| 1 |
|
| 2 |
#include "ctrparam.h" |
| 3 |
|
| 4 |
! ============================================================ |
| 5 |
! |
| 6 |
! CHEMSHAP2D.F: A revised version of SHAP2D.F which is a |
| 7 |
! subroutine for applying Shapiro (2d) |
| 8 |
! smoothing of MIT Global Chemistry Model |
| 9 |
! |
| 10 |
! ------------------------------------------------------------ |
| 11 |
! |
| 12 |
! Author: Chien Wang |
| 13 |
! MIT Joint Program on Science and Policy |
| 14 |
! of Global Change |
| 15 |
! |
| 16 |
! ---------------------------------------------------------- |
| 17 |
! |
| 18 |
! Revision History: |
| 19 |
! |
| 20 |
! When Who What |
| 21 |
! ---- ---------- ------- |
| 22 |
! 080494 Chien Wang rev. |
| 23 |
! 080200 Chien Wang repack based on CliChem3 & add cpp |
| 24 |
! |
| 25 |
! ========================================================== |
| 26 |
|
| 27 |
subroutine chemshap2d (MFILTR,NORDER,XXX,IM,JM,J1,ITYPE) 8590. |
| 28 |
|
| 29 |
COMMON/WORK2/X1JI(72,46),X2JI(72,46),X3JI(72,46),X1(72),X2(72), |
| 30 |
* X3(72),X4(72),XM1(72),XJMP1(72) |
| 31 |
|
| 32 |
! ---------------------------------------------------------- |
| 33 |
|
| 34 |
#if ( defined CPL_CHEM ) |
| 35 |
|
| 36 |
C VARIABLE ITYPE DETERMINES TYPE OF BOUNDARY CONDITIONS |
| 37 |
C ITYPE=1 FOR PS,T AND Q ( XM1=X2) |
| 38 |
C ITYPE=2 FOR U (XM1=X1) |
| 39 |
C ITYPE=3 FOR V (XM1=-X1) |
| 40 |
|
| 41 |
JMM1=JM-1 |
| 42 |
J2=J1+1 |
| 43 |
IMBY2=1 |
| 44 |
DO 145 N=1,NORDER |
| 45 |
|
| 46 |
DO 146 K=1,IM |
| 47 |
X1(K)=X1JI(K,J1) |
| 48 |
X2(K)=X1JI(K,J2) |
| 49 |
X3(K)=X1JI(K,JMM1) |
| 50 |
X4(K)=X1JI(K,JM) |
| 51 |
IF(ITYPE.EQ.1)THEN |
| 52 |
XM1(K)=X1JI(K,J2) |
| 53 |
XJMP1(K)=X1JI(K,JMM1) |
| 54 |
ELSEIF(ITYPE.EQ.2)THEN |
| 55 |
XM1(K)=X1JI(K,J1) |
| 56 |
XJMP1(K)=X1JI(K,JM) |
| 57 |
ELSE |
| 58 |
XM1(K)=-X1JI(K,J1) |
| 59 |
XJMP1(K)=-X1JI(K,JM) |
| 60 |
ENDIF |
| 61 |
146 CONTINUE |
| 62 |
|
| 63 |
DO 142 I=1,IM |
| 64 |
X1IM1=X1JI(I,J1) |
| 65 |
DO 142 J=J2,JMM1 |
| 66 |
X1I=X1JI(I,J) |
| 67 |
X1JI(I,J)=X1IM1-X1I-X1I+X1JI(I,J+1) |
| 68 |
X1IM1=X1I |
| 69 |
142 CONTINUE |
| 70 |
|
| 71 |
SUM1=0. |
| 72 |
SUMJM=0. |
| 73 |
DO 144 K=1,IMBY2 |
| 74 |
ccc SUM1 =SUM1 +X2(K)-X1(K)-X1(K)+X2(K) |
| 75 |
SUM1 =SUM1 +XM1(K)-X1(K)-X1(K)+X2(K) |
| 76 |
ccc SUMJM=SUMJM+X3(K)-X4(K)-X4(K)+X3(K) |
| 77 |
SUMJM=SUMJM+X3(K)-X4(K)-X4(K)+XJMP1(K) |
| 78 |
144 CONTINUE |
| 79 |
|
| 80 |
X1SUM =SUM1 /IMBY2 |
| 81 |
XJMSUM =SUMJM/IMBY2 |
| 82 |
c DO 147 K=1,IM |
| 83 |
c X1JI(K,JM)=XJMSUM |
| 84 |
c 147 X1JI(K,J1)= X1SUM |
| 85 |
|
| 86 |
145 CONTINUE |
| 87 |
|
| 88 |
DO 160 I=1,IM |
| 89 |
c DO 160 J=J1,JM |
| 90 |
do 160 j=j2,jmm1 |
| 91 |
X1JI(I,J)=(X3JI(I,J)-X1JI(I,J)/XXX) |
| 92 |
160 CONTINUE |
| 93 |
|
| 94 |
#endif |
| 95 |
|
| 96 |
RETURN |
| 97 |
END |