| 1 |
jscott |
1.1 |
|
| 2 |
|
|
#include "ctrparam.h" |
| 3 |
|
|
|
| 4 |
|
|
! ============================================================ |
| 5 |
|
|
! |
| 6 |
|
|
! PDADV.F: Subroutines of Modified Bott advection scheme |
| 7 |
|
|
! |
| 8 |
|
|
! ------------------------------------------------------------ |
| 9 |
|
|
! |
| 10 |
|
|
! Author: Chien Wang |
| 11 |
|
|
! MIT Joint Program on Science and Policy |
| 12 |
|
|
! of Global Change |
| 13 |
|
|
! |
| 14 |
|
|
! ---------------------------------------------------------- |
| 15 |
|
|
! |
| 16 |
|
|
! Revision History: |
| 17 |
|
|
! |
| 18 |
|
|
! When Who What |
| 19 |
|
|
! ---- ---------- ------- |
| 20 |
|
|
! 080200 Chien Wang repack based on CliChem3 & add cpp |
| 21 |
|
|
! |
| 22 |
|
|
! ========================================================== |
| 23 |
|
|
|
| 24 |
|
|
C ************************************** |
| 25 |
|
|
C ************************************** |
| 26 |
|
|
SUBROUTINE pdadv1(C,W4,W2,W1,N) |
| 27 |
|
|
C ************************************** |
| 28 |
|
|
C ************************************** |
| 29 |
|
|
C |
| 30 |
|
|
C ****************************************************************** |
| 31 |
|
|
C |
| 32 |
|
|
C This is a subroutine for the first part of Bott's advection scheme. |
| 33 |
|
|
C |
| 34 |
|
|
C Andreas Bott 1989: A Positive Definite Advection scheme obtained |
| 35 |
|
|
C by Nonlinear Renormalization of the advective fluxes |
| 36 |
|
|
C Mon. Wea. Rev. 117 1006-15 |
| 37 |
|
|
C |
| 38 |
|
|
C Fourth Order: with coefficients from Mon. Wea. Rev. 117 2633-36 |
| 39 |
|
|
C |
| 40 |
|
|
C Input: C=U*DT/DX[N+1] Output: W4[3:N1,5],W2[2;3;n1;n,3] and |
| 41 |
|
|
C W1[1;2;n;n+1,2] |
| 42 |
|
|
C On the Staggered Grid: C(i')----Q(i)----C(i'+1) |
| 43 |
|
|
C |
| 44 |
|
|
C ****************************************************************** |
| 45 |
|
|
|
| 46 |
|
|
PARAMETER ( C0=1.0/1920.0,C1=1.0/384.00,C2=1.0/384.0 |
| 47 |
|
|
& , C3=1.0/768.00,C4=1.0/3840.0,EP=1.0E-15 ) |
| 48 |
|
|
c parameter (cc0=1.,cc1=1./16.,cc2=1./48.) |
| 49 |
|
|
parameter (cc0=-1./24.,cc1=1./16.,cc2=1./48.) |
| 50 |
|
|
c parameter (cc0=-1./24.,cc1=1./16.,cc2=1./16.) |
| 51 |
|
|
|
| 52 |
|
|
DIMENSION C(N+1),W4(N,5),W2(N,3),W1(4,2) |
| 53 |
|
|
|
| 54 |
|
|
! ----------------------------------------------------------- |
| 55 |
|
|
|
| 56 |
|
|
#if ( defined CPL_CHEM ) |
| 57 |
|
|
|
| 58 |
|
|
n1=n-1 |
| 59 |
|
|
n2=n-2 |
| 60 |
|
|
n3=n-3 |
| 61 |
|
|
|
| 62 |
|
|
do 1 i=1,n |
| 63 |
|
|
do 2 j=1,5 |
| 64 |
|
|
w4(i,j)=0.0 |
| 65 |
|
|
2 continue |
| 66 |
|
|
do 3 j=1,3 |
| 67 |
|
|
w2(i,j)=0.0 |
| 68 |
|
|
3 continue |
| 69 |
|
|
1 continue |
| 70 |
|
|
|
| 71 |
|
|
C |
| 72 |
|
|
C GET THE COEFFICIENTS DEPENDENT ON C ONLY |
| 73 |
|
|
C |
| 74 |
|
|
w1(1,1)=abs(c(1)) |
| 75 |
|
|
w1(1,2)=0.0 |
| 76 |
|
|
w1(2,1)=abs(c(2)) |
| 77 |
|
|
w1(2,2)=2.0*w1(2,1)*(1.-w1(2,1)) |
| 78 |
|
|
w1(3,1)=abs(c(n)) |
| 79 |
|
|
w1(3,2)=2.0*w1(3,1)*(1.-w1(3,1)) |
| 80 |
|
|
w1(4,1)=abs(c(n+1)) |
| 81 |
|
|
w1(4,2)=0.0 |
| 82 |
|
|
|
| 83 |
|
|
rr1=abs(c(2)) |
| 84 |
|
|
rr2=1.-(rr1+rr1) |
| 85 |
|
|
r1=rr2**2 |
| 86 |
|
|
r2=r1*rr2 |
| 87 |
|
|
w2(2,1)=rr1*cc0 |
| 88 |
|
|
w2(2,2)=(1.-r1)*cc1 |
| 89 |
|
|
w2(2,3)=(1.-r2)*cc2 |
| 90 |
|
|
|
| 91 |
|
|
rr1=abs(c(3)) |
| 92 |
|
|
rr2=1.-(rr1+rr1) |
| 93 |
|
|
r1=rr2**2 |
| 94 |
|
|
r2=r1*rr2 |
| 95 |
|
|
w2(3,1)=rr1*cc0 |
| 96 |
|
|
w2(3,2)=(1.-r1)*cc1 |
| 97 |
|
|
w2(3,3)=(1.-r2)*cc2 |
| 98 |
|
|
|
| 99 |
|
|
rr1=abs(c(4)) |
| 100 |
|
|
rr2=1.-(rr1+rr1) |
| 101 |
|
|
r1=rr2**2 |
| 102 |
|
|
r2=r1*rr2 |
| 103 |
|
|
w2(4,1)=rr1*cc0 |
| 104 |
|
|
w2(4,2)=(1.-r1)*cc1 |
| 105 |
|
|
w2(4,3)=(1.-r2)*cc2 |
| 106 |
|
|
|
| 107 |
|
|
rr1=abs(c(n2)) |
| 108 |
|
|
rr2=1.-(rr1+rr1) |
| 109 |
|
|
r1=rr2**2 |
| 110 |
|
|
r2=r1*rr2 |
| 111 |
|
|
w2(n2,1)=rr1*cc0 |
| 112 |
|
|
w2(n2,2)=(1.-r1)*cc1 |
| 113 |
|
|
w2(n2,3)=(1.-r2)*cc2 |
| 114 |
|
|
|
| 115 |
|
|
rr1=abs(c(n1)) |
| 116 |
|
|
rr2=1.-(rr1+rr1) |
| 117 |
|
|
r1=rr2**2 |
| 118 |
|
|
r2=r1*rr2 |
| 119 |
|
|
w2(n1,1)=rr1*cc0 |
| 120 |
|
|
w2(n1,2)=(1.-r1)*cc1 |
| 121 |
|
|
w2(n1,3)=(1.-r2)*cc2 |
| 122 |
|
|
|
| 123 |
|
|
rr1=abs(c(n)) |
| 124 |
|
|
rr2=1.-(rr1+rr1) |
| 125 |
|
|
r1=rr2**2 |
| 126 |
|
|
r2=r1*rr2 |
| 127 |
|
|
w2(n,1)=rr1*cc0 |
| 128 |
|
|
w2(n,2)=(1.-r1)*cc1 |
| 129 |
|
|
w2(n,3)=(1.-r2)*cc2 |
| 130 |
|
|
|
| 131 |
|
|
DO 100 I = 3 ,N1 |
| 132 |
|
|
|
| 133 |
|
|
rr1 = ABS( C(I) ) |
| 134 |
|
|
rr2 = 1.0 - (rr1+rr1) |
| 135 |
|
|
R1 = Rr2*Rr2 |
| 136 |
|
|
R2 = R1*Rr2 |
| 137 |
|
|
R3 = R2*Rr2 |
| 138 |
|
|
R4 = R3*Rr2 |
| 139 |
|
|
|
| 140 |
|
|
W4(I,1) = rr1 *C0 |
| 141 |
|
|
W4(I,2) = (1.0-R1)*C1 |
| 142 |
|
|
W4(I,3) = (1.0-R2)*C2 |
| 143 |
|
|
W4(I,4) = (1.0-R3)*C3 |
| 144 |
|
|
W4(I,5) = (1.0-R4)*C4 |
| 145 |
|
|
|
| 146 |
|
|
100 CONTINUE |
| 147 |
|
|
C |
| 148 |
|
|
|
| 149 |
|
|
#endif |
| 150 |
|
|
|
| 151 |
|
|
return |
| 152 |
|
|
end |
| 153 |
|
|
|
| 154 |
|
|
|
| 155 |
|
|
C ************************************** |
| 156 |
|
|
C ************************************** |
| 157 |
|
|
SUBROUTINE pdadv2(C,Q,W4,W2,W1,ww,ww2,N,NOOS) |
| 158 |
|
|
C ************************************** |
| 159 |
|
|
C ************************************** |
| 160 |
|
|
C |
| 161 |
|
|
C ************************************************************* |
| 162 |
|
|
C |
| 163 |
|
|
C This is a subroutine for the second part of Bott's advection |
| 164 |
|
|
C scheme. |
| 165 |
|
|
C |
| 166 |
|
|
C Andreas Bott 1989: A Positive Definite Advection scheme obtained |
| 167 |
|
|
C by Nonlinear Renormalization of the advective fluxes |
| 168 |
|
|
C Mon. Wea. Rev. 117 1006-15 |
| 169 |
|
|
C |
| 170 |
|
|
C Fourth Order: with coefficients from Mon. Wea. Rev. 117 2633-36 |
| 171 |
|
|
C |
| 172 |
|
|
C Input: C=U*DT/DX[N+1] & Q[N] Output: Q[2 N-1] |
| 173 |
|
|
C On the Staggered Grid: C(i')----Q(i)----C(i'+1) |
| 174 |
|
|
C |
| 175 |
|
|
C NOSS = 1: Perform non-oscillatory option |
| 176 |
|
|
C |
| 177 |
|
|
PARAMETER ( C0=1.0/1920.0,C1=1.0/384.00,C2=1.0/384.0 |
| 178 |
|
|
& , C3=1.0/768.00,C4=1.0/3840.0,EP=1.0E-15 ) |
| 179 |
|
|
c parameter ( cc0=1.,cc1=1./16.,cc2=1./24.) |
| 180 |
|
|
parameter ( cc0=-1./24.,cc1=1./16.,cc2=1./24.) |
| 181 |
|
|
c parameter ( cc0=-1./24.,cc1=1./16.,cc2=1./16.) |
| 182 |
|
|
|
| 183 |
|
|
DIMENSION C(N+1),Q(N),W4(n,5),w2(n,3),w1(4,2), |
| 184 |
|
|
& ww(n+1,5),ww2(n+1,5) |
| 185 |
|
|
C |
| 186 |
|
|
|
| 187 |
|
|
! -------------------------------------------------------- |
| 188 |
|
|
|
| 189 |
|
|
#if ( defined CPL_CHEM ) |
| 190 |
|
|
|
| 191 |
|
|
N1 = N-1 |
| 192 |
|
|
N2 = N-2 |
| 193 |
|
|
N3 = N-3 |
| 194 |
|
|
|
| 195 |
|
|
do 1 i=1,(n+1)*5 |
| 196 |
|
|
ww (i,1)=0.0 |
| 197 |
|
|
ww2(i,1)=0.0 |
| 198 |
|
|
1 continue |
| 199 |
|
|
|
| 200 |
|
|
C |
| 201 |
|
|
C FOR ANY POSITIVE-DEFINITE Q ADVECTION |
| 202 |
|
|
C |
| 203 |
|
|
C 1. First order scheme for i=2 and n: |
| 204 |
|
|
|
| 205 |
|
|
a0=q(1) |
| 206 |
|
|
a1=q(2)-q(1) |
| 207 |
|
|
ww(1,1)=a0 |
| 208 |
|
|
ww(1,2)=a0*w1(1,1) |
| 209 |
|
|
ww(2,3)=a0*w1(2,1)+a1*w1(2,2) |
| 210 |
|
|
|
| 211 |
|
|
a0=q(n) |
| 212 |
|
|
a1=q(n)-q(n1) |
| 213 |
|
|
ww(n,1)=a0 |
| 214 |
|
|
ww(n,2)=a0*w1(3,1)-a1*w1(3,2) |
| 215 |
|
|
ww(n+1,3)=a0*w1(4,1) |
| 216 |
|
|
|
| 217 |
|
|
C 2. Second order scheme for i=2,3,n1,n: |
| 218 |
|
|
|
| 219 |
|
|
ww2(1,1)=ww(1,1) |
| 220 |
|
|
ww2(1,2)=ww(1,2) |
| 221 |
|
|
ww2(2,3)=ww(2,3) |
| 222 |
|
|
|
| 223 |
|
|
a0=q(3)-26.*q(2)+q(1) |
| 224 |
|
|
a1=q(3)-q(1) |
| 225 |
|
|
a2=q(3)-2.*q(2)+q(1) |
| 226 |
|
|
ww2(2,1)=cc0*a0+cc2*a2 |
| 227 |
|
|
ww2(2,2)=a0*w2(2,1)-a1*w2(2,2)+a2*w2(2,3) |
| 228 |
|
|
ww2(3,3)=a0*w2(3,1)+a1*w2(3,2)+a2*w2(3,3) |
| 229 |
|
|
|
| 230 |
|
|
a0=q(4)-26.*q(3)+q(2) |
| 231 |
|
|
a1=q(4)-q(2) |
| 232 |
|
|
a2=q(4)-2.*q(3)+q(2) |
| 233 |
|
|
ww2(3,1)=cc0*a0+cc2*a2 |
| 234 |
|
|
ww2(3,2)=a0*w2(3,1)-a1*w2(3,2)+a2*w2(3,3) |
| 235 |
|
|
ww2(4,3)=a0*w2(4,1)+a1*w2(4,2)+a2*w2(4,3) |
| 236 |
|
|
|
| 237 |
|
|
a0=q(n1)-26.*q(n2)+q(n3) |
| 238 |
|
|
a1=q(n1)-q(n3) |
| 239 |
|
|
a2=q(n1)-2.0*q(n2)+q(n3) |
| 240 |
|
|
ww2(n2,1)=cc0*a0+cc2*a2 |
| 241 |
|
|
ww2(n2,2)=a0*w2(n2,1)-a1*w2(n2,2)+a2*w2(n2,3) |
| 242 |
|
|
ww2(n1,3)=a0*w2(n1,1)+a1*w2(n1,2)+a2*w2(n1,3) |
| 243 |
|
|
|
| 244 |
|
|
a0=q(n)-26.*q(n1)+q(n2) |
| 245 |
|
|
a1=q(n)-q(n2) |
| 246 |
|
|
a2=q(n)-2.*q(n1)+q(n2) |
| 247 |
|
|
ww2(n1,1)=cc0*a0+cc2*a2 |
| 248 |
|
|
ww2(n1,2)=a0*w2(n1,1)-a1*w2(n1,2)+a2*w2(n1,3) |
| 249 |
|
|
ww2(n,3) =a0*w2( n,1)+a1*w2( n,2)+a2*w2( n,3) |
| 250 |
|
|
|
| 251 |
|
|
ww2(n,1) =ww(n,1) |
| 252 |
|
|
ww2(n,2) =ww(n,2) |
| 253 |
|
|
ww2(n+1,3)=ww(n+1,3) |
| 254 |
|
|
|
| 255 |
|
|
C 3. Fourth order scheme for i=3,n1: |
| 256 |
|
|
|
| 257 |
|
|
ww(2,1)=ww2(2,1) |
| 258 |
|
|
ww(2,2)=ww2(2,2) |
| 259 |
|
|
ww(3,3)=ww2(3,3) |
| 260 |
|
|
|
| 261 |
|
|
ww(n1,1)=ww2(n1,1) |
| 262 |
|
|
ww(n1,2)=ww2(n1,2) |
| 263 |
|
|
ww(n, 3)=ww2(n, 3) |
| 264 |
|
|
|
| 265 |
|
|
DO 200 I = 3 ,N2 |
| 266 |
|
|
QL2 = Q(I-2) |
| 267 |
|
|
QL1 = Q(I-1) |
| 268 |
|
|
Q00 = Q(I) |
| 269 |
|
|
QR1 = Q(I+1) |
| 270 |
|
|
QR2 = Q(I+2) |
| 271 |
|
|
QP1 = QR1+QL1 |
| 272 |
|
|
QP2 = QR2+QL2 |
| 273 |
|
|
QM1 = QR1-QL1 |
| 274 |
|
|
QM2 = QR2-QL2 |
| 275 |
|
|
C COEFFICIENTS: AREA PRESERVING FLUX FORM |
| 276 |
|
|
A0 = 9.0*QP2 - 116.0*QP1 + 2134.0*Q00 |
| 277 |
|
|
A1 =-5.0*QM2 + 34.0*QM1 |
| 278 |
|
|
A2 = -QP2 + 12.0*QP1 - 22.0*Q00 |
| 279 |
|
|
A3 = QM2 - 2.0*QM1 |
| 280 |
|
|
A4 = QP2 - 4.0*QP1 + 6.0*Q00 |
| 281 |
|
|
C INTEGRALS: FOR THE USE OF IN/OUT FLUX OF THE GRID |
| 282 |
|
|
ww(I,1) = C0*(A0+10.0*A2+A4) |
| 283 |
|
|
c ww(I,1) = Q00 |
| 284 |
|
|
ww(I,2) = A0*W4(I,1)-A1*W4(I,2)+A2*W4(I,3) |
| 285 |
|
|
& - A3*W4(I,4)+A4*W4(I,5) |
| 286 |
|
|
ww(I+1,3) = A0*W4(I+1,1)+A1*W4(I+1,2)+A2*W4(I+1,3) |
| 287 |
|
|
& +A3*W4(I+1,4)+A4*W4(I+1,5) |
| 288 |
|
|
200 CONTINUE |
| 289 |
|
|
C |
| 290 |
|
|
C RESTRICT THE INTEGRALS TO PRESERVE THE SIGN |
| 291 |
|
|
C |
| 292 |
|
|
I = 1 |
| 293 |
|
|
IF( C(I).GT.0.0 ) THEN |
| 294 |
|
|
ww(I,2) = 0.0 |
| 295 |
|
|
ELSE IF( C(I).LT.0.0 ) THEN |
| 296 |
|
|
ww(I,2) = max( 0.0 , ww(I,2) ) |
| 297 |
|
|
ENDIF |
| 298 |
|
|
DO 210 I = 2 ,N |
| 299 |
|
|
IF( C(I).GT.0.0 ) THEN |
| 300 |
|
|
ww(I,2) = 0.0 |
| 301 |
|
|
ww(I,3) = max( 0.0 , ww(I,3) ) |
| 302 |
|
|
ww2(i,2)= 0.0 |
| 303 |
|
|
ww2(i,3)= max( 0.0, ww2(i,3)) |
| 304 |
|
|
ELSE IF( C(I).LT.0.0 ) THEN |
| 305 |
|
|
ww(I,2) = max( 0.0 , ww(I,2) ) |
| 306 |
|
|
ww(I,3) = 0.0 |
| 307 |
|
|
ww2(i,2)= max( 0.0, ww2(i,2) ) |
| 308 |
|
|
ww2(i,3)= 0.0 |
| 309 |
|
|
ENDIF |
| 310 |
|
|
210 CONTINUE |
| 311 |
|
|
I = N+1 |
| 312 |
|
|
IF( C(I).GT.0.0 ) THEN |
| 313 |
|
|
ww(I,3) = max( 0.0 , ww(I,3) ) |
| 314 |
|
|
ELSE IF( C(I).LT.0.0 ) THEN |
| 315 |
|
|
ww(I,3) = 0.0 |
| 316 |
|
|
ENDIF |
| 317 |
|
|
DO 220 I = 1 ,N |
| 318 |
|
|
ww(I,1) = max( ww(I,2)+ww(I+1,3)+EP , ww(I,1) ) |
| 319 |
|
|
ww2(i,1) = max(ww2(i,2)+ww2(i+1,3)+ep,ww2(i,1)) |
| 320 |
|
|
220 CONTINUE |
| 321 |
|
|
C |
| 322 |
|
|
C GET THE WEIGHTING FACTOR |
| 323 |
|
|
C |
| 324 |
|
|
DO 230 I = 1 ,N |
| 325 |
|
|
ww(I,1) = Q(I) / ww(I,1) |
| 326 |
|
|
ww2(i,1) = q(i) /ww2(i,1) |
| 327 |
|
|
230 CONTINUE |
| 328 |
|
|
C <= ww(I,2) |
| 329 |
|
|
C GET THE IN/OUT FLUX OF THE GRID I --- I+1/2 |
| 330 |
|
|
C ww(I,3) => |
| 331 |
|
|
DO 250 I = 1 ,N+1 |
| 332 |
|
|
if(i.ne.n+1) ww(I,2) = ww(I,2)*ww(I,1) |
| 333 |
|
|
if(i.ne.1) ww(I,3) = ww(I,3)*ww(I-1,1) |
| 334 |
|
|
if(i.ne.n+1) ww2(i,2) = ww2(i,2)*ww2(i,1) |
| 335 |
|
|
if(i.ne.1) ww2(i,3) = ww2(i,3)*ww2(i-1,1) |
| 336 |
|
|
250 CONTINUE |
| 337 |
|
|
C |
| 338 |
|
|
IF( NOOS.NE.1 ) THEN |
| 339 |
|
|
C COMPUTE THE TOTAL ADVECTION TENDENCY |
| 340 |
|
|
|
| 341 |
|
|
c DO 300 I = 2 ,N1 |
| 342 |
|
|
q(2) =ww2(3,2)-ww2(3,3)-ww2(2,2) +ww2(2,3) |
| 343 |
|
|
q(n1)=ww2(n,2)-ww2(n,3)-ww2(n1,2)+ww2(n1,3) |
| 344 |
|
|
DO 300 I = 3 ,N2 |
| 345 |
|
|
c q(i) = ww(i+1,2)-ww(i+1,3)-ww(i,2)+ww(i,3) !tendency |
| 346 |
|
|
q(i) = ww(i+1,2)-ww(i+1,3)-ww(i,2)+ww(i,3)+q(i) !value |
| 347 |
|
|
300 CONTINUE |
| 348 |
|
|
C |
| 349 |
|
|
ELSE |
| 350 |
|
|
C |
| 351 |
|
|
C NON-OSCILLATORY OPTION: FCT LIMITER |
| 352 |
|
|
C P.K.Smolarkiewicz & W.W.Grabowski, 1990: The multidimensional |
| 353 |
|
|
C positive definite advection transport algorithm: Nonoscillatory |
| 354 |
|
|
C option, J. Comput. Phys., 86, 355-375 |
| 355 |
|
|
C |
| 356 |
|
|
C GET THE DONOR-CELL FLUXES (Low-order) |
| 357 |
|
|
|
| 358 |
|
|
DO 400 I = 2 ,N |
| 359 |
|
|
IF( C(I).GT.0.0 ) THEN |
| 360 |
|
|
ww(I,1) = Q(I-1) |
| 361 |
|
|
ELSE |
| 362 |
|
|
ww(I,1) =-Q(I) |
| 363 |
|
|
ENDIF |
| 364 |
|
|
400 CONTINUE |
| 365 |
|
|
|
| 366 |
|
|
c ww(1,1)=max(-q(1)*c(1),0.0) |
| 367 |
|
|
ww(1,1)=abs(q(1)*c(1)) |
| 368 |
|
|
if(c(1).gt.0.0)then |
| 369 |
|
|
ww(1,4)=0.0 |
| 370 |
|
|
ww(1,5)=ww(1,1) |
| 371 |
|
|
else |
| 372 |
|
|
ww(1,4)=ww(1,1) |
| 373 |
|
|
ww(1,5)=0.0 |
| 374 |
|
|
endif |
| 375 |
|
|
|
| 376 |
|
|
DO 405 I = 2 ,N |
| 377 |
|
|
ww(I,1) = ww(I,1) * C(I) |
| 378 |
|
|
ww(I,4) = 0.0 |
| 379 |
|
|
ww(I,5) = 0.0 |
| 380 |
|
|
405 CONTINUE |
| 381 |
|
|
|
| 382 |
|
|
c ww(n+1,1)=max(q(n)*c(n+1),0.0) |
| 383 |
|
|
ww(n+1,1)=abs(q(n)*c(n+1)) |
| 384 |
|
|
if(c(n+1).gt.0.0)then |
| 385 |
|
|
ww(n+1,4)=0.0 |
| 386 |
|
|
ww(n+1,5)=ww(n+1,1) |
| 387 |
|
|
else |
| 388 |
|
|
ww(n+1,4)=ww(n+1,1) |
| 389 |
|
|
ww(n+1,5)=0.0 |
| 390 |
|
|
endif |
| 391 |
|
|
|
| 392 |
|
|
DO 410 I = 2 ,N |
| 393 |
|
|
IF( C(I).GT.0.0 ) THEN |
| 394 |
|
|
ww(I,5)= ww(I,1) |
| 395 |
|
|
ELSE |
| 396 |
|
|
ww(I,4) = ww(I,1) |
| 397 |
|
|
ENDIF |
| 398 |
|
|
410 CONTINUE |
| 399 |
|
|
|
| 400 |
|
|
DO 415 I = 1 ,N |
| 401 |
|
|
ww(I,1) = ww(I+1,4) - ww(I+1,5) - ww(I,4) + ww(I,5) |
| 402 |
|
|
415 CONTINUE |
| 403 |
|
|
|
| 404 |
|
|
DO 420 I = 1 ,N |
| 405 |
|
|
ww(I,1) = ww(I,1) + Q(I) |
| 406 |
|
|
c ww(I,1) = ww(I,1) |
| 407 |
|
|
420 CONTINUE |
| 408 |
|
|
|
| 409 |
|
|
C GET THE A-FLUX = F(High-order)-F(Low-order) |
| 410 |
|
|
DO 430 I = 1 ,N |
| 411 |
|
|
ww(I,4) = ww(I,2) - ww(I,4) |
| 412 |
|
|
ww(I,5) = ww(I,3) - ww(I,5) |
| 413 |
|
|
430 CONTINUE |
| 414 |
|
|
DO 435 I = 1 ,N |
| 415 |
|
|
ww(I,2) = max( 0.0,ww(I,4) ) - min(0.0, ww(I,5) ) |
| 416 |
|
|
ww(I,3) = max( 0.0,ww(I,5) ) - min(0.0, ww(I,4) ) |
| 417 |
|
|
435 CONTINUE |
| 418 |
|
|
|
| 419 |
|
|
ww(1,4)=min(ww(1,1),ww(2,1),q(1),q(2)) |
| 420 |
|
|
ww(1,5)=max(ww(1,1),ww(2,1),q(1),q(2)) |
| 421 |
|
|
DO 440 I = 2 ,N1 |
| 422 |
|
|
J = I-1 |
| 423 |
|
|
K = I+1 |
| 424 |
|
|
ww(I,4) = min(ww(J,1),ww(I,1),ww(K,1),Q(J),Q(I),Q(K)) |
| 425 |
|
|
ww(I,5) = max(ww(J,1),ww(I,1),ww(K,1),Q(J),Q(I),Q(K)) |
| 426 |
|
|
440 CONTINUE |
| 427 |
|
|
ww(n,4)=min(ww(n1,1),ww(n,1),q(n1),q(n)) |
| 428 |
|
|
ww(n,5)=max(ww(n1,1),ww(n,1),q(n1),q(n)) |
| 429 |
|
|
|
| 430 |
|
|
DO 450 I = 1 ,N |
| 431 |
|
|
ww(I,4) =(ww(I,1)-ww(I,4)) / (ww(I,2)+ww(I+1,3)+EP) |
| 432 |
|
|
ww(I,5) =(ww(I,5)-ww(I,1)) / (ww(I,3)+ww(I+1,2)+EP) |
| 433 |
|
|
Q(I) = ww(I,01) |
| 434 |
|
|
450 CONTINUE |
| 435 |
|
|
|
| 436 |
|
|
DO 460 I = 2 ,N |
| 437 |
|
|
ww(I,1) = min( 1.0,ww(I-1,5),ww(I,4) ) |
| 438 |
|
|
460 CONTINUE |
| 439 |
|
|
DO 465 I = 2 ,N |
| 440 |
|
|
ww(I,2) = ww(I,2) * ww(I,1) |
| 441 |
|
|
465 CONTINUE |
| 442 |
|
|
DO 470 I = 2 ,N |
| 443 |
|
|
ww(I,1) = min( 1.0,ww(I-1,4),ww(I,5) ) |
| 444 |
|
|
470 CONTINUE |
| 445 |
|
|
DO 475 I = 2 ,N |
| 446 |
|
|
ww(I,3) = ww(I,3) * ww(I,1) |
| 447 |
|
|
475 CONTINUE |
| 448 |
|
|
C COMPUTE THE HIGH-ORDER ADVECTION TENDENCY |
| 449 |
|
|
DO 500 I = 2 ,N1 |
| 450 |
|
|
ww(I,1) = ww(I+1,2)-ww(I+1,3)-ww(I,2)+ww(I,3) |
| 451 |
|
|
500 CONTINUE |
| 452 |
|
|
C |
| 453 |
|
|
C COMPUTE THE TOTAL ADVECTION TENDENCY |
| 454 |
|
|
C |
| 455 |
|
|
DO 600 I = 2 ,N1 |
| 456 |
|
|
c q(i) = ww(i,1) !tendency |
| 457 |
|
|
q(i) = ww(i,1)+q(i) !value |
| 458 |
|
|
600 CONTINUE |
| 459 |
|
|
|
| 460 |
|
|
ENDIF |
| 461 |
|
|
|
| 462 |
|
|
#endif |
| 463 |
|
|
|
| 464 |
|
|
RETURN |
| 465 |
|
|
END |
| 466 |
|
|
|