_SURF |
| 79 |
C | |
| 80 |
C |-- CALC_VISCOSITY |
| 81 |
C | |
| 82 |
C |-- MOM_CALC_3D_STRAIN |
| 83 |
C | |
| 84 |
C |-- CALC_EDDY_STRESS |
| 85 |
C | |
| 86 |
C |-- CALC_PHI_HYD |
| 87 |
C | |
| 88 |
C |-- MOM_FLUXFORM |
| 89 |
C | |
| 90 |
C |-- MOM_VECINV |
| 91 |
C | |
| 92 |
C |-- MOM_CALC_SMAG_3D |
| 93 |
C |-- MOM_UV_SMAG_3D |
| 94 |
C | |
| 95 |
C |-- TIMESTEP |
| 96 |
C | |
| 97 |
C |-- MOM_U_IMPLICIT_R |
| 98 |
C |-- MOM_V_IMPLICIT_R |
| 99 |
C | |
| 100 |
C |-- IMPLDIFF |
| 101 |
C | |
| 102 |
C |-- OBCS_APPLY_UV |
| 103 |
C | |
| 104 |
C |-- CALC_GW |
| 105 |
C | |
| 106 |
C |-- DIAGNOSTICS_FILL |
| 107 |
C |-- DEBUG_STATS_RL |
| 108 |
|
| 109 |
C !INPUT/OUTPUT PARAMETERS: |
| 110 |
C == Routine arguments == |
| 111 |
C myTime :: Current time in simulation |
| 112 |
C myIter :: Current iteration number in simulation |
| 113 |
C myThid :: Thread number for this instance of the routine. |
| 114 |
_RL myTime |
| 115 |
INTEGER myIter |
| 116 |
INTEGER myThid |
| 117 |
|
| 118 |
C !FUNCTIONS: |
| 119 |
#ifdef ALLOW_DIAGNOSTICS |
| 120 |
LOGICAL DIAGNOSTICS_IS_ON |
| 121 |
EXTERNAL DIAGNOSTICS_IS_ON |
| 122 |
#endif |
| 123 |
|
| 124 |
C !LOCAL VARIABLES: |
| 125 |
C == Local variables |
| 126 |
C fVer[UV] o fVer: Vertical flux term - note fVer |
| 127 |
C is "pipelined" in the vertical |
| 128 |
C so we need an fVer for each |
| 129 |
C variable. |
| 130 |
C phiHydC :: hydrostatic potential anomaly at cell center |
| 131 |
C In z coords phiHyd is the hydrostatic potential |
| 132 |
C (=pressure/rho0) anomaly |
| 133 |
C In p coords phiHyd is the geopotential height anomaly. |
| 134 |
C phiHydF :: hydrostatic potential anomaly at middle between 2 centers |
| 135 |
C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom. |
| 136 |
C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean) |
| 137 |
C phiSurfY or geopotential (atmos) in X and Y direction |
| 138 |
C guDissip :: dissipation tendency (all explicit terms), u component |
| 139 |
C gvDissip :: dissipation tendency (all explicit terms), v component |
| 140 |
C kappaRU :: vertical viscosity for velocity U-component |
| 141 |
C kappaRV :: vertical viscosity for velocity V-component |
| 142 |
C iMin, iMax :: Ranges and sub-block indices on which calculations |
| 143 |
C jMin, jMax are applied. |
| 144 |
C bi, bj :: tile indices |
| 145 |
C k :: current level index |
| 146 |
C km1, kp1 :: index of level above (k-1) and below (k+1) |
| 147 |
C kUp, kDown :: Index for interface above and below. kUp and kDown are |
| 148 |
C are switched with k to be the appropriate index into fVerU,V |
| 149 |
_RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 150 |
_RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 151 |
_RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 152 |
_RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 153 |
_RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 154 |
_RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 155 |
_RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 156 |
_RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 157 |
_RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 158 |
_RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 159 |
_RL kappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) |
| 160 |
_RL kappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) |
| 161 |
#ifdef ALLOW_SMAG_3D |
| 162 |
C str11 :: strain component Vxx @ grid-cell center |
| 163 |
C str22 :: strain component Vyy @ grid-cell center |
| 164 |
C str33 :: strain component Vzz @ grid-cell center |
| 165 |
C str12 :: strain component Vxy @ grid-cell corner |
| 166 |
C str13 :: strain component Vxz @ above uVel |
| 167 |
C str23 :: strain component Vyz @ above vVel |
| 168 |
C viscAh3d_00 :: Smagorinsky viscosity @ grid-cell center |
| 169 |
C viscAh3d_12 :: Smagorinsky viscosity @ grid-cell corner |
| 170 |
C viscAh3d_13 :: Smagorinsky viscosity @ above uVel |
| 171 |
C viscAh3d_23 :: Smagorinsky viscosity @ above vVel |
| 172 |
C addDissU :: zonal momentum tendency from 3-D Smag. viscosity |
| 173 |
C addDissV :: merid momentum tendency from 3-D Smag. viscosity |
| 174 |
_RL str11(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) |
| 175 |
_RL str22(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) |
| 176 |
_RL str33(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) |
| 177 |
_RL str12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) |
| 178 |
_RL str13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) |
| 179 |
_RL str23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) |
| 180 |
_RL viscAh3d_00(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) |
| 181 |
_RL viscAh3d_12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) |
| 182 |
_RL viscAh3d_13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) |
| 183 |
_RL viscAh3d_23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) |
| 184 |
_RL addDissU(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 185 |
_RL addDissV(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 186 |
#elif ( defined ALLOW_NONHYDROSTATIC ) |
| 187 |
_RL str13(1), str23(1), str33(1) |
| 188 |
_RL viscAh3d_00(1), viscAh3d_13(1), viscAh3d_23(1) |
| 189 |
#endif |
| 190 |
|
| 191 |
INTEGER bi, bj |
| 192 |
INTEGER i, j |
| 193 |
INTEGER k, km1, kp1, kUp, kDown |
| 194 |
INTEGER iMin, iMax |
| 195 |
INTEGER jMin, jMax |
| 196 |
PARAMETER( iMin = 0 , iMax = sNx+1 ) |
| 197 |
PARAMETER( jMin = 0 , jMax = sNy+1 ) |
| 198 |
|
| 199 |
#ifdef ALLOW_DIAGNOSTICS |
| 200 |
LOGICAL dPhiHydDiagIsOn |
| 201 |
_RL tmpFac |
| 202 |
#endif /* ALLOW_DIAGNOSTICS */ |
| 203 |
|
| 204 |
C--- The algorithm... |
| 205 |
C |
| 206 |
C "Correction Step" |
| 207 |
C ================= |
| 208 |
C Here we update the horizontal velocities with the surface |
| 209 |
C pressure such that the resulting flow is either consistent |
| 210 |
C with the free-surface evolution or the rigid-lid: |
| 211 |
C U[n] = U* + dt x d/dx P |
| 212 |
C V[n] = V* + dt x d/dy P |
| 213 |
C |
| 214 |
C "Calculation of Gs" |
| 215 |
C =================== |
| 216 |
C This is where all the accelerations and tendencies (ie. |
| 217 |
C physics, parameterizations etc...) are calculated |
| 218 |
C rho = rho ( theta[n], salt[n] ) |
| 219 |
C b = b(rho, theta) |
| 220 |
C K31 = K31 ( rho ) |
| 221 |
C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) |
| 222 |
C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) |
| 223 |
C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) |
| 224 |
C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) |
| 225 |
C |
| 226 |
C "Time-stepping" or "Prediction" |
| 227 |
C ================================ |
| 228 |
C The models variables are stepped forward with the appropriate |
| 229 |
C time-stepping scheme (currently we use Adams-Bashforth II) |
| 230 |
C - For momentum, the result is always *only* a "prediction" |
| 231 |
C in that the flow may be divergent and will be "corrected" |
| 232 |
C later with a surface pressure gradient. |
| 233 |
C - Normally for tracers the result is the new field at time |
| 234 |
C level [n+1} *BUT* in the case of implicit diffusion the result |
| 235 |
C is also *only* a prediction. |
| 236 |
C - We denote "predictors" with an asterisk (*). |
| 237 |
C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) |
| 238 |
C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) |
| 239 |
C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 240 |
C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 241 |
C With implicit diffusion: |
| 242 |
C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 243 |
C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 244 |
C (1 + dt * K * d_zz) theta[n] = theta* |
| 245 |
C (1 + dt * K * d_zz) salt[n] = salt* |
| 246 |
C--- |
| 247 |
CEOP |
| 248 |
|
| 249 |
#ifdef ALLOW_DEBUG |
| 250 |
IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid ) |
| 251 |
#endif |
| 252 |
|
| 253 |
#ifdef ALLOW_DIAGNOSTICS |
| 254 |
dPhiHydDiagIsOn = .FALSE. |
| 255 |
IF ( useDiagnostics ) |
| 256 |
& dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid ) |
| 257 |
& .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid ) |
| 258 |
#endif |
| 259 |
|
| 260 |
C-- Call to routine for calculation of Eliassen-Palm-flux-forced |
| 261 |
C U-tendency, if desired: |
| 262 |
#ifdef INCLUDE_EP_FORCING_CODE |
| 263 |
CALL CALC_EP_FORCING(myThid) |
| 264 |
#endif |
| 265 |
|
| 266 |
#ifdef ALLOW_AUTODIFF_MONITOR_DIAG |
| 267 |
CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid ) |
| 268 |
#endif |
| 269 |
|
| 270 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 271 |
C-- HPF directive to help TAMC |
| 272 |
CHPF$ INDEPENDENT |
| 273 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 274 |
|
| 275 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 276 |
|
| 277 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 278 |
C-- HPF directive to help TAMC |
| 279 |
CHPF$ INDEPENDENT, NEW (fVerU,fVerV |
| 280 |
CHPF$& ,phiHydF |
| 281 |
CHPF$& ,kappaRU,kappaRV |
| 282 |
CHPF$& ) |
| 283 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 284 |
|
| 285 |
#ifdef ALLOW_SHELFICE_GROUNDED_ICE |
| 286 |
_EXCH_XY_RL (phi0surf, mythid) |
| 287 |
#endif |
| 288 |
|
| 289 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 290 |
|
| 291 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 292 |
act1 = bi - myBxLo(myThid) |
| 293 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
| 294 |
act2 = bj - myByLo(myThid) |
| 295 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
| 296 |
act3 = myThid - 1 |
| 297 |
max3 = nTx*nTy |
| 298 |
act4 = ikey_dynamics - 1 |
| 299 |
idynkey = (act1 + 1) + act2*max1 |
| 300 |
& + act3*max1*max2 |
| 301 |
& + act4*max1*max2*max3 |
| 302 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 303 |
|
| 304 |
C-- Set up work arrays with valid (i.e. not NaN) values |
| 305 |
C These initial values do not alter the numerical results. They |
| 306 |
C just ensure that all memory references are to valid floating |
| 307 |
C point numbers. This prevents spurious hardware signals due to |
| 308 |
C uninitialised but inert locations. |
| 309 |
|
| 310 |
#ifdef ALLOW_AUTODIFF |
| 311 |
DO k=1,Nr |
| 312 |
DO j=1-OLy,sNy+OLy |
| 313 |
DO i=1-OLx,sNx+OLx |
| 314 |
c-- need some re-initialisation here to break dependencies |
| 315 |
gU(i,j,k,bi,bj) = 0. _d 0 |
| 316 |
gV(i,j,k,bi,bj) = 0. _d 0 |
| 317 |
ENDDO |
| 318 |
ENDDO |
| 319 |
ENDDO |
| 320 |
#endif /* ALLOW_AUTODIFF */ |
| 321 |
DO j=1-OLy,sNy+OLy |
| 322 |
DO i=1-OLx,sNx+OLx |
| 323 |
fVerU (i,j,1) = 0. _d 0 |
| 324 |
fVerU (i,j,2) = 0. _d 0 |
| 325 |
fVerV (i,j,1) = 0. _d 0 |
| 326 |
fVerV (i,j,2) = 0. _d 0 |
| 327 |
phiHydF (i,j) = 0. _d 0 |
| 328 |
phiHydC (i,j) = 0. _d 0 |
| 329 |
#ifndef INCLUDE_PHIHYD_CALCULATION_CODE |
| 330 |
dPhiHydX(i,j) = 0. _d 0 |
| 331 |
dPhiHydY(i,j) = 0. _d 0 |
| 332 |
#endif |
| 333 |
phiSurfX(i,j) = 0. _d 0 |
| 334 |
phiSurfY(i,j) = 0. _d 0 |
| 335 |
guDissip(i,j) = 0. _d 0 |
| 336 |
gvDissip(i,j) = 0. _d 0 |
| 337 |
#ifdef ALLOW_AUTODIFF |
| 338 |
phiHydLow(i,j,bi,bj) = 0. _d 0 |
| 339 |
# if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM) |
| 340 |
# ifndef DISABLE_RSTAR_CODE |
| 341 |
dWtransC(i,j,bi,bj) = 0. _d 0 |
| 342 |
dWtransU(i,j,bi,bj) = 0. _d 0 |
| 343 |
dWtransV(i,j,bi,bj) = 0. _d 0 |
| 344 |
# endif |
| 345 |
# endif |
| 346 |
#endif /* ALLOW_AUTODIFF */ |
| 347 |
ENDDO |
| 348 |
ENDDO |
| 349 |
|
| 350 |
C-- Start computation of dynamics |
| 351 |
|
| 352 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 353 |
CADJ STORE wVel (:,:,:,bi,bj) = |
| 354 |
CADJ & comlev1_bibj, key=idynkey, byte=isbyte |
| 355 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 356 |
|
| 357 |
C-- Explicit part of the Surface Potential Gradient (add in TIMESTEP) |
| 358 |
C (note: this loop will be replaced by CALL CALC_GRAD_ETA) |
| 359 |
IF (implicSurfPress.NE.1.) THEN |
| 360 |
CALL CALC_GRAD_PHI_SURF( |
| 361 |
I bi,bj,iMin,iMax,jMin,jMax, |
| 362 |
I etaN, |
| 363 |
O phiSurfX,phiSurfY, |
| 364 |
I myThid ) |
| 365 |
ENDIF |
| 366 |
|
| 367 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 368 |
CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte |
| 369 |
CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte |
| 370 |
#ifdef ALLOW_KPP |
| 371 |
CADJ STORE KPPviscAz (:,:,:,bi,bj) |
| 372 |
CADJ & = comlev1_bibj, key=idynkey, byte=isbyte |
| 373 |
#endif /* ALLOW_KPP */ |
| 374 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 375 |
|
| 376 |
#ifndef ALLOW_AUTODIFF |
| 377 |
IF ( .NOT.momViscosity ) THEN |
| 378 |
#endif |
| 379 |
DO k=1,Nr+1 |
| 380 |
DO j=1-OLy,sNy+OLy |
| 381 |
DO i=1-OLx,sNx+OLx |
| 382 |
kappaRU(i,j,k) = 0. _d 0 |
| 383 |
kappaRV(i,j,k) = 0. _d 0 |
| 384 |
ENDDO |
| 385 |
ENDDO |
| 386 |
ENDDO |
| 387 |
#ifndef ALLOW_AUTODIFF |
| 388 |
ENDIF |
| 389 |
#endif |
| 390 |
#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL |
| 391 |
C-- Calculate the total vertical viscosity |
| 392 |
IF ( momViscosity ) THEN |
| 393 |
CALL CALC_VISCOSITY( |
| 394 |
I bi,bj, iMin,iMax,jMin,jMax, |
| 395 |
O kappaRU, kappaRV, |
| 396 |
I myThid ) |
| 397 |
ENDIF |
| 398 |
#endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */ |
| 399 |
|
| 400 |
#ifdef ALLOW_SMAG_3D |
| 401 |
IF ( useSmag3D ) THEN |
| 402 |
CALL MOM_CALC_3D_STRAIN( |
| 403 |
O str11, str22, str33, str12, str13, str23, |
| 404 |
I bi, bj, myThid ) |
| 405 |
ENDIF |
| 406 |
#endif /* ALLOW_SMAG_3D */ |
| 407 |
|
| 408 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 409 |
CADJ STORE kappaRU(:,:,:) |
| 410 |
CADJ & = comlev1_bibj, key=idynkey, byte=isbyte |
| 411 |
CADJ STORE kappaRV(:,:,:) |
| 412 |
CADJ & = comlev1_bibj, key=idynkey, byte=isbyte |
| 413 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 414 |
|
| 415 |
#ifdef ALLOW_OBCS |
| 416 |
C-- For Stevens boundary conditions velocities need to be extrapolated |
| 417 |
C (copied) to a narrow strip outside the domain |
| 418 |
IF ( useOBCS ) THEN |
| 419 |
CALL OBCS_COPY_UV_N( |
| 420 |
U uVel(1-OLx,1-OLy,1,bi,bj), |
| 421 |
U vVel(1-OLx,1-OLy,1,bi,bj), |
| 422 |
I Nr, bi, bj, myThid ) |
| 423 |
ENDIF |
| 424 |
#endif /* ALLOW_OBCS */ |
| 425 |
|
| 426 |
#ifdef ALLOW_EDDYPSI |
| 427 |
CALL CALC_EDDY_STRESS(bi,bj,myThid) |
| 428 |
#endif |
| 429 |
|
| 430 |
C-- Start of dynamics loop |
| 431 |
DO k=1,Nr |
| 432 |
|
| 433 |
C-- km1 Points to level above k (=k-1) |
| 434 |
C-- kup Cycles through 1,2 to point to layer above |
| 435 |
C-- kDown Cycles through 2,1 to point to current layer |
| 436 |
|
| 437 |
km1 = MAX(1,k-1) |
| 438 |
kp1 = MIN(k+1,Nr) |
| 439 |
kup = 1+MOD(k+1,2) |
| 440 |
kDown= 1+MOD(k,2) |
| 441 |
|
| 442 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 443 |
kkey = (idynkey-1)*Nr + k |
| 444 |
CADJ STORE totPhiHyd (:,:,k,bi,bj) |
| 445 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 446 |
CADJ STORE phiHydLow (:,:,bi,bj) |
| 447 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 448 |
CADJ STORE theta (:,:,k,bi,bj) |
| 449 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 450 |
CADJ STORE salt (:,:,k,bi,bj) |
| 451 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 452 |
# ifdef NONLIN_FRSURF |
| 453 |
cph-test |
| 454 |
CADJ STORE phiHydC (:,:) |
| 455 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 456 |
CADJ STORE phiHydF (:,:) |
| 457 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 458 |
CADJ STORE gU(:,:,k,bi,bj) |
| 459 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 460 |
CADJ STORE gV(:,:,k,bi,bj) |
| 461 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 462 |
# ifndef ALLOW_ADAMSBASHFORTH_3 |
| 463 |
CADJ STORE guNm1(:,:,k,bi,bj) |
| 464 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 465 |
CADJ STORE gvNm1(:,:,k,bi,bj) |
| 466 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 467 |
# else |
| 468 |
CADJ STORE guNm(:,:,k,bi,bj,1) |
| 469 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 470 |
CADJ STORE guNm(:,:,k,bi,bj,2) |
| 471 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 472 |
CADJ STORE gvNm(:,:,k,bi,bj,1) |
| 473 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 474 |
CADJ STORE gvNm(:,:,k,bi,bj,2) |
| 475 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 476 |
# endif |
| 477 |
# ifdef ALLOW_CD_CODE |
| 478 |
CADJ STORE uNM1(:,:,k,bi,bj) |
| 479 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 480 |
CADJ STORE vNM1(:,:,k,bi,bj) |
| 481 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 482 |
CADJ STORE uVelD(:,:,k,bi,bj) |
| 483 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 484 |
CADJ STORE vVelD(:,:,k,bi,bj) |
| 485 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 486 |
# endif |
| 487 |
# endif /* NONLIN_FRSURF */ |
| 488 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 489 |
|
| 490 |
C-- Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0 |
| 491 |
CALL CALC_PHI_HYD( |
| 492 |
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 493 |
I theta, salt, |
| 494 |
U phiHydF, |
| 495 |
O phiHydC, dPhiHydX, dPhiHydY, |
| 496 |
I myTime, myIter, myThid ) |
| 497 |
#ifdef ALLOW_DIAGNOSTICS |
| 498 |
IF ( dPhiHydDiagIsOn ) THEN |
| 499 |
tmpFac = -1. _d 0 |
| 500 |
CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1, |
| 501 |
& 'Um_dPHdx', k, 1, 2, bi, bj, myThid ) |
| 502 |
CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1, |
| 503 |
& 'Vm_dPHdy', k, 1, 2, bi, bj, myThid ) |
| 504 |
ENDIF |
| 505 |
#endif /* ALLOW_DIAGNOSTICS */ |
| 506 |
|
| 507 |
C-- Calculate accelerations in the momentum equations (gU, gV, ...) |
| 508 |
C and step forward storing the result in gU, gV, etc... |
| 509 |
IF ( momStepping ) THEN |
| 510 |
#ifdef ALLOW_AUTODIFF |
| 511 |
DO j=1-OLy,sNy+OLy |
| 512 |
DO i=1-OLx,sNx+OLx |
| 513 |
guDissip(i,j) = 0. _d 0 |
| 514 |
gvDissip(i,j) = 0. _d 0 |
| 515 |
ENDDO |
| 516 |
ENDDO |
| 517 |
#endif /* ALLOW_AUTODIFF */ |
| 518 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 519 |
# if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM) |
| 520 |
# ifndef DISABLE_RSTAR_CODE |
| 521 |
CADJ STORE dWtransC(:,:,bi,bj) |
| 522 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 523 |
CADJ STORE dWtransU(:,:,bi,bj) |
| 524 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 525 |
CADJ STORE dWtransV(:,:,bi,bj) |
| 526 |
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte |
| 527 |
# endif |
| 528 |
# endif /* NONLIN_FRSURF and ALLOW_MOM_FLUXFORM */ |
| 529 |
# if (defined NONLIN_FRSURF) || (defined ALLOW_DEPTH_CONTROL) |
| 530 |
CADJ STORE fVerU(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 531 |
CADJ STORE fVerV(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 532 |
# endif |
| 533 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 534 |
IF (.NOT. vectorInvariantMomentum) THEN |
| 535 |
#ifdef ALLOW_MOM_FLUXFORM |
| 536 |
CALL MOM_FLUXFORM( |
| 537 |
I bi,bj,k,iMin,iMax,jMin,jMax, |
| 538 |
I kappaRU, kappaRV, |
| 539 |
U fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp), |
| 540 |
O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown), |
| 541 |
O guDissip, gvDissip, |
| 542 |
I myTime, myIter, myThid) |
| 543 |
#endif |
| 544 |
ELSE |
| 545 |
#ifdef ALLOW_MOM_VECINV |
| 546 |
CALL MOM_VECINV( |
| 547 |
I bi,bj,k,iMin,iMax,jMin,jMax, |
| 548 |
I kappaRU, kappaRV, |
| 549 |
I fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp), |
| 550 |
O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown), |
| 551 |
O guDissip, gvDissip, |
| 552 |
I myTime, myIter, myThid) |
| 553 |
#endif |
| 554 |
ENDIF |
| 555 |
|
| 556 |
#ifdef ALLOW_SMAG_3D |
| 557 |
IF ( useSmag3D ) THEN |
| 558 |
CALL MOM_CALC_SMAG_3D( |
| 559 |
I str11, str22, str33, str12, str13, str23, |
| 560 |
O viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23, |
| 561 |
I smag3D_hLsC, smag3D_hLsW, smag3D_hLsS, smag3D_hLsZ, |
| 562 |
I k, bi, bj, myThid ) |
| 563 |
CALL MOM_UV_SMAG_3D( |
| 564 |
I str11, str22, str12, str13, str23, |
| 565 |
I viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23, |
| 566 |
O addDissU, addDissV, |
| 567 |
I iMin,iMax,jMin,jMax, k, bi, bj, myThid ) |
| 568 |
DO j= jMin,jMax |
| 569 |
DO i= iMin,iMax |
| 570 |
guDissip(i,j) = guDissip(i,j) + addDissU(i,j) |
| 571 |
gvDissip(i,j) = gvDissip(i,j) + addDissV(i,j) |
| 572 |
ENDDO |
| 573 |
ENDDO |
| 574 |
ENDIF |
| 575 |
#endif /* ALLOW_SMAG_3D */ |
| 576 |
|
| 577 |
CALL TIMESTEP( |
| 578 |
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 579 |
I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY, |
| 580 |
I guDissip, gvDissip, |
| 581 |
I myTime, myIter, myThid) |
| 582 |
|
| 583 |
ENDIF |
| 584 |
|
| 585 |
C-- end of dynamics k loop (1:Nr) |
| 586 |
ENDDO |
| 587 |
|
| 588 |
C-- Implicit Vertical advection & viscosity |
| 589 |
#if (defined (INCLUDE_IMPLVERTADV_CODE) && \ |
| 590 |
defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF)) |
| 591 |
IF ( momImplVertAdv .OR. implicitViscosity |
| 592 |
& .OR. selectImplicitDrag.GE.1 ) THEN |
| 593 |
C to recover older (prior to 2016-10-05) results: |
| 594 |
c IF ( momImplVertAdv ) THEN |
| 595 |
CALL MOM_U_IMPLICIT_R( kappaRU, |
| 596 |
I bi, bj, myTime, myIter, myThid ) |
| 597 |
CALL MOM_V_IMPLICIT_R( kappaRV, |
| 598 |
I bi, bj, myTime, myIter, myThid ) |
| 599 |
ELSEIF ( implicitViscosity ) THEN |
| 600 |
#else /* INCLUDE_IMPLVERTADV_CODE */ |
| 601 |
IF ( implicitViscosity ) THEN |
| 602 |
#endif /* INCLUDE_IMPLVERTADV_CODE */ |
| 603 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 604 |
CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte |
| 605 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 606 |
CALL IMPLDIFF( |
| 607 |
I bi, bj, iMin, iMax, jMin, jMax, |
| 608 |
I -1, kappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj), |
| 609 |
U gU(1-OLx,1-OLy,1,bi,bj), |
| 610 |
I myThid ) |
| 611 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 612 |
CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte |
| 613 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 614 |
CALL IMPLDIFF( |
| 615 |
I bi, bj, iMin, iMax, jMin, jMax, |
| 616 |
I -2, kappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj), |
| 617 |
U gV(1-OLx,1-OLy,1,bi,bj), |
| 618 |
I myThid ) |
| 619 |
ENDIF |
| 620 |
|
| 621 |
#ifdef ALLOW_OBCS |
| 622 |
C-- Apply open boundary conditions |
| 623 |
IF ( useOBCS ) THEN |
| 624 |
C-- but first save intermediate velocities to be used in the |
| 625 |
C next time step for the Stevens boundary conditions |
| 626 |
CALL OBCS_SAVE_UV_N( |
| 627 |
I bi, bj, iMin, iMax, jMin, jMax, 0, |
| 628 |
I gU, gV, myThid ) |
| 629 |
CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid ) |
| 630 |
ENDIF |
| 631 |
#endif /* ALLOW_OBCS */ |
| 632 |
|
| 633 |
#ifdef ALLOW_CD_CODE |
| 634 |
IF (implicitViscosity.AND.useCDscheme) THEN |
| 635 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 636 |
CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte |
| 637 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 638 |
CALL IMPLDIFF( |
| 639 |
I bi, bj, iMin, iMax, jMin, jMax, |
| 640 |
I 0, kappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj), |
| 641 |
U vVelD(1-OLx,1-OLy,1,bi,bj), |
| 642 |
I myThid ) |
| 643 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 644 |
CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte |
| 645 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 646 |
CALL IMPLDIFF( |
| 647 |
I bi, bj, iMin, iMax, jMin, jMax, |
| 648 |
I 0, kappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj), |
| 649 |
U uVelD(1-OLx,1-OLy,1,bi,bj), |
| 650 |
I myThid ) |
| 651 |
ENDIF |
| 652 |
#endif /* ALLOW_CD_CODE */ |
| 653 |
C-- End implicit Vertical advection & viscosity |
| 654 |
|
| 655 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 656 |
|
| 657 |
#ifdef ALLOW_NONHYDROSTATIC |
| 658 |
C-- Step forward W field in N-H algorithm |
| 659 |
IF ( nonHydrostatic ) THEN |
| 660 |
#ifdef ALLOW_DEBUG |
| 661 |
IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid ) |
| 662 |
#endif |
| 663 |
CALL TIMER_START('CALC_GW [DYNAMICS]',myThid) |
| 664 |
CALL CALC_GW( |
| 665 |
I bi,bj, kappaRU, kappaRV, |
| 666 |
I str13, str23, str33, |
| 667 |
I viscAh3d_00, viscAh3d_13, viscAh3d_23, |
| 668 |
I myTime, myIter, myThid ) |
| 669 |
ENDIF |
| 670 |
IF ( nonHydrostatic.OR.implicitIntGravWave ) |
| 671 |
& CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid ) |
| 672 |
IF ( nonHydrostatic ) |
| 673 |
& CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid) |
| 674 |
#endif |
| 675 |
|
| 676 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 677 |
|
| 678 |
C- end of bi,bj loops |
| 679 |
ENDDO |
| 680 |
ENDDO |
| 681 |
|
| 682 |
#ifdef ALLOW_OBCS |
| 683 |
IF (useOBCS) THEN |
| 684 |
CALL OBCS_EXCHANGES( myThid ) |
| 685 |
ENDIF |
| 686 |
#endif |
| 687 |
|
| 688 |
Cml( |
| 689 |
C In order to compare the variance of phiHydLow of a p/z-coordinate |
| 690 |
C run with etaH of a z/p-coordinate run the drift of phiHydLow |
| 691 |
C has to be removed by something like the following subroutine: |
| 692 |
C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF, |
| 693 |
C & 'phiHydLow', myTime, myThid ) |
| 694 |
Cml) |
| 695 |
|
| 696 |
#ifdef ALLOW_DIAGNOSTICS |
| 697 |
IF ( useDiagnostics ) THEN |
| 698 |
|
| 699 |
CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid) |
| 700 |
CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid) |
| 701 |
|
| 702 |
tmpFac = 1. _d 0 |
| 703 |
CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2, |
| 704 |
& 'PHIHYDSQ',0,Nr,0,1,1,myThid) |
| 705 |
|
| 706 |
CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2, |
| 707 |
& 'PHIBOTSQ',0, 1,0,1,1,myThid) |
| 708 |
|
| 709 |
ENDIF |
| 710 |
#endif /* ALLOW_DIAGNOSTICS */ |
| 711 |
|
| 712 |
#ifdef ALLOW_DEBUG |
| 713 |
IF ( debugLevel .GE. debLevD ) THEN |
| 714 |
CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid) |
| 715 |
CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid) |
| 716 |
CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid) |
| 717 |
CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid) |
| 718 |
CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid) |
| 719 |
CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid) |
| 720 |
CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid) |
| 721 |
CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid) |
| 722 |
#ifndef ALLOW_ADAMSBASHFORTH_3 |
| 723 |
CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid) |
| 724 |
CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid) |
| 725 |
CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid) |
| 726 |
CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid) |
| 727 |
#endif |
| 728 |
ENDIF |
| 729 |
#endif |
| 730 |
|
| 731 |
#ifdef DYNAMICS_GUGV_EXCH_CHECK |
| 732 |
C- jmc: For safety checking only: This Exchange here should not change |
| 733 |
C the solution. If solution changes, it means something is wrong, |
| 734 |
C but it does not mean that it is less wrong with this exchange. |
| 735 |
IF ( debugLevel .GE. debLevE ) THEN |
| 736 |
CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid) |
| 737 |
ENDIF |
| 738 |
#endif |
| 739 |
|
| 740 |
#ifdef ALLOW_DEBUG |
| 741 |
IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid ) |
| 742 |
#endif |
| 743 |
|
| 744 |
RETURN |
| 745 |
END |