| 1 |
jscott |
1.1 |
|
| 2 |
|
|
#include "ctrparam.h" |
| 3 |
|
|
|
| 4 |
|
|
! ============================================================ |
| 5 |
|
|
! |
| 6 |
|
|
! CHEMTROP.F: Subroutine for calculating chemical |
| 7 |
|
|
! reactions in troposphere |
| 8 |
|
|
! of MIT Global Chemistry Model |
| 9 |
|
|
! |
| 10 |
|
|
! ------------------------------------------------------------ |
| 11 |
|
|
! |
| 12 |
|
|
! Author: Chien Wang |
| 13 |
|
|
! MIT Joint Program on Science and Policy |
| 14 |
|
|
! of Global Change |
| 15 |
|
|
! |
| 16 |
|
|
! ---------------------------------------------------------- |
| 17 |
|
|
! |
| 18 |
|
|
! Revision History: |
| 19 |
|
|
! |
| 20 |
|
|
! When Who What |
| 21 |
|
|
! ---- ---------- ------- |
| 22 |
|
|
! 081898 Chien Wang rev. |
| 23 |
|
|
! 080200 Chien Wang repack based on CliChem3 & add cpp |
| 24 |
|
|
! |
| 25 |
|
|
! ========================================================== |
| 26 |
|
|
|
| 27 |
|
|
! |
| 28 |
|
|
subroutine chemtrop (dtr, ifss, ktrop, Temp, qv, den) |
| 29 |
|
|
! ===================================================== |
| 30 |
|
|
|
| 31 |
|
|
! ========================================================== |
| 32 |
|
|
! Brief Description of Dummy Variables: |
| 33 |
|
|
! |
| 34 |
|
|
! dtr: time step of integration in second |
| 35 |
|
|
! ifss: 1 for using steady-state assumption |
| 36 |
|
|
! 0 for not using |
| 37 |
|
|
! ktrop: layer label of tropopause |
| 38 |
|
|
! Temp: temperature in Kelvin |
| 39 |
|
|
! p: air pressure in hPa |
| 40 |
|
|
! qv: water vapor density ratio in kg/m^3 |
| 41 |
|
|
! den: air density in kg/m^3 |
| 42 |
|
|
! |
| 43 |
|
|
! ========================================================== |
| 44 |
|
|
|
| 45 |
|
|
#include "chem_para" |
| 46 |
|
|
#include "chem_const1" |
| 47 |
|
|
#include "chem_com" |
| 48 |
|
|
|
| 49 |
|
|
dimension Temp (nlon,nlat,nlev) |
| 50 |
|
|
dimension qv (nlon,nlat,nlev) |
| 51 |
|
|
dimension den (nlon,nlat,nlev) |
| 52 |
|
|
|
| 53 |
|
|
dimension ychem (nvaria) |
| 54 |
|
|
dimension awchem (nvaria) |
| 55 |
|
|
dimension revawchem(nvaria) |
| 56 |
|
|
dimension ychem0 (2) |
| 57 |
|
|
|
| 58 |
|
|
real ychem_hfc134a |
| 59 |
|
|
|
| 60 |
|
|
! ------------------------------------------------------------ |
| 61 |
|
|
|
| 62 |
|
|
#if ( defined CPL_CHEM ) |
| 63 |
|
|
|
| 64 |
|
|
awchem(1) = awO3 |
| 65 |
|
|
awchem(2) = awCO |
| 66 |
|
|
awchem(3) = awCO2 |
| 67 |
|
|
awchem(4) = awHO |
| 68 |
|
|
awchem(5) = awHO2 |
| 69 |
|
|
awchem(6) = awH2O2 |
| 70 |
|
|
awchem(7) = awNO |
| 71 |
|
|
awchem(8) = awNO2 |
| 72 |
|
|
awchem(9) = awCH4 |
| 73 |
|
|
awchem(10)= awCH2O |
| 74 |
|
|
awchem(11)= awCH3O2H |
| 75 |
|
|
awchem(12)= awSO2 |
| 76 |
|
|
awchem(13)= awN2O5 |
| 77 |
|
|
awchem(14)= awHNO3 |
| 78 |
|
|
awchem(15)= awH2SO4 |
| 79 |
|
|
|
| 80 |
|
|
! write(6,*)"Here are solarflux & coszangle" |
| 81 |
|
|
! write(6,*)solarflux |
| 82 |
|
|
! write(6,*)coszangle |
| 83 |
|
|
! write(6,*) |
| 84 |
|
|
|
| 85 |
|
|
do ind = 1,15 |
| 86 |
|
|
revawchem(ind) = 1./awchem(ind) |
| 87 |
|
|
enddo |
| 88 |
|
|
|
| 89 |
|
|
yyy = Avogadro*1.e-3 |
| 90 |
|
|
|
| 91 |
|
|
yyy1 = yyy/28.964 !dry air |
| 92 |
|
|
yyy2 = yyy/18.0152 !water vapor |
| 93 |
|
|
|
| 94 |
|
|
do 1 k=1,ktrop |
| 95 |
|
|
patm = airpress(k)/1013.27 |
| 96 |
|
|
do 2 j=1,n2dh |
| 97 |
|
|
|
| 98 |
|
|
Rflux = solarflux(1,j,k) |
| 99 |
|
|
& * 0.5678 !surface ratio of |
| 100 |
|
|
! Act(<= 800nm)/Act(total) |
| 101 |
|
|
! WMO 1981 |
| 102 |
|
|
|
| 103 |
|
|
if(Rflux.le.50.0) goto 2 !no photochemistry |
| 104 |
|
|
!for nighttime |
| 105 |
|
|
|
| 106 |
|
|
! === Convert air density from kg/m^3 to mols/cm^3: |
| 107 |
|
|
|
| 108 |
|
|
ychem0(1) = den(1,j,k)*yyy1 !dry air |
| 109 |
|
|
ychem0(2) = qv (1,j,k)*yyy2 !water vapor |
| 110 |
|
|
|
| 111 |
|
|
! === Convert mixing ratio from ppb(m) to mols/cm^3: |
| 112 |
|
|
|
| 113 |
|
|
ychem( 1) = o3 (1,j,k) |
| 114 |
|
|
ychem( 2) = co (1,j,k) |
| 115 |
|
|
ychem( 3) = zco2 (1,j,k) |
| 116 |
|
|
ychem( 4) = ho (1,j,k) |
| 117 |
|
|
ychem( 5) = ho2 (1,j,k) |
| 118 |
|
|
ychem( 6) = h2o2 (1,j,k) |
| 119 |
|
|
ychem( 7) = xno (1,j,k) |
| 120 |
|
|
ychem( 8) = xno2 (1,j,k) |
| 121 |
|
|
ychem( 9) = ch4 (1,j,k) |
| 122 |
|
|
ychem(10) = ch2o (1,j,k) |
| 123 |
|
|
ychem(11) = ch3o2h(1,j,k) |
| 124 |
|
|
ychem(12) = so2 (1,j,k) |
| 125 |
|
|
|
| 126 |
|
|
ychem(13) = xn2o5 (1,j,k) |
| 127 |
|
|
ychem(14) = hno3 (1,j,k) |
| 128 |
|
|
ychem(15) = h2so4 (1,j,k) |
| 129 |
|
|
|
| 130 |
|
|
do iii = 1,nvaria |
| 131 |
|
|
ychem(iii) = max(0.0, ychem(iii)) |
| 132 |
|
|
enddo |
| 133 |
|
|
|
| 134 |
|
|
call ppbm2mcm (nvaria, ychem, den(1,j,k), revawchem) |
| 135 |
|
|
|
| 136 |
|
|
#ifdef INC_3GASES |
| 137 |
|
|
! === if hfc, pfc, and sf6 are included: |
| 138 |
|
|
! === |
| 139 |
|
|
! === 033098 add hfc134a: |
| 140 |
|
|
ychem_hfc134a = hfc134a (1,j,k) |
| 141 |
|
|
|
| 142 |
|
|
revawchemhfc134a = 1./awHFC134a |
| 143 |
|
|
call ppbm2mcm(1,ychem_hfc134a,den(1,j,k), |
| 144 |
|
|
& revawchemhfc134a) |
| 145 |
|
|
#endif |
| 146 |
|
|
|
| 147 |
|
|
! === Calculate reaction rates: |
| 148 |
|
|
|
| 149 |
|
|
ntemp = nint(max(1.0, |
| 150 |
|
|
& min(300.0,(Temp(1,j,k) - 200.)*2.0))) |
| 151 |
|
|
|
| 152 |
|
|
! === |
| 153 |
|
|
! === 042596 add zenith angle function: |
| 154 |
|
|
|
| 155 |
|
|
call rateph (Temp(1,j,k), ntemp, Rflux, coszangle(1,j)) |
| 156 |
|
|
|
| 157 |
|
|
call ratebm (Temp(1,j,k), ntemp, patm) |
| 158 |
|
|
|
| 159 |
|
|
call ratetm (Temp(1,j,k), ntemp, ychem0) |
| 160 |
|
|
|
| 161 |
|
|
! if(ifss.eq.1) call chemsteady(nvaria, ychem0,ychem) |
| 162 |
|
|
|
| 163 |
|
|
! ===== |
| 164 |
|
|
! ===== New scheme for calculating NOy and S(VI) |
| 165 |
|
|
! ===== Chien Wang, 092195 |
| 166 |
|
|
! ===== |
| 167 |
|
|
|
| 168 |
|
|
! |
| 169 |
|
|
! === weighting d[N2O5] and d[HNO3]: |
| 170 |
|
|
! |
| 171 |
|
|
xxxn2o5 = rk(14)*ychem(1) ! k14[O3] |
| 172 |
|
|
xxxhno3 = rk(13)*ychem(4) ! k13[HO] |
| 173 |
|
|
xxxtotal= 2*xxxn2o5 + xxxhno3 ! [NO2] = 1./ |
| 174 |
|
|
! (2xxxn2o5 + xxxhno3) |
| 175 |
|
|
! |
| 176 |
|
|
! === save initial NOx and SO2: |
| 177 |
|
|
! |
| 178 |
|
|
ynox0 = ychem(7) + ychem(8) |
| 179 |
|
|
yso20 = ychem(12) |
| 180 |
|
|
|
| 181 |
|
|
! ------------------------------------------- |
| 182 |
|
|
! call tropreact1(dtr, nvaria, ychem0, ychem) |
| 183 |
|
|
call tropreact1(dtr, 12, ychem0, ychem) |
| 184 |
|
|
! ------------------------------------------- |
| 185 |
|
|
|
| 186 |
|
|
! |
| 187 |
|
|
! === Derive [N2O5], [HNO3], and [H2SO4]; 092195: |
| 188 |
|
|
! |
| 189 |
|
|
dnox = min(0.0, ychem(7) + ychem(8) - ynox0) |
| 190 |
|
|
if(xxxtotal.gt.0.0)then |
| 191 |
|
|
ychem(13) = ychem(13) - xxxn2o5/xxxtotal * dnox |
| 192 |
|
|
ychem(14) = ychem(14) - xxxhno3/xxxtotal * dnox |
| 193 |
|
|
endif |
| 194 |
|
|
|
| 195 |
|
|
ychem(15) = ychem(15) - min(0.0, ychem(12) - yso20) |
| 196 |
|
|
|
| 197 |
|
|
#ifdef INC_3GASES |
| 198 |
|
|
! === if hfc, pfc, and sf6 are included: |
| 199 |
|
|
! === |
| 200 |
|
|
! === 033098 add hfc134a oxidation: CF3CH2F + OH -> CF3CHF + H2O |
| 201 |
|
|
! === here derive exp{-k[OH]t} first: |
| 202 |
|
|
|
| 203 |
|
|
xxxhfc134a = exp(- 1.7e-12 |
| 204 |
|
|
& * exp(-1750.0/Temp(1,j,k)) |
| 205 |
|
|
& * dtr*ychem(4)) |
| 206 |
|
|
ychem_hfc134a = max(0.0, ychem_hfc134a*xxxhfc134a) |
| 207 |
|
|
|
| 208 |
|
|
call mcm2ppbm (1,ychem_hfc134a,den(1,j,k),awHFC134a) |
| 209 |
|
|
|
| 210 |
|
|
hfc134a(1,j,k)= ychem_hfc134a |
| 211 |
|
|
#endif |
| 212 |
|
|
|
| 213 |
|
|
! === Convert concentration to ppb(m): |
| 214 |
|
|
|
| 215 |
|
|
call mcm2ppbm (nvaria, ychem, den(1,j,k), awchem) |
| 216 |
|
|
|
| 217 |
|
|
do 10 iii = 1,nvaria |
| 218 |
|
|
ychem(iii) = max(0.0, ychem(iii)) |
| 219 |
|
|
10 continue |
| 220 |
|
|
|
| 221 |
|
|
! === Give value back to the common block: |
| 222 |
|
|
|
| 223 |
|
|
o3 (1,j,k) = ychem(01) |
| 224 |
|
|
co (1,j,k) = ychem(02) |
| 225 |
|
|
zco2 (1,j,k) = ychem(03) |
| 226 |
|
|
ho (1,j,k) = ychem(04) |
| 227 |
|
|
ho2 (1,j,k) = ychem(05) |
| 228 |
|
|
h2o2 (1,j,k) = ychem(06) |
| 229 |
|
|
xno (1,j,k) = ychem(07) |
| 230 |
|
|
xno2 (1,j,k) = ychem(08) |
| 231 |
|
|
ch4 (1,j,k) = ychem(09) |
| 232 |
|
|
ch2o (1,j,k) = ychem(10) |
| 233 |
|
|
ch3o2h(1,j,k) = ychem(11) |
| 234 |
|
|
so2 (1,j,k) = ychem(12) |
| 235 |
|
|
xn2o5 (1,j,k) = ychem(13) |
| 236 |
|
|
hno3 (1,j,k) = ychem(14) |
| 237 |
|
|
h2so4 (1,j,k) = ychem(15) |
| 238 |
|
|
|
| 239 |
|
|
2 continue |
| 240 |
|
|
1 continue |
| 241 |
|
|
|
| 242 |
|
|
#endif |
| 243 |
|
|
|
| 244 |
|
|
return |
| 245 |
|
|
end |
| 246 |
|
|
|
| 247 |
|
|
! |
| 248 |
|
|
! --- won't need this portion for run excludes chemistry |
| 249 |
|
|
! |
| 250 |
|
|
#if ( defined CPL_CHEM ) |
| 251 |
|
|
|
| 252 |
|
|
c |
| 253 |
|
|
subroutine tropreact1 (tout, neq, c00, y) |
| 254 |
|
|
c ============================================== |
| 255 |
|
|
|
| 256 |
|
|
c==================================================================c |
| 257 |
|
|
c c |
| 258 |
|
|
c TROPREACT1.F: Subroutine for calculating chemical c |
| 259 |
|
|
c reactions in troposphere c |
| 260 |
|
|
c of MIT Global Chemistry Model c |
| 261 |
|
|
c partly based on LSODES c |
| 262 |
|
|
c ------------------------------------------------- c |
| 263 |
|
|
c Author: Chien Wang c |
| 264 |
|
|
c MIT Joint Program on Science and Policy c |
| 265 |
|
|
c of Global Change c |
| 266 |
|
|
c Last Revised on: January 31, 1995 c |
| 267 |
|
|
c c |
| 268 |
|
|
c==================================================================c |
| 269 |
|
|
|
| 270 |
|
|
external fex, jex |
| 271 |
|
|
|
| 272 |
|
|
dimension y(neq), rwork(872), iwork(45) |
| 273 |
|
|
dimension c00(2) |
| 274 |
|
|
|
| 275 |
|
|
common /c00tmp/c00tmp(2) |
| 276 |
|
|
|
| 277 |
|
|
c data lrw/500/, liw/30/ |
| 278 |
|
|
|
| 279 |
|
|
c00tmp(1) = c00(1) |
| 280 |
|
|
c00tmp(2) = c00(2) |
| 281 |
|
|
|
| 282 |
|
|
t = 0. |
| 283 |
|
|
itol = 1 |
| 284 |
|
|
rtol = 1.e-3 |
| 285 |
|
|
atol = 1.e+3 !molecules/cm3 |
| 286 |
|
|
|
| 287 |
|
|
c atol(1) = 1.e-6 |
| 288 |
|
|
c atol(2) = 1.e-10 |
| 289 |
|
|
c atol(3) = 1.e-6 |
| 290 |
|
|
|
| 291 |
|
|
itask = 1 |
| 292 |
|
|
istate = 1 |
| 293 |
|
|
iopt = 0 |
| 294 |
|
|
lrw = 872 |
| 295 |
|
|
liw = 45 |
| 296 |
|
|
mf = 21 |
| 297 |
|
|
|
| 298 |
|
|
call lsodenew(fex,neq,y,t,tout,itol,rtol,atol,itask,istate, |
| 299 |
|
|
& iopt,rwork,lrw,iwork,liw,jex,mf) |
| 300 |
|
|
c call lsode(fex,neq,y,t,tout,itol,rtol,atol,itask,istate, |
| 301 |
|
|
c & iopt,rwork,lrw,iwork,liw,jex,mf) |
| 302 |
|
|
|
| 303 |
|
|
return |
| 304 |
|
|
end |
| 305 |
|
|
|
| 306 |
|
|
c |
| 307 |
|
|
subroutine fex (neq, t, y, ydot) |
| 308 |
|
|
c ================================ |
| 309 |
|
|
c |
| 310 |
|
|
c Subroutine for defining of ydot |
| 311 |
|
|
c |
| 312 |
|
|
|
| 313 |
|
|
#include "chem_para" |
| 314 |
|
|
#include "chem_com" |
| 315 |
|
|
|
| 316 |
|
|
common /c00tmp/c00(2) |
| 317 |
|
|
|
| 318 |
|
|
dimension y(neq), ydot(neq) |
| 319 |
|
|
|
| 320 |
|
|
bbb = 0.7809*c00(1) |
| 321 |
|
|
ccc = 0.2095*c00(1) |
| 322 |
|
|
|
| 323 |
|
|
c === redesigned scheme, 092195 |
| 324 |
|
|
c |
| 325 |
|
|
|
| 326 |
|
|
xbeta1 = rk(3)*bbb + rk(4)*ccc !k3[N2] + k4[O2] |
| 327 |
|
|
xbeta2 = rk(2)*c00(2) !k2[H2O] |
| 328 |
|
|
xbeta = xbeta2/(xbeta1 + xbeta2) |
| 329 |
|
|
|
| 330 |
|
|
rr1 = rk(1) *y(1) !j1[O3] |
| 331 |
|
|
rr5 = rk(5) *y(2) *y(4) !k5[CO][HO] |
| 332 |
|
|
rr7 = rk(7) *y(5) *y(7) !k7[HO2][NO] |
| 333 |
|
|
rr8 = rk(8) *y(8) !k8[NO2] |
| 334 |
|
|
rr10= rk(10)*y(1) *y(5) !k10[O3][HO2] |
| 335 |
|
|
rr11= rk(11)*y(1) *y(4) !k11[O3][HO] |
| 336 |
|
|
rr12= rk(12)*y(1) *y(7) !k12[O3][NO] |
| 337 |
|
|
rr13= rk(13)*y(4) *y(8) !k13[HO][NO2] |
| 338 |
|
|
rr14= rk(14)*y(1) *y(8) !k14[O3][NO2] |
| 339 |
|
|
rr16= rk(16)*y(5) *y(5) !k16[HO2][HO2] |
| 340 |
|
|
rr17= rk(17)*y(6) !j17[H2O2] |
| 341 |
|
|
rr18= rk(18)*y(4) *y(6) !k18[HO][H2O2] |
| 342 |
|
|
rr19= rk(19)*y(4) *y(9) !k19[HO][CH4] |
| 343 |
|
|
rr21= rk(21)*y(7) !k21[NO] - for ss only |
| 344 |
|
|
rr23= rk(23)*y(5) !k23[HO2]- for ss only |
| 345 |
|
|
rr24= rk(24)*y(11) !j24[CH3O2H] |
| 346 |
|
|
rr25= rk(25)*y(4) *y(11) !k25[HO][CH3O2H] |
| 347 |
|
|
rr26= rk(26)*y(10) !j26[CH2O] |
| 348 |
|
|
rr27= rk(27)*y(4) *y(10) !k27[HO][CH2O] |
| 349 |
|
|
rr29= rk(29)*y(4) *y(12) !k29[HO][SO2] |
| 350 |
|
|
|
| 351 |
|
|
c New reactions - 062995: |
| 352 |
|
|
|
| 353 |
|
|
rr32= rk(32)*y(4)*y(5) !k32[HO][HO2] |
| 354 |
|
|
rr33= rk(33)*y(4)*y(4) !k33[HO][HO] |
| 355 |
|
|
rr34= rk(34)*y(4)*y(4) !k34[HO][HO] |
| 356 |
|
|
|
| 357 |
|
|
xxx = (rr21 + rr23) |
| 358 |
|
|
|
| 359 |
|
|
gamax = 0.0 |
| 360 |
|
|
if(rr21.gt.1.e-12)gamax = rr21/xxx |
| 361 |
|
|
|
| 362 |
|
|
gamay = 0.0 |
| 363 |
|
|
if(xxx.gt.0.0)gamay = rr23/xxx |
| 364 |
|
|
|
| 365 |
|
|
ydot(1) = rr8 + rr33 !O3 |
| 366 |
|
|
& -(xbeta*rr1 + rr10 + rr11 + rr12 + rr14) |
| 367 |
|
|
|
| 368 |
|
|
ydot(2) = rr26 + rr27 !CO |
| 369 |
|
|
& - rr5 |
| 370 |
|
|
|
| 371 |
|
|
ydot(3) = rr5 !CO2 |
| 372 |
|
|
|
| 373 |
|
|
ydot(4) = 2.0*xbeta*rr1 + rr7 + rr10 !HO |
| 374 |
|
|
& + 2.0*rr17+ rr24 |
| 375 |
|
|
& -(rr5 + rr11 + rr13 + rr18 + rr19 |
| 376 |
|
|
& +rr25+ rr27 + rr29 |
| 377 |
|
|
& +rr32+ rr33 + rr34 ) |
| 378 |
|
|
|
| 379 |
|
|
ydot(5) = rr5 + rr11 + rr18 + rr27 + rr29 !HO2 |
| 380 |
|
|
& + rr24+ 2.0*rr26 |
| 381 |
|
|
& +(2.0*gamax - 1.0)*(rr19 + rr25) |
| 382 |
|
|
& -(rr7 + rr10 + rr16 + rr32) |
| 383 |
|
|
|
| 384 |
|
|
ydot(6) = rr16 + rr34 !H2O2 |
| 385 |
|
|
& -(rr17+ rr18) |
| 386 |
|
|
|
| 387 |
|
|
ydot(7) = rr8 !NO |
| 388 |
|
|
& -(rr7 + rr12 + gamax*(rr19 + rr25)) |
| 389 |
|
|
|
| 390 |
|
|
ydot(8) = rr7 + rr12 + gamax*(rr19 + rr25) !NO2 |
| 391 |
|
|
& -(rr8 + rr13+ rr14+ rr14) |
| 392 |
|
|
|
| 393 |
|
|
ydot(9) =-rr19 !CH4 |
| 394 |
|
|
|
| 395 |
|
|
ydot(10) = rr24 + gamax*(rr19 + rr25) !CH2O |
| 396 |
|
|
& -(rr26 + rr27) |
| 397 |
|
|
|
| 398 |
|
|
ydot(11) = gamay*(rr19 + rr25) !CH3O2H |
| 399 |
|
|
& -(rr24 + rr25) |
| 400 |
|
|
|
| 401 |
|
|
ydot(12) =-rr29 !SO2 |
| 402 |
|
|
|
| 403 |
|
|
return |
| 404 |
|
|
end |
| 405 |
|
|
|
| 406 |
|
|
c |
| 407 |
|
|
subroutine jex (neq, t, y, ml, mu, pd, nrpd) |
| 408 |
|
|
c ========================================== |
| 409 |
|
|
c |
| 410 |
|
|
c Subroutine for calculating the Jacobian for f(i) |
| 411 |
|
|
c |
| 412 |
|
|
c P(m,n) here represents df(m)/dn |
| 413 |
|
|
c or d ydot(m)/dn |
| 414 |
|
|
c |
| 415 |
|
|
|
| 416 |
|
|
#include "chem_para" |
| 417 |
|
|
#include "chem_com" |
| 418 |
|
|
|
| 419 |
|
|
common /c00tmp/c00(2) |
| 420 |
|
|
|
| 421 |
|
|
dimension y(neq), pd(nrpd,neq) |
| 422 |
|
|
|
| 423 |
|
|
bbb = 0.7809*c00(1) |
| 424 |
|
|
ccc = 0.2095*c00(1) |
| 425 |
|
|
|
| 426 |
|
|
xbeta1 = rk(3)*bbb + rk(4)*ccc !k3[N2] + k4[O2] |
| 427 |
|
|
xbeta2 = rk(2)*c00(2) !k2[H2O] |
| 428 |
|
|
xbeta = xbeta2/(xbeta1 + xbeta2) |
| 429 |
|
|
|
| 430 |
|
|
rr21= rk(21)*y(7) !k21[NO] - for ss only |
| 431 |
|
|
rr23= rk(23)*y(5) !k23[HO2]- for ss only |
| 432 |
|
|
xxx = (rr21 + rr23) |
| 433 |
|
|
|
| 434 |
|
|
gamax = 0.0 |
| 435 |
|
|
if(rr21.gt.1.e-12)gamax = rr21/xxx |
| 436 |
|
|
|
| 437 |
|
|
gamay = 0.0 |
| 438 |
|
|
if(xxx.gt.0.0)gamay = rr23/xxx |
| 439 |
|
|
|
| 440 |
|
|
do 1 j=1,neq |
| 441 |
|
|
do 1 i=1,neq |
| 442 |
|
|
pd(i,j) = 0.0 |
| 443 |
|
|
1 continue |
| 444 |
|
|
|
| 445 |
|
|
c ===== |
| 446 |
|
|
c ===== pd(i,j) = d ydot(i)/dy(j): |
| 447 |
|
|
c ===== |
| 448 |
|
|
|
| 449 |
|
|
rk5y2 = rk(5)*y(2) |
| 450 |
|
|
rk5y4 = rk(5)*y(4) |
| 451 |
|
|
rk7y5 = rk(7)*y(5) |
| 452 |
|
|
rk7y7 = rk(7)*y(7) |
| 453 |
|
|
rk10y1 = rk(10)*y(1) |
| 454 |
|
|
rk10y5 = rk(10)*y(5) |
| 455 |
|
|
rk11y1 = rk(11)*y(1) |
| 456 |
|
|
rk11y4 = rk(11)*y(4) |
| 457 |
|
|
rk12y1 = rk(12)*y(1) |
| 458 |
|
|
rk12y7 = rk(12)*y(7) |
| 459 |
|
|
rk13y4 = rk(13)*y(4) |
| 460 |
|
|
rk13y8 = rk(13)*y(8) |
| 461 |
|
|
rk14y1 = rk(14)*y(1) |
| 462 |
|
|
rk14y8 = rk(14)*y(8) |
| 463 |
|
|
rk18y4 = rk(18)*y(4) |
| 464 |
|
|
rk18y6 = rk(18)*y(6) |
| 465 |
|
|
rk19y4 = rk(19)*y(4) |
| 466 |
|
|
rk19y9 = rk(19)*y(9) |
| 467 |
|
|
rk25y4 = rk(25)*y(4) |
| 468 |
|
|
rk25y11 = rk(25)*y(11) |
| 469 |
|
|
rk27y4 = rk(27)*y(4) |
| 470 |
|
|
rk27y10 = rk(27)*y(10) |
| 471 |
|
|
rk29y4 = rk(29)*y(4) |
| 472 |
|
|
rk29y12 = rk(29)*y(12) |
| 473 |
|
|
rk32y4 = rk(32)*y(4) |
| 474 |
|
|
rk32y5 = rk(32)*y(5) |
| 475 |
|
|
|
| 476 |
|
|
pd(1,1) = -(xbeta*rk(1) + rk10y5 + rk11y4 |
| 477 |
|
|
& +rk12y7 + rk14y8) |
| 478 |
|
|
pd(4,1) = 2.0*xbeta*rk(1) + rk10y5 - rk11y4 |
| 479 |
|
|
pd(5,1) = rk11y4 - rk10y5 |
| 480 |
|
|
pd(8,1) = rk12y7 - 2.*rk14y8 |
| 481 |
|
|
|
| 482 |
|
|
pd(2,2) =-rk5y4 |
| 483 |
|
|
pd(3,2) = rk5y4 |
| 484 |
|
|
pd(4,2) =-rk5y4 |
| 485 |
|
|
pd(5,2) = rk5y4 |
| 486 |
|
|
|
| 487 |
|
|
pd(1,4) = 2.0*rk(33)*y(4) - rk11y1 |
| 488 |
|
|
pd(2,4) = rk27y10 - rk5y2 |
| 489 |
|
|
pd(3,4) = rk5y2 |
| 490 |
|
|
pd(4,4) =-( |
| 491 |
|
|
& rk5y2 + rk11y1 + rk(13)*y(8) |
| 492 |
|
|
& + rk18y6 + rk19y9 + rk25y11 |
| 493 |
|
|
& + rk27y10+ rk29y12+ rk32y5 |
| 494 |
|
|
& +(rk(33) + rk(34))*y(4) |
| 495 |
|
|
& ) |
| 496 |
|
|
pd(5,4) =(rk5y2 + rk11y1 + rk18y6 |
| 497 |
|
|
& + rk27y10+ rk29y12) |
| 498 |
|
|
& +(2.0*gamax - 1.0)*(rk19y9 + rk25y11) |
| 499 |
|
|
& - rk32y5 |
| 500 |
|
|
pd(6,4) =-rk18y6 |
| 501 |
|
|
pd(7,4) =-gamax*(rk19y9 + rk25y11) |
| 502 |
|
|
pd(8,4) = gamax*(rk19y9 + rk25y11) |
| 503 |
|
|
& - rk13y8 |
| 504 |
|
|
pd(9,4) =-rk19y9 |
| 505 |
|
|
pd(10,4) = gamax*(rk19y9 + rk25y11) |
| 506 |
|
|
& - rk27y10 |
| 507 |
|
|
pd(11,4) = gamay*(rk19y9 + rk25y11) |
| 508 |
|
|
& - rk25y11 |
| 509 |
|
|
pd(12,4) =-rk29y12 |
| 510 |
|
|
|
| 511 |
|
|
pd(1,5) = rk11y1 |
| 512 |
|
|
pd(4,5) = rk7y7 + rk10y1 |
| 513 |
|
|
& - rk32y4 |
| 514 |
|
|
pd(5,5) = |
| 515 |
|
|
& -(rk7y7 + rk10y1 + rk(16)*y(5) + rk32y4) |
| 516 |
|
|
pd(6,5) = 2.0* (rk(16) + rk(34))*y(5) |
| 517 |
|
|
pd(7,5) =-rk7y7 |
| 518 |
|
|
pd(8,5) = rk7y7 |
| 519 |
|
|
c pd(11,5) |
| 520 |
|
|
|
| 521 |
|
|
pd(4,6) = 2.0*rk(17) |
| 522 |
|
|
& - rk18y4 |
| 523 |
|
|
pd(5,6) = rk18y4 |
| 524 |
|
|
pd(6,6) =-(rk(17) + rk18y4) |
| 525 |
|
|
|
| 526 |
|
|
pd(1,7) =-rk12y1 |
| 527 |
|
|
pd(4,7) = rk7y5 |
| 528 |
|
|
pd(5,7) =-rk7y5 |
| 529 |
|
|
pd(7,7) =-(rk7y5 + rk12y1) |
| 530 |
|
|
pd(8,7) = (rk7y5 + rk12y1) |
| 531 |
|
|
|
| 532 |
|
|
pd(1,8) = rk(8) |
| 533 |
|
|
& - rk14y1 |
| 534 |
|
|
pd(4,8) =-rk13y4 |
| 535 |
|
|
pd(7,8) = rk(8) |
| 536 |
|
|
pd(8,8) =-(rk(8) + rk13y4 + 2.0*rk14y1) |
| 537 |
|
|
|
| 538 |
|
|
pd(4,9) =-rk19y4 |
| 539 |
|
|
pd(5,9) =(2.0*gamax - 1.0)*rk19y4 |
| 540 |
|
|
pd(7,9) =-gamax*rk19y4 |
| 541 |
|
|
pd(8,9) = gamax*rk19y4 |
| 542 |
|
|
pd(9,9) =-rk19y4 |
| 543 |
|
|
pd(10,9) = gamax*rk19y4 |
| 544 |
|
|
pd(11,9) = gamay*rk19y4 |
| 545 |
|
|
|
| 546 |
|
|
pd(2,10) = rk(26) + rk27y4 |
| 547 |
|
|
pd(4,10) =-rk27y4 |
| 548 |
|
|
pd(5,10) = rk27y4 + 2.0*rk(26) |
| 549 |
|
|
pd(10,10)=-(rk(26)+ rk27y4) |
| 550 |
|
|
|
| 551 |
|
|
pd(4,11) = rk(24) - rk25y4 |
| 552 |
|
|
pd(5,11) = rk(24) + (2.0*gamax - 1.0)*rk25y4 |
| 553 |
|
|
pd(7,11) =-gamax*rk25y4 |
| 554 |
|
|
pd(8,11) = gamax*rk25y4 |
| 555 |
|
|
pd(10,11)= rk(24) + gamax*rk25y4 |
| 556 |
|
|
pd(11,11)=-(rk(24) + rk25y4*max(0.0,1.0 - gamay)) |
| 557 |
|
|
|
| 558 |
|
|
pd(4,12) =-rk(29)*y(4) |
| 559 |
|
|
pd(5,12) = rk29y4 |
| 560 |
|
|
pd(12,12)=-rk29y4 |
| 561 |
|
|
|
| 562 |
|
|
return |
| 563 |
|
|
end |
| 564 |
|
|
|
| 565 |
|
|
|
| 566 |
|
|
c==================================================================c |
| 567 |
|
|
c c |
| 568 |
|
|
c CHEMFUNCPACK.F: Subroutine and function pack c |
| 569 |
|
|
c of MIT Global Chemistry Model c |
| 570 |
|
|
c ------------------------------------------------- c |
| 571 |
|
|
c Author: Chien Wang c |
| 572 |
|
|
c MIT Joint Program on Science and Policy c |
| 573 |
|
|
c of Global Change c |
| 574 |
|
|
c Last Revised on: February 22, 1995 c |
| 575 |
|
|
c c |
| 576 |
|
|
c==================================================================c |
| 577 |
|
|
|
| 578 |
|
|
c |
| 579 |
|
|
subroutine ppbm2mcm (np, xx, den, revaw) |
| 580 |
|
|
c ========================================== |
| 581 |
|
|
|
| 582 |
|
|
c------------------------------------------------ |
| 583 |
|
|
c A program for convert mixing ratio in |
| 584 |
|
|
c ppb(m) to concentration in molecules/cm^3 |
| 585 |
|
|
c------------------------------------------------ |
| 586 |
|
|
|
| 587 |
|
|
dimension xx (np) |
| 588 |
|
|
dimension revaw (np) |
| 589 |
|
|
|
| 590 |
|
|
ddd = 6.02217e+11*den |
| 591 |
|
|
do 1 i=1,np |
| 592 |
|
|
xx (i) = xx (i) |
| 593 |
|
|
& *ddd*revaw(i) |
| 594 |
|
|
1 continue |
| 595 |
|
|
|
| 596 |
|
|
return |
| 597 |
|
|
end |
| 598 |
|
|
|
| 599 |
|
|
c |
| 600 |
|
|
subroutine mcm2ppbm (np, xx, den, aw) |
| 601 |
|
|
c ========================================== |
| 602 |
|
|
|
| 603 |
|
|
c------------------------------------------------ |
| 604 |
|
|
c A program for convert concentration in |
| 605 |
|
|
c molecules/cm^3 to mixing ratio in ppb(m) |
| 606 |
|
|
c------------------------------------------------ |
| 607 |
|
|
|
| 608 |
|
|
dimension xx (np) |
| 609 |
|
|
dimension aw (np) |
| 610 |
|
|
|
| 611 |
|
|
ddd = 1./(6.02217e+11*den) |
| 612 |
|
|
do 1 i=1,np |
| 613 |
|
|
xx (i) = xx (i) |
| 614 |
|
|
& *ddd*aw(i) |
| 615 |
|
|
1 continue |
| 616 |
|
|
|
| 617 |
|
|
return |
| 618 |
|
|
end |
| 619 |
|
|
|
| 620 |
|
|
c |
| 621 |
|
|
subroutine rateph (T, ntemp, Rflux, coszagcm) |
| 622 |
|
|
c =========================== |
| 623 |
|
|
|
| 624 |
|
|
c------------------------------------------------ |
| 625 |
|
|
c A program for calculating rate constants |
| 626 |
|
|
c of photochemical reactions |
| 627 |
|
|
c ---------------------------- |
| 628 |
|
|
c The time unit for all reaction rates is second |
| 629 |
|
|
c |
| 630 |
|
|
c New version revised at June 3, 1995 |
| 631 |
|
|
c |
| 632 |
|
|
c------------------------------------------------ |
| 633 |
|
|
|
| 634 |
|
|
#include "chem_para" |
| 635 |
|
|
#include "chem_com" |
| 636 |
|
|
|
| 637 |
|
|
coszagcm = max(cosza4rk(10), |
| 638 |
|
|
& min(cosza4rk(1),coszagcm)) |
| 639 |
|
|
|
| 640 |
|
|
do 1 nband=1,9 |
| 641 |
|
|
if(coszagcm.le.cosza4rk(nband).and. |
| 642 |
|
|
& coszagcm.gt.cosza4rk(nband+1))then |
| 643 |
|
|
|
| 644 |
|
|
wgtxx = 1.0/(cosza4rk(nband) - cosza4rk(nband+1)) |
| 645 |
|
|
wgt1 = (cosza4rk(nband) - coszagcm) *wgtxx |
| 646 |
|
|
wgt2 = (coszagcm - cosza4rk(nband+1))*wgtxx |
| 647 |
|
|
c |
| 648 |
|
|
c +--- wgt2 ---+--- wgt1 ---+ |
| 649 |
|
|
c nband --- coszagcm --- nband+1 |
| 650 |
|
|
|
| 651 |
|
|
c-- R8: NO2 + hv -> NO + O |
| 652 |
|
|
c Atkinson et al., 1992: |
| 653 |
|
|
c |
| 654 |
|
|
c rk(8) = (18096.7314929 |
| 655 |
|
|
c & -3.9704*(T-273.)) |
| 656 |
|
|
c & *5.0e-10 |
| 657 |
|
|
c & *Rflux |
| 658 |
|
|
|
| 659 |
|
|
c rk(8) = rktable1(08,ntemp)*Rflux |
| 660 |
|
|
|
| 661 |
|
|
rk(8) = ((rk08gama(nband)*wgt2 + rk08gama(nband+1)*wgt1) |
| 662 |
|
|
& + (rk08aaa (nband)*wgt2 + rk08aaa (nband+1)*wgt1) |
| 663 |
|
|
& *(T-273.)) |
| 664 |
|
|
& *Rflux |
| 665 |
|
|
|
| 666 |
|
|
c-- R1: O3 + hv -> O(1D) + O2 |
| 667 |
|
|
c Atkinson et al., 1992: |
| 668 |
|
|
c |
| 669 |
|
|
c rk(1) = 0.0028*rk(8) |
| 670 |
|
|
cc rk(1) = 3.467625419939578E-08*Rflux |
| 671 |
|
|
|
| 672 |
|
|
c rk(1) = (rk01table(nband)*wgt2 |
| 673 |
|
|
c & + rk01table(nband+1)*wgt1)*Rflux |
| 674 |
|
|
rk(1) = 0.0028*rk(8) |
| 675 |
|
|
|
| 676 |
|
|
c-- R17: H2O2 + hv -> 2OH |
| 677 |
|
|
c Atkinson et al., 1992: |
| 678 |
|
|
c |
| 679 |
|
|
c rk(17)= 6.263464249748237E-09*Rflux |
| 680 |
|
|
|
| 681 |
|
|
rk(17) = (rk17table(nband)*wgt2 |
| 682 |
|
|
& + rk17table(nband+1)*wgt1)*Rflux |
| 683 |
|
|
|
| 684 |
|
|
c-- R24: CH3O2H + hv -> CH3O + HO |
| 685 |
|
|
c Atkinson et al., 1992: |
| 686 |
|
|
c |
| 687 |
|
|
c rk(24)= 4.474208962739173E-09*Rflux |
| 688 |
|
|
|
| 689 |
|
|
rk(24) = (rk24table(nband)*wgt2 |
| 690 |
|
|
& + rk24table(nband+1)*wgt1)*Rflux |
| 691 |
|
|
|
| 692 |
|
|
c-- R26: CH2O + hv -> CHO + H |
| 693 |
|
|
c Atkinson et al., 1992: |
| 694 |
|
|
c |
| 695 |
|
|
c rk(26)= 9.410107812688823E-08*Rflux |
| 696 |
|
|
|
| 697 |
|
|
rk(26) = (rk26table(nband)*wgt2 |
| 698 |
|
|
& + rk26table(nband+1)*wgt1)*Rflux |
| 699 |
|
|
|
| 700 |
|
|
goto 2 |
| 701 |
|
|
endif |
| 702 |
|
|
|
| 703 |
|
|
1 continue |
| 704 |
|
|
|
| 705 |
|
|
c = For znith angle.ge.86: |
| 706 |
|
|
|
| 707 |
|
|
rk(8) = (rk08gama(10) |
| 708 |
|
|
& + rk08aaa (10) |
| 709 |
|
|
& *(T-273.)) |
| 710 |
|
|
& *Rflux |
| 711 |
|
|
|
| 712 |
|
|
c rk(1) = rk01table(10) |
| 713 |
|
|
c & * Rflux |
| 714 |
|
|
rk(1) = 0.0028*rk(8) |
| 715 |
|
|
|
| 716 |
|
|
rk(17) = rk17table(10) |
| 717 |
|
|
& * Rflux |
| 718 |
|
|
|
| 719 |
|
|
rk(24) = rk24table(10) |
| 720 |
|
|
& * Rflux |
| 721 |
|
|
|
| 722 |
|
|
rk(26) = rk26table(10) |
| 723 |
|
|
& *Rflux |
| 724 |
|
|
|
| 725 |
|
|
2 continue |
| 726 |
|
|
|
| 727 |
|
|
return |
| 728 |
|
|
end |
| 729 |
|
|
|
| 730 |
|
|
c |
| 731 |
|
|
subroutine ratebm (T, ntemp, patm) |
| 732 |
|
|
c =========================== |
| 733 |
|
|
|
| 734 |
|
|
c------------------------------------------------ |
| 735 |
|
|
c A program for calculating rate constants |
| 736 |
|
|
c of bimolecular reactions |
| 737 |
|
|
c ---------------------------- |
| 738 |
|
|
c The time unit for all reaction rates is second |
| 739 |
|
|
c |
| 740 |
|
|
c------------------------------------------------ |
| 741 |
|
|
|
| 742 |
|
|
#include "chem_para" |
| 743 |
|
|
#include "chem_com" |
| 744 |
|
|
|
| 745 |
|
|
Trev = 1./T |
| 746 |
|
|
|
| 747 |
|
|
c-- R2: O(1D) + H2O -> 2OH |
| 748 |
|
|
|
| 749 |
|
|
rk(2) = 2.2e-10 |
| 750 |
|
|
|
| 751 |
|
|
c-- R3: O(1D) + N2 -> O + N2 |
| 752 |
|
|
|
| 753 |
|
|
c rk(3) = 1.8e-11 * exp( 107.0*Trev) |
| 754 |
|
|
rk(3) = rktable1(03,ntemp) |
| 755 |
|
|
|
| 756 |
|
|
c-- R4: O(1D) + O2 -> O + O2 |
| 757 |
|
|
|
| 758 |
|
|
c rk(4) = 3.2e-11 * exp( 67.0*Trev) |
| 759 |
|
|
rk(4) = rktable1(04,ntemp) |
| 760 |
|
|
|
| 761 |
|
|
c-- R5: CO + HO -> H + CO2 |
| 762 |
|
|
|
| 763 |
|
|
rk(5) = 1.5e-13 * (1.0 + 0.6*patm) |
| 764 |
|
|
|
| 765 |
|
|
c-- R7: HO2 + NO -> HO + NO2 |
| 766 |
|
|
|
| 767 |
|
|
c rk(7) = 3.7e-12 * exp( 240.0*Trev) |
| 768 |
|
|
rk(7) = rktable1(07,ntemp) |
| 769 |
|
|
|
| 770 |
|
|
c-- R10: HO2 + O3 -> HO + 2O2 |
| 771 |
|
|
|
| 772 |
|
|
c rk(10) = 1.1e-14 * exp(-500.0*Trev) |
| 773 |
|
|
rk(10) = rktable1(10,ntemp) |
| 774 |
|
|
|
| 775 |
|
|
c-- R11: HO + O3 -> HO2 + O2 |
| 776 |
|
|
|
| 777 |
|
|
c rk(11) = 1.6e-12 * exp(-940.0*Trev) |
| 778 |
|
|
rk(11) = rktable1(11,ntemp) |
| 779 |
|
|
c rk(11) = 0.0 |
| 780 |
|
|
|
| 781 |
|
|
c-- R12: NO + O3 -> NO2 + O2 |
| 782 |
|
|
|
| 783 |
|
|
c rk(12) = 2.0e-12 * exp(-1400.0*Trev) |
| 784 |
|
|
rk(12) = rktable1(12,ntemp) |
| 785 |
|
|
|
| 786 |
|
|
c-- R14: NO2 + O3 -> NO3 + O2 |
| 787 |
|
|
|
| 788 |
|
|
c rk(14) = 1.2e-13 * exp(-2450.0*Trev) |
| 789 |
|
|
rk(14) = rktable1(14,ntemp) |
| 790 |
|
|
|
| 791 |
|
|
c-- R16: HO2 + HO2 -> H2O2 + O2 |
| 792 |
|
|
|
| 793 |
|
|
c rk(16) = 2.3e-13 * exp( 600.0*Trev) |
| 794 |
|
|
|
| 795 |
|
|
c-- R18: H2O2 + HO -> HO2 + H2O |
| 796 |
|
|
|
| 797 |
|
|
c rk(18) = 2.9e-12 * exp(-160.0*Trev) |
| 798 |
|
|
rk(18) = rktable1(18,ntemp) |
| 799 |
|
|
|
| 800 |
|
|
c-- R19: CH4 + HO -> CH3 + H2O |
| 801 |
|
|
|
| 802 |
|
|
c rk(19) = 2.65e-12 * exp(-1800.0*Trev) |
| 803 |
|
|
rk(19) = rktable1(19,ntemp) |
| 804 |
|
|
|
| 805 |
|
|
c-- R21: CH3O2 + NO -> CH3O + NO2 |
| 806 |
|
|
|
| 807 |
|
|
c rk(21) = 4.2e-12 * exp( 180.0*Trev) |
| 808 |
|
|
rk(21) = rktable1(21,ntemp) |
| 809 |
|
|
|
| 810 |
|
|
c-- R22: CH3O + O2 -> CH2O + HO2 |
| 811 |
|
|
|
| 812 |
|
|
c rk(22) = 3.9e-14 * exp(-900.0*Trev) |
| 813 |
|
|
rk(22) = rktable1(22,ntemp) |
| 814 |
|
|
|
| 815 |
|
|
c-- R23: CH3O2 + HO2 -> CH3O2H + O2 |
| 816 |
|
|
|
| 817 |
|
|
c rk(23) = 3.8e-13 * exp( 780.0*Trev) |
| 818 |
|
|
rk(23) = rktable1(23,ntemp) |
| 819 |
|
|
|
| 820 |
|
|
c-- R25: CH3O2H + HO -> CH3O2 + H2O |
| 821 |
|
|
|
| 822 |
|
|
c rk(25) = 1.9e-12 * exp( 190.0*Trev) |
| 823 |
|
|
rk(25) = rktable1(25,ntemp) |
| 824 |
|
|
|
| 825 |
|
|
c-- R27: CH2O + HO -> CHO + H2O |
| 826 |
|
|
|
| 827 |
|
|
rk(27) = 1.0e-11 |
| 828 |
|
|
|
| 829 |
|
|
c-- R28: CHO + O2 -> CO + HO2 |
| 830 |
|
|
|
| 831 |
|
|
c rk(28) = 3.5e-12 * exp( 140.0*Trev) |
| 832 |
|
|
rk(28) = rktable1(28,ntemp) |
| 833 |
|
|
|
| 834 |
|
|
c-- R30: HOSO2 + O2 -> HO2 + SO3 |
| 835 |
|
|
|
| 836 |
|
|
c rk(30) = 1.3e-12 * exp(-330.0*Trev) |
| 837 |
|
|
rk(30) = rktable1(30,ntemp) |
| 838 |
|
|
|
| 839 |
|
|
c-- R31: SO3 + H2O -> H2SO4 |
| 840 |
|
|
|
| 841 |
|
|
rk(31) = 2.4e-15 |
| 842 |
|
|
|
| 843 |
|
|
c New reactions - 062995: |
| 844 |
|
|
|
| 845 |
|
|
c-- R32: HO + HO2 -> H2O + O2 |
| 846 |
|
|
|
| 847 |
|
|
c rk(32) = 4.8e-11 * exp( 250.0*Trev) |
| 848 |
|
|
rk(32) = rktable1(32,ntemp) |
| 849 |
|
|
|
| 850 |
|
|
c-- R33: HO + HO -> H2O + O |
| 851 |
|
|
|
| 852 |
|
|
c rk(33) = 4.2e-12 * exp(-240.0*Trev) |
| 853 |
|
|
rk(33) = rktable1(33,ntemp) |
| 854 |
|
|
|
| 855 |
|
|
return |
| 856 |
|
|
end |
| 857 |
|
|
|
| 858 |
|
|
c |
| 859 |
|
|
subroutine ratetm (T, ntemp, ym) |
| 860 |
|
|
c ========================= |
| 861 |
|
|
|
| 862 |
|
|
c------------------------------------------------ |
| 863 |
|
|
c A program for calculating rate constants |
| 864 |
|
|
c of termolecular reactions |
| 865 |
|
|
c ---------------------------- |
| 866 |
|
|
c The time unit for all reaction rates is second |
| 867 |
|
|
c |
| 868 |
|
|
c------------------------------------------------ |
| 869 |
|
|
|
| 870 |
|
|
#include "chem_para" |
| 871 |
|
|
#include "chem_com" |
| 872 |
|
|
|
| 873 |
|
|
dimension ym(2) |
| 874 |
|
|
|
| 875 |
|
|
T300 = T/300. |
| 876 |
|
|
xm = ym(1) |
| 877 |
|
|
xn2 = 0.7809*xm |
| 878 |
|
|
h2o = ym(2) |
| 879 |
|
|
|
| 880 |
|
|
c-- R6: H + O2 + M -> HO2 + M |
| 881 |
|
|
|
| 882 |
|
|
c rkt0 = 6.2e-32 * xm * T300**(-1.6) |
| 883 |
|
|
rkt0 = rktable1(06,ntemp) * xm |
| 884 |
|
|
rkt00 = 7.5e-11 |
| 885 |
|
|
rk(6) = calkmt(rkt0, rkt00) |
| 886 |
|
|
|
| 887 |
|
|
c-- R9: O + O2 + M -> O3 + M (no high pres. limit) |
| 888 |
|
|
|
| 889 |
|
|
c rkt0 = 5.6e-34 * xm * T300**(-2.8) |
| 890 |
|
|
rkt0 = rktable1(09,ntemp) * xm |
| 891 |
|
|
rk(9) = rkt0 |
| 892 |
|
|
|
| 893 |
|
|
c-- R13: NO2 + HO + M -> HNO3 + M |
| 894 |
|
|
|
| 895 |
|
|
c rkt0 = 2.6e-30 * xm * T300**(-3.2) |
| 896 |
|
|
c rkt00 = 2.4e-11 * T300**(-1.3) |
| 897 |
|
|
rkt0 = rktable1(13,ntemp) * xm |
| 898 |
|
|
rkt00 = rktable2(1, ntemp) |
| 899 |
|
|
rk(13) = calkmt(rkt0, rkt00) |
| 900 |
|
|
|
| 901 |
|
|
c-- R15: NO3 + NO2 + M -> N2O5 + M |
| 902 |
|
|
|
| 903 |
|
|
c rkt0 = 2.2e-30 * xm * T300**(-3.9) |
| 904 |
|
|
c rkt00 = 1.5e-12 * T300**(-0.7) |
| 905 |
|
|
rkt0 = rktable1(15,ntemp) * xm |
| 906 |
|
|
rkt00 = rktable2(2, ntemp) |
| 907 |
|
|
rk(15) = calkmt(rkt0, rkt00) |
| 908 |
|
|
|
| 909 |
|
|
c-- R16: HO2 + HO2 + M -> H2O2 + O2 |
| 910 |
|
|
c 062895: |
| 911 |
|
|
|
| 912 |
|
|
c rk(16) = 1.7e-33 * xn2 * exp(1000.0/T) |
| 913 |
|
|
rk(16) = rktable1(16,ntemp) * xn2 |
| 914 |
|
|
& *(1.+ 1.4e-21*h2o*exp(2200.0/T)) |
| 915 |
|
|
|
| 916 |
|
|
c-- R20: CH3 + O2 + M -> CH3O2 + M |
| 917 |
|
|
|
| 918 |
|
|
c rkt0 = 4.5e-31 * xm * T300**(-3.0) |
| 919 |
|
|
c rkt00 = 1.8e-12 * T300**(-1.7) |
| 920 |
|
|
rkt0 = rktable1(20,ntemp) * xm |
| 921 |
|
|
rkt00 = rktable2(3, ntemp) |
| 922 |
|
|
rk(20) = calkmt(rkt0, rkt00) |
| 923 |
|
|
|
| 924 |
|
|
c-- R29: SO2 + HO + M -> HOSO2 + M |
| 925 |
|
|
|
| 926 |
|
|
c rkt0 = 3.0e-31 * xm * T300**(-3.3) |
| 927 |
|
|
rkt0 = rktable1(29,ntemp) * xm |
| 928 |
|
|
rkt00 = 1.5e-12 |
| 929 |
|
|
rk(29) = calkmt(rkt0, rkt00) |
| 930 |
|
|
|
| 931 |
|
|
c New reactions, 063095: |
| 932 |
|
|
|
| 933 |
|
|
c-- R34: HO + HO + M -> H2O2 + M |
| 934 |
|
|
|
| 935 |
|
|
c rkt0 = 6.9e-31 * xm * T300**(-0.8) |
| 936 |
|
|
rkt0 = rktable1(34,ntemp) * xm |
| 937 |
|
|
rkt00 = 1.5e-11 |
| 938 |
|
|
rk(34) = calkmt(rkt0, rkt00) |
| 939 |
|
|
|
| 940 |
|
|
|
| 941 |
|
|
return |
| 942 |
|
|
end |
| 943 |
|
|
|
| 944 |
|
|
c |
| 945 |
|
|
function calkmt (rkt0, rkt00) |
| 946 |
|
|
c ============================= |
| 947 |
|
|
|
| 948 |
|
|
c |
| 949 |
|
|
c A function for calculate k(M,T) of termolecular |
| 950 |
|
|
c reaction rate from low and high limit |
| 951 |
|
|
c |
| 952 |
|
|
|
| 953 |
|
|
aaa = rkt0/rkt00 |
| 954 |
|
|
bbb = log10(aaa)**2 |
| 955 |
|
|
ccc = 1./(1.+bbb) |
| 956 |
|
|
|
| 957 |
|
|
calkmt = rkt0/(1.+aaa) * 0.6**ccc |
| 958 |
|
|
|
| 959 |
|
|
return |
| 960 |
|
|
end |
| 961 |
|
|
|
| 962 |
|
|
|
| 963 |
|
|
c |
| 964 |
|
|
Block data rktable3dat |
| 965 |
|
|
c ====================== |
| 966 |
|
|
|
| 967 |
|
|
c----------------------------------------c |
| 968 |
|
|
c Block data for holding rktable3 data c |
| 969 |
|
|
c----------------------------------------c |
| 970 |
|
|
|
| 971 |
|
|
#include "chem_para" |
| 972 |
|
|
#include "chem_com" |
| 973 |
|
|
|
| 974 |
|
|
data cosza4rk/ |
| 975 |
|
|
& 0.100000E+01, 0.984808E+00, 0.939693E+00, 0.866025E+00, |
| 976 |
|
|
& 0.766044E+00, 0.642788E+00, 0.500000E+00, 0.342020E+00, |
| 977 |
|
|
& 0.207912E+00, 0.697565E-01/ |
| 978 |
|
|
|
| 979 |
|
|
data rk08gama/ |
| 980 |
|
|
& 0.958260E-05, 0.956540E-05, 0.947786E-05, 0.933214E-05, |
| 981 |
|
|
& 0.904837E-05, 0.853986E-05, 0.790570E-05, 0.644646E-05, |
| 982 |
|
|
& 0.540693E-05, 0.640000E-05/ |
| 983 |
|
|
|
| 984 |
|
|
data rk08aaa/ |
| 985 |
|
|
& -0.213357E-08, -0.212833E-08, -0.210322E-08, -0.206239E-08, |
| 986 |
|
|
& -0.198520E-08, -0.185147E-08, -0.169861E-08, -0.133796E-08, |
| 987 |
|
|
& -0.109912E-08, -0.131294E-08/ |
| 988 |
|
|
|
| 989 |
|
|
data rk01table/ |
| 990 |
|
|
& 0.553973E-07, 0.541612E-07, 0.501300E-07, 0.436050E-07, |
| 991 |
|
|
& 0.346763E-07, 0.241176E-07, 0.141663E-07, 0.593145E-08, |
| 992 |
|
|
& 0.238321E-08, 0.148548E-08/ |
| 993 |
|
|
|
| 994 |
|
|
data rk17table/ |
| 995 |
|
|
& 0.761430E-08, 0.755268E-08, 0.730677E-08, 0.691454E-08, |
| 996 |
|
|
& 0.626346E-08, 0.536943E-08, 0.430112E-08, 0.288139E-08, |
| 997 |
|
|
& 0.199044E-08, 0.209279E-08/ |
| 998 |
|
|
|
| 999 |
|
|
data rk24table/ |
| 1000 |
|
|
& 0.535338E-08, 0.531281E-08, 0.515418E-08, 0.489785E-08, |
| 1001 |
|
|
& 0.447421E-08, 0.387878E-08, 0.318768E-08, 0.217960E-08, |
| 1002 |
|
|
& 0.155503E-08, 0.170283E-08/ |
| 1003 |
|
|
|
| 1004 |
|
|
data rk26table/ |
| 1005 |
|
|
& 0.109106E-06, 0.108473E-06, 0.105771E-06, 0.101587E-06, |
| 1006 |
|
|
& 0.941011E-07, 0.831775E-07, 0.701839E-07, 0.494384E-07, |
| 1007 |
|
|
& 0.364853E-07, 0.410051E-07/ |
| 1008 |
|
|
|
| 1009 |
|
|
end |
| 1010 |
|
|
|
| 1011 |
|
|
#endif |
| 1012 |
|
|
|