| 1 |
|
| 2 |
#include "ctrparam.h" |
| 3 |
|
| 4 |
! ============================================================ |
| 5 |
! |
| 6 |
! CHEMMETA.F: Interface between CliChem and META Models. |
| 7 |
! |
| 8 |
! ------------------------------------------------------------ |
| 9 |
! |
| 10 |
! Author: Chien Wang |
| 11 |
! MIT Joint Program on Science and Policy |
| 12 |
! of Global Change |
| 13 |
! |
| 14 |
! ---------------------------------------------------------- |
| 15 |
! |
| 16 |
! Revision History: |
| 17 |
! |
| 18 |
! When Who What |
| 19 |
! ---- ---------- ------- |
| 20 |
! 062999 Chien Wang using time evolution data |
| 21 |
! for urban partition |
| 22 |
! 120799 Chien Wang use real temperature in meta |
| 23 |
! 052200 Chien Wang use urban daily emission data |
| 24 |
! 080200 Chien Wang repack based on CliChem3 & add cpp |
| 25 |
! 051804 Chien Wang back to the v58 |
| 26 |
! |
| 27 |
! ========================================================== |
| 28 |
|
| 29 |
! =================== |
| 30 |
subroutine chemmeta |
| 31 |
! =================== |
| 32 |
|
| 33 |
parameter (ktop = 2) |
| 34 |
|
| 35 |
#include "chem_para" |
| 36 |
#include "chem_const1" |
| 37 |
|
| 38 |
#include "chem_com" |
| 39 |
#include "chem_meta" |
| 40 |
#include "BD2G04.COM" |
| 41 |
|
| 42 |
common U,V,T,P,Q |
| 43 |
|
| 44 |
real Temp |
| 45 |
real tmp(meta_nvar), conv0, conv, x11(ktop), xxx |
| 46 |
real r_so2, r_co, r_nox, r_voc |
| 47 |
real ymass_no, ymass_no2, ymass_o3, ymass_hno3, |
| 48 |
& ymass_n2o5,ymass_co, ymass_ch2o |
| 49 |
real yflux_no, yflux_no2, yflux_o3, yflux_hno3, |
| 50 |
& yflux_n2o5,yflux_co, yflux_ch2o |
| 51 |
real urban_area,rural_area,total_area |
| 52 |
|
| 53 |
integer ind_lat(nlat), id_lat, jid |
| 54 |
|
| 55 |
! -------------------------------------------- |
| 56 |
! rlati: |lat| in degree (0:65) |
| 57 |
! rtemp: deviation from normal temperature (-10:10) |
| 58 |
! rclou: tenth of mean cloud coverage (0:10) |
| 59 |
! rmixi: maximum mixing layer top in meter (200:2000) |
| 60 |
! rtime: residence time 200km/U in second (21600:259200) |
| 61 |
! rso2: emission of SO2 in kg/km^2/day |
| 62 |
! rco: emission of SO2 in kg/km^2/day |
| 63 |
! rnox: emission of SO2 in kg/km^2/day |
| 64 |
! rvoc: deviation from total daily VOC emission (-0.7:0.7) |
| 65 |
! raqino |
| 66 |
! raqinoo |
| 67 |
! raqivoc |
| 68 |
! raqiozo |
| 69 |
! raqisox |
| 70 |
! results(meta_nvar) |
| 71 |
! |
| 72 |
! --- Order of results and others: |
| 73 |
! --- |
| 74 |
! --- 1: NO mass |
| 75 |
! --- 2: NO flux |
| 76 |
! --- 3: NO2 mass |
| 77 |
! --- 4: NO2 flux |
| 78 |
! --- 5: O3 mass |
| 79 |
! --- 6: O3 flux |
| 80 |
! --- 7: HONO flux |
| 81 |
! --- 8: HNO3 flux |
| 82 |
! --- 9: N2O5 flux |
| 83 |
! --- 10: CO mass |
| 84 |
! --- 11: CO flux |
| 85 |
! --- 12: HCHO mass |
| 86 |
! --- 13: HCHO flux |
| 87 |
! --- 14: ALD2 mass |
| 88 |
! --- 15: MEK mass |
| 89 |
! --- 16: PAN flux |
| 90 |
! --- 17: ALKA mass |
| 91 |
! --- 18: ETHE mass |
| 92 |
! --- 19: ALKE mass |
| 93 |
! --- 20: TOLU mass |
| 94 |
! --- 21: AROM mass |
| 95 |
! --- 22: SO2 mass |
| 96 |
! --- 23: SO2 flux |
| 97 |
! --- 24: SO3 mass |
| 98 |
! --- 25: SO3 flux |
| 99 |
! --- 26: O3 max |
| 100 |
! --- 27: O3 peak hour |
| 101 |
! --- Daily averaged mass |
| 102 |
! --- 28: NO |
| 103 |
! --- 29: NO2 |
| 104 |
! --- 30: O3 |
| 105 |
! --- 31: HONO |
| 106 |
! --- 32: HNO3 |
| 107 |
! --- 33: HNO4 |
| 108 |
! --- 34: N2O5 |
| 109 |
! --- 35: NO3 |
| 110 |
! --- 36: HO2 |
| 111 |
! --- 37: CO |
| 112 |
! --- 38: HCHO |
| 113 |
! --- 39: ALD2 |
| 114 |
! --- 40: MEK |
| 115 |
! --- 41: MGLY |
| 116 |
! --- 42: PAN |
| 117 |
! --- 43: RO2 |
| 118 |
! --- 44: MCO3 |
| 119 |
! --- 45: ALKN |
| 120 |
! --- 46: ALKA |
| 121 |
! --- 47: ETHE |
| 122 |
! --- 48: ALKE |
| 123 |
! --- 49: TOLU |
| 124 |
! --- 50: AROM |
| 125 |
! --- 51: DIAL |
| 126 |
! --- 52: CRES |
| 127 |
! --- 53: NPHE |
| 128 |
! --- 54: H2O2 |
| 129 |
! --- 55: MEOH |
| 130 |
! --- 56: ETOH |
| 131 |
! --- 57: SO2 |
| 132 |
! --- 58: SO3 |
| 133 |
! ---------------------------------------------------- |
| 134 |
! |
| 135 |
#if ( defined CPL_CHEM ) && ( defined CPL_META ) |
| 136 |
|
| 137 |
! --- All metamodel calls and calculations are applied |
| 138 |
! --- to latitudes ranged from -39 to 63 degree |
| 139 |
! --- or j=8,20 in GACM grid index, though arrays |
| 140 |
! --- are still indexed from 1 to nlat. |
| 141 |
id_lat = 0 |
| 142 |
do j=1,nlat |
| 143 |
ind_lat(j) = 0 |
| 144 |
end do |
| 145 |
|
| 146 |
#if ( N_LAT == 24 ) |
| 147 |
do j=8,20 |
| 148 |
#endif |
| 149 |
#if ( N_LAT == 46 ) |
| 150 |
do j=14,39 |
| 151 |
#endif |
| 152 |
if ( n_total_urban(j,myyear) .ne. 0 ) then |
| 153 |
id_lat = id_lat + 1 |
| 154 |
ind_lat(id_lat) = j |
| 155 |
endif |
| 156 |
end do |
| 157 |
|
| 158 |
do 10 jid = 1,id_lat |
| 159 |
j = ind_lat(jid) |
| 160 |
|
| 161 |
do ntype = 1,3 |
| 162 |
do iii = 1,meta_nvar |
| 163 |
results_meta(iii,ntype,j) = 0.0 |
| 164 |
end do |
| 165 |
end do |
| 166 |
|
| 167 |
cldcvr = 0.0 |
| 168 |
do k=2,6 |
| 169 |
xxx = chem_cldss(1,j,k) + chem_cldmc(1,j,k) |
| 170 |
& - chem_cldss(1,j,k) * chem_cldmc(1,j,k) |
| 171 |
! if(xxx.gt.1.0) xxx = 1.0 |
| 172 |
if(xxx.gt.0.9) xxx = 0.9 |
| 173 |
if(xxx.lt.0.0) xxx = 0.0 |
| 174 |
if(xxx.gt.cldcvr)cldcvr = xxx |
| 175 |
end do |
| 176 |
|
| 177 |
rtemp(j) = 0.0 |
| 178 |
|
| 179 |
! --- cloud coverage in tenth |
| 180 |
rclou(j) = cldcvr*10.0 |
| 181 |
|
| 182 |
! --- m, top of layer 2 |
| 183 |
rmixi(j) = 1500.0 |
| 184 |
|
| 185 |
! --- 21600 < time < 259200, fixed size of 200 km |
| 186 |
rtime(j) = 2.e5/max(0.771605, abs(pvv(1,j,1))) |
| 187 |
if(rtime(j).lt. 21600.0) rtime(j) = 21600.0 |
| 188 |
if(rtime(j).gt.259200.0) rtime(j) = 259200.0 |
| 189 |
|
| 190 |
urban_area = float(n_total_urban(j,myyear))*4.e10 |
| 191 |
total_area = 1./dxyp(j) |
| 192 |
urban_area = urban_area*total_area |
| 193 |
rural_area = 1.0 - urban_area |
| 194 |
if (rural_area .le. 0.0) then |
| 195 |
rural_area = 0.0 |
| 196 |
urban_area = 1.0 |
| 197 |
end if |
| 198 |
|
| 199 |
tmass = 0.0 !Total air mass in kg |
| 200 |
do k=1,ktop |
| 201 |
tmass = tmass + airmass(1,j,k) |
| 202 |
enddo |
| 203 |
tmass = 1./tmass |
| 204 |
|
| 205 |
ymass_no = 0.0 |
| 206 |
ymass_no2 = 0.0 |
| 207 |
ymass_o3 = 0.0 |
| 208 |
ymass_hno3 = 0.0 |
| 209 |
ymass_n2o5 = 0.0 |
| 210 |
ymass_co = 0.0 |
| 211 |
ymass_ch2o = 0.0 |
| 212 |
yflux_no = 0.0 |
| 213 |
yflux_no2 = 0.0 |
| 214 |
yflux_o3 = 0.0 |
| 215 |
yflux_hno3 = 0.0 |
| 216 |
yflux_n2o5 = 0.0 |
| 217 |
yflux_co = 0.0 |
| 218 |
yflux_ch2o = 0.0 |
| 219 |
|
| 220 |
! --- convert daily emission for a 95x95 km^2 "core" |
| 221 |
! from 10^-9 kg to kg/km^2 |
| 222 |
! conv0 = 1.e-9/(95x95)/n |
| 223 |
! |
| 224 |
conv0 = 1.10803e-13 |
| 225 |
& /(float(n_total_urban(j,myyear))) |
| 226 |
|
| 227 |
do 20 ntype=1,3 ! 3 different types |
| 228 |
|
| 229 |
if (n_urban(ntype,j,myyear).ne.0) then |
| 230 |
|
| 231 |
! --- decide the emission strength of |
| 232 |
! --- different types of cities |
| 233 |
if (n_total_urban(j,myyear).lt.4)then |
| 234 |
conv = conv0*urban_beta_1(ntype) |
| 235 |
else if (n_total_urban(j,myyear).lt.20)then |
| 236 |
conv = conv0*urban_beta_2(ntype) |
| 237 |
else |
| 238 |
conv = conv0*urban_beta_3(ntype) |
| 239 |
end if |
| 240 |
|
| 241 |
! r_so2 = edailyso2(1,j,myyear)*alpha_so2(j) |
| 242 |
r_so2 = edailyusox(1,j,myyear) |
| 243 |
& * conv |
| 244 |
|
| 245 |
! r_co = edailyco (1,j,myyear)*alpha_co (j,myyear) |
| 246 |
r_co = edailyuco (1,j,myyear) |
| 247 |
& * conv |
| 248 |
|
| 249 |
! r_nox = edailynox(1,j,myyear)*alpha_nox(j,myyear) |
| 250 |
r_nox = edailyunox(1,j,myyear) |
| 251 |
& * conv |
| 252 |
|
| 253 |
! r_voc = 0.0 |
| 254 |
r_voc = edailyunmv(1,j,myyear) |
| 255 |
& * conv |
| 256 |
|
| 257 |
Temp = T(1,j,1)*airpress(1)**0.286 |
| 258 |
|
| 259 |
! --- jday =julian day [1,365] |
| 260 |
xxx = float(jday) |
| 261 |
|
| 262 |
call metamodel( Temp, j_date, |
| 263 |
& rlati(j),rtemp(j),rclou(j), |
| 264 |
& rmixi(j),rtime(j), |
| 265 |
& r_so2, r_co, r_nox, r_voc, |
| 266 |
& raqino (ntype,j),raqinoo(ntype,j), |
| 267 |
& raqivoc(ntype,j),raqiozo(ntype,j), |
| 268 |
& raqisox(ntype,j),tmp) |
| 269 |
|
| 270 |
! |
| 271 |
! if(myyear.eq.1.and.mymonth.eq.8)then |
| 272 |
! print *,"ntype = ",ntype, "j = ",j |
| 273 |
! print *,"AQINO = ",raqino(ntype,j),"AQINO2 = ",raqinoo(ntype,j) |
| 274 |
! print *,"AQIVOC = ",raqivoc(ntype,j),"AQIOZO = ",raqiozo(ntype,j) |
| 275 |
! print *,"AQISOX = ",raqisox(ntype,j) |
| 276 |
! endif |
| 277 |
! |
| 278 |
|
| 279 |
! --- convert mass and flux from kg/km^2 to kg |
| 280 |
do iii=1,25 |
| 281 |
results_meta(iii,ntype,j)= |
| 282 |
& tmp(iii)*n_urban(ntype,j,myyear)*4.e4 |
| 283 |
& *( 1.0 + sin(3.1415926 |
| 284 |
& *(xxx - xc_meta(iii))/w_meta(iii)) |
| 285 |
& /c_meta(iii) ) |
| 286 |
& |
| 287 |
end do |
| 288 |
results_meta(26,ntype,j) = tmp(26) |
| 289 |
& *( 1.0 + sin(3.1415926 |
| 290 |
& *(xxx - xc_meta(26))/w_meta(26)) |
| 291 |
& /c_meta(26) ) |
| 292 |
results_meta(27,ntype,j) = tmp(27) |
| 293 |
|
| 294 |
do iii=28,meta_nvar |
| 295 |
results_meta(iii,ntype,j)= |
| 296 |
& tmp(iii)*n_urban(ntype,j,myyear)*4.e4 |
| 297 |
& *( 1.0 + sin(3.1415926 |
| 298 |
& *(xxx - xc_meta(iii))/w_meta(iii))/c_meta(iii) ) |
| 299 |
end do |
| 300 |
|
| 301 |
|
| 302 |
! --- all results should be positive definite |
| 303 |
do iii=1,meta_nvar |
| 304 |
if(results_meta(iii,ntype,j).le.0.0) |
| 305 |
& results_meta(iii,ntype,j) = 0.0 |
| 306 |
end do |
| 307 |
|
| 308 |
! --- convert flux to kg (mass is already in kg) |
| 309 |
! Note: CO and NO fluxes have been included |
| 310 |
! in chememission.F, they should not be recounted here |
| 311 |
! Note also: ymass mixing with the grid model is no longer |
| 312 |
! needed so that both meta and grid calculates its own |
| 313 |
! concentration, only connection is the yflux |
| 314 |
! This has been tested via eppa02 May 2004. |
| 315 |
! Chien Wang 062304 |
| 316 |
! |
| 317 |
! ymass_no = ymass_no |
| 318 |
! & + results_meta(1,ntype,j) |
| 319 |
! ymass_no2 = ymass_no2 |
| 320 |
! & + results_meta(3,ntype,j) |
| 321 |
yflux_no2 = yflux_no2 |
| 322 |
& + results_meta(4,ntype,j) |
| 323 |
! ymass_o3 = ymass_o3 |
| 324 |
! & + results_meta(5,ntype,j) |
| 325 |
yflux_o3 = yflux_o3 |
| 326 |
& + results_meta(6,ntype,j) |
| 327 |
yflux_hno3 = yflux_hno3 |
| 328 |
& + results_meta(8,ntype,j) |
| 329 |
yflux_n2o5 = yflux_n2o5 |
| 330 |
& + results_meta(9,ntype,j) |
| 331 |
! ymass_co = ymass_co |
| 332 |
! & + results_meta(10,ntype,j) |
| 333 |
! ymass_ch2o = ymass_ch2o |
| 334 |
! & + results_meta(12,ntype,j) |
| 335 |
yflux_ch2o = yflux_ch2o |
| 336 |
& + results_meta(13,ntype,j) |
| 337 |
end if |
| 338 |
|
| 339 |
20 continue |
| 340 |
|
| 341 |
! --- |
| 342 |
! --- incorperating meta results into mixing ratios: |
| 343 |
! --- |
| 344 |
! --- NO |
| 345 |
do k=1,ktop |
| 346 |
x11(k) = xno (1,j,k) |
| 347 |
enddo |
| 348 |
call chemmeta_mass(1,j,ktop,tmass, |
| 349 |
& urban_area,rural_area, |
| 350 |
& ymass_no,yflux_no,x11) |
| 351 |
do k=1,ktop |
| 352 |
xno(1,j,k) = x11(k) |
| 353 |
enddo |
| 354 |
|
| 355 |
! --- NO2 |
| 356 |
do k=1,ktop |
| 357 |
x11(k) = xno2(1,j,k) |
| 358 |
enddo |
| 359 |
call chemmeta_mass(1,j,ktop,tmass, |
| 360 |
& urban_area,rural_area, |
| 361 |
& ymass_no2,yflux_no2,x11) |
| 362 |
do k=1,ktop |
| 363 |
xno2(1,j,k) = x11(k) |
| 364 |
enddo |
| 365 |
|
| 366 |
! --- O3 |
| 367 |
do k=1,ktop |
| 368 |
x11(k) = o3 (1,j,k) |
| 369 |
enddo |
| 370 |
call chemmeta_mass(1,j,ktop,tmass, |
| 371 |
& urban_area,rural_area, |
| 372 |
& ymass_o3,yflux_o3,x11) |
| 373 |
do k=1,ktop |
| 374 |
o3 (1,j,k) = x11(k) |
| 375 |
enddo |
| 376 |
|
| 377 |
! --- HNO3 |
| 378 |
do k=1,ktop |
| 379 |
x11(k) = hno3 (1,j,k) |
| 380 |
enddo |
| 381 |
call chemmeta_mass(1,j,ktop,tmass, |
| 382 |
& urban_area,rural_area, |
| 383 |
& ymass_hno3,yflux_hno3,x11) |
| 384 |
do k=1,ktop |
| 385 |
hno3(1,j,k) = x11(k) |
| 386 |
enddo |
| 387 |
|
| 388 |
! --- N2O5 |
| 389 |
do k=1,ktop |
| 390 |
x11(k) = xn2o5(1,j,k) |
| 391 |
enddo |
| 392 |
call chemmeta_mass(1,j,ktop,tmass, |
| 393 |
& urban_area,rural_area, |
| 394 |
& ymass_n2o5,yflux_n2o5,x11) |
| 395 |
do k=1,ktop |
| 396 |
xn2o5(1,j,k) = x11(k) |
| 397 |
enddo |
| 398 |
|
| 399 |
! --- CO |
| 400 |
do k=1,ktop |
| 401 |
x11(k) = co(1,j,k) |
| 402 |
enddo |
| 403 |
call chemmeta_mass(1,j,ktop,tmass, |
| 404 |
& urban_area,rural_area, |
| 405 |
& ymass_co,yflux_co,x11) |
| 406 |
do k=1,ktop |
| 407 |
co(1,j,k) = x11(k) |
| 408 |
enddo |
| 409 |
|
| 410 |
! --- HCHO |
| 411 |
do k=1,ktop |
| 412 |
x11(k) = ch2o(1,j,k) |
| 413 |
enddo |
| 414 |
call chemmeta_mass(1,j,ktop,tmass, |
| 415 |
& urban_area,rural_area, |
| 416 |
& ymass_ch2o,yflux_ch2o,x11) |
| 417 |
do k=1,ktop |
| 418 |
ch2o(1,j,k) = x11(k) |
| 419 |
enddo |
| 420 |
|
| 421 |
! === |
| 422 |
! === convert mass into mole fraction in ppb |
| 423 |
! === |
| 424 |
conv0 = tmass/urban_area*28.97296245*1.e9 |
| 425 |
do ntype=1,3 |
| 426 |
if(n_urban(ntype,j,myyear).gt.0)then |
| 427 |
conv = conv0*float(n_total_urban(j,myyear)) |
| 428 |
& /float(n_urban(ntype,j,myyear)) |
| 429 |
! --- 1: NO mass |
| 430 |
results_meta(1,ntype,j) = |
| 431 |
& results_meta(1,ntype,j) |
| 432 |
& /awNO*conv |
| 433 |
! --- 3: NO2 mass |
| 434 |
results_meta(3,ntype,j) = |
| 435 |
& results_meta(3,ntype,j) |
| 436 |
& /awNO2*conv |
| 437 |
! --- 5: O3 mass |
| 438 |
results_meta(5,ntype,j) = |
| 439 |
& results_meta(5,ntype,j) |
| 440 |
& /awO3*conv |
| 441 |
! --- 10: CO mass |
| 442 |
results_meta(10,ntype,j) = |
| 443 |
& results_meta(10,ntype,j) |
| 444 |
& /awCO*conv |
| 445 |
! --- 12: HCHO mass |
| 446 |
results_meta(12,ntype,j) = |
| 447 |
& results_meta(12,ntype,j) |
| 448 |
& /awCH2O*conv |
| 449 |
! --- 14: ALD2 mass |
| 450 |
results_meta(14,ntype,j) = |
| 451 |
& results_meta(14,ntype,j) |
| 452 |
& /awALD2*conv |
| 453 |
! --- 15: MEK mass |
| 454 |
results_meta(15,ntype,j) = |
| 455 |
& results_meta(15,ntype,j) |
| 456 |
& /awMEK*conv |
| 457 |
! --- 17: ALKA mass |
| 458 |
results_meta(17,ntype,j) = |
| 459 |
& results_meta(17,ntype,j) |
| 460 |
& /awALKA*conv |
| 461 |
! --- 18: ETHE mass |
| 462 |
results_meta(18,ntype,j) = |
| 463 |
& results_meta(18,ntype,j) |
| 464 |
& /awETHE*conv |
| 465 |
! --- 19: ALKE mass |
| 466 |
results_meta(19,ntype,j) = |
| 467 |
& results_meta(19,ntype,j) |
| 468 |
& /awALKE*conv |
| 469 |
! --- 20: TOLU mass |
| 470 |
results_meta(20,ntype,j) = |
| 471 |
& results_meta(20,ntype,j) |
| 472 |
& /awTOLU*conv |
| 473 |
! --- 21: AROM mass |
| 474 |
results_meta(21,ntype,j) = |
| 475 |
& results_meta(21,ntype,j) |
| 476 |
& /awAROM*conv |
| 477 |
! --- 22: SO2 mass |
| 478 |
results_meta(22,ntype,j) = |
| 479 |
& results_meta(22,ntype,j) |
| 480 |
& /awSO2*conv |
| 481 |
! --- 24: SO3 mass |
| 482 |
results_meta(24,ntype,j) = |
| 483 |
& results_meta(24,ntype,j) |
| 484 |
& /awSO3*conv |
| 485 |
! --- 28: NO daily-mean mass |
| 486 |
results_meta(28,ntype,j) = |
| 487 |
& results_meta(28,ntype,j) |
| 488 |
& /awNO*conv |
| 489 |
! --- 29: NO2 daily-mean mass |
| 490 |
results_meta(29,ntype,j) = |
| 491 |
& results_meta(29,ntype,j) |
| 492 |
& /awNO2*conv |
| 493 |
! --- 30: O3 daily-mean mass |
| 494 |
results_meta(30,ntype,j) = |
| 495 |
& results_meta(30,ntype,j) |
| 496 |
& /awO3*conv |
| 497 |
! --- 31: HONO daily-mean mass |
| 498 |
results_meta(31,ntype,j) = |
| 499 |
& results_meta(31,ntype,j) |
| 500 |
& /awHONO*conv |
| 501 |
! --- 32: HNO3 daily-mean mass |
| 502 |
results_meta(32,ntype,j) = |
| 503 |
& results_meta(32,ntype,j) |
| 504 |
& /awHNO3*conv |
| 505 |
! --- 33: HNO4 daily-mean mass |
| 506 |
results_meta(33,ntype,j) = |
| 507 |
& results_meta(33,ntype,j) |
| 508 |
& /awHNO4*conv |
| 509 |
! --- 34: N2O5 daily-mean mass |
| 510 |
results_meta(34,ntype,j) = |
| 511 |
& results_meta(34,ntype,j) |
| 512 |
& /awN2O5*conv |
| 513 |
! --- 35: NO3 daily-mean mass |
| 514 |
results_meta(35,ntype,j) = |
| 515 |
& results_meta(35,ntype,j) |
| 516 |
& /awNO3*conv |
| 517 |
! --- 36: HO2 daily-mean mass |
| 518 |
results_meta(36,ntype,j) = |
| 519 |
& results_meta(36,ntype,j) |
| 520 |
& /awHO2*conv |
| 521 |
! --- 37: CO daily-mean mass |
| 522 |
results_meta(37,ntype,j) = |
| 523 |
& results_meta(37,ntype,j) |
| 524 |
& /awCO*conv |
| 525 |
! --- 38: HCHO daily-mean mass |
| 526 |
results_meta(38,ntype,j) = |
| 527 |
& results_meta(38,ntype,j) |
| 528 |
& /awCH2O*conv |
| 529 |
! --- 39: ALD2 daily-mean mass |
| 530 |
results_meta(39,ntype,j) = |
| 531 |
& results_meta(39,ntype,j) |
| 532 |
& /awALD2*conv |
| 533 |
! --- 40: MEK daily-mean mass |
| 534 |
results_meta(40,ntype,j) = |
| 535 |
& results_meta(40,ntype,j) |
| 536 |
& /awMEK*conv |
| 537 |
! --- 42: PAN daily-mean mass |
| 538 |
results_meta(42,ntype,j) = |
| 539 |
& results_meta(42,ntype,j) |
| 540 |
& /awPAN*conv |
| 541 |
! --- 46: ALKA daily-mean mass |
| 542 |
results_meta(46,ntype,j) = |
| 543 |
& results_meta(46,ntype,j) |
| 544 |
& /awALKA*conv |
| 545 |
! --- 47: ETHE daily-mean mass |
| 546 |
results_meta(47,ntype,j) = |
| 547 |
& results_meta(47,ntype,j) |
| 548 |
& /awETHE*conv |
| 549 |
! --- 48: ALKE daily-mean mass |
| 550 |
results_meta(48,ntype,j) = |
| 551 |
& results_meta(48,ntype,j) |
| 552 |
& /awALKE*conv |
| 553 |
! --- 49: TOLU daily-mean mass |
| 554 |
results_meta(49,ntype,j) = |
| 555 |
& results_meta(49,ntype,j) |
| 556 |
& /awTOLU*conv |
| 557 |
! --- 50: AROM daily-mean mass |
| 558 |
results_meta(50,ntype,j) = |
| 559 |
& results_meta(50,ntype,j) |
| 560 |
& /awAROM*conv |
| 561 |
! --- 54: H2O2 daily-mean mass |
| 562 |
results_meta(54,ntype,j) = |
| 563 |
& results_meta(54,ntype,j) |
| 564 |
& /awH2O2*conv |
| 565 |
! --- 57: SO2 daily-mean mass |
| 566 |
results_meta(57,ntype,j) = |
| 567 |
& results_meta(57,ntype,j) |
| 568 |
& /awSO2*conv |
| 569 |
! --- 58: SO3 daily-mean mass |
| 570 |
results_meta(58,ntype,j) = |
| 571 |
& results_meta(58,ntype,j) |
| 572 |
& /awSO3*conv |
| 573 |
else |
| 574 |
results_meta(1, ntype,j) = 0.0 |
| 575 |
results_meta(3, ntype,j) = 0.0 |
| 576 |
results_meta(5, ntype,j) = 0.0 |
| 577 |
results_meta(10,ntype,j) = 0.0 |
| 578 |
results_meta(12,ntype,j) = 0.0 |
| 579 |
results_meta(14,ntype,j) = 0.0 |
| 580 |
results_meta(15,ntype,j) = 0.0 |
| 581 |
results_meta(17,ntype,j) = 0.0 |
| 582 |
results_meta(18,ntype,j) = 0.0 |
| 583 |
results_meta(19,ntype,j) = 0.0 |
| 584 |
results_meta(20,ntype,j) = 0.0 |
| 585 |
results_meta(21,ntype,j) = 0.0 |
| 586 |
results_meta(22,ntype,j) = 0.0 |
| 587 |
results_meta(24,ntype,j) = 0.0 |
| 588 |
results_meta(28,ntype,j) = 0.0 |
| 589 |
results_meta(29,ntype,j) = 0.0 |
| 590 |
results_meta(30,ntype,j) = 0.0 |
| 591 |
results_meta(31,ntype,j) = 0.0 |
| 592 |
results_meta(32,ntype,j) = 0.0 |
| 593 |
results_meta(33,ntype,j) = 0.0 |
| 594 |
results_meta(34,ntype,j) = 0.0 |
| 595 |
results_meta(35,ntype,j) = 0.0 |
| 596 |
results_meta(36,ntype,j) = 0.0 |
| 597 |
results_meta(37,ntype,j) = 0.0 |
| 598 |
results_meta(38,ntype,j) = 0.0 |
| 599 |
results_meta(39,ntype,j) = 0.0 |
| 600 |
results_meta(40,ntype,j) = 0.0 |
| 601 |
results_meta(42,ntype,j) = 0.0 |
| 602 |
results_meta(46,ntype,j) = 0.0 |
| 603 |
results_meta(47,ntype,j) = 0.0 |
| 604 |
results_meta(48,ntype,j) = 0.0 |
| 605 |
results_meta(49,ntype,j) = 0.0 |
| 606 |
results_meta(50,ntype,j) = 0.0 |
| 607 |
results_meta(54,ntype,j) = 0.0 |
| 608 |
results_meta(57,ntype,j) = 0.0 |
| 609 |
results_meta(58,ntype,j) = 0.0 |
| 610 |
endif |
| 611 |
end do |
| 612 |
|
| 613 |
10 continue |
| 614 |
|
| 615 |
do j=1,nlat |
| 616 |
do ntype=1,3 |
| 617 |
do i=1,meta_nvar |
| 618 |
results_mon(i,ntype,j) = results_mon (i,ntype,j) |
| 619 |
& + results_meta(i,ntype,j) |
| 620 |
end do |
| 621 |
end do |
| 622 |
end do |
| 623 |
|
| 624 |
nstep_meta = nstep_meta + 1 |
| 625 |
|
| 626 |
#endif |
| 627 |
|
| 628 |
return |
| 629 |
end |
| 630 |
|
| 631 |
|
| 632 |
! =============================================== |
| 633 |
subroutine chemmeta_mass(i,j,ktop,tmass1, |
| 634 |
& urban_area,rural_area, |
| 635 |
& ymass, yflux, x11) |
| 636 |
! =============================================== |
| 637 |
|
| 638 |
! -------------------------------------------------------- |
| 639 |
! A subroutine for recalculating zonal mean mixing ratrios |
| 640 |
! by incorperating GACM and META results |
| 641 |
! -------------------------------------------------------- |
| 642 |
|
| 643 |
#include "chem_para" |
| 644 |
#include "chem_com" |
| 645 |
|
| 646 |
#include "chem_meta" |
| 647 |
|
| 648 |
#include "BD2G04.COM" |
| 649 |
|
| 650 |
dimension x11(ktop) |
| 651 |
real urban_area, rural_area, xmass, xmix |
| 652 |
|
| 653 |
#if ( defined CPL_CHEM ) && ( defined CPL_META ) |
| 654 |
|
| 655 |
xmass = 0.0 !rural tracer mass in 10^-9 kg |
| 656 |
do k=1,ktop |
| 657 |
xmass = xmass |
| 658 |
& + airmass(i,j,k)*x11(k) |
| 659 |
end do |
| 660 |
|
| 661 |
! === PM scheme |
| 662 |
! xmix = ( rural_area*xmass + |
| 663 |
!! & (urban_area*ymass + yflux)*1.e9 ) |
| 664 |
! & (ymass + yflux)*1.e9 ) |
| 665 |
! & * tmass1 !ppbm |
| 666 |
! === FM scheme |
| 667 |
xmix = ( xmass + |
| 668 |
& (ymass + yflux)*1.e9 ) |
| 669 |
& * tmass1 !ppbm |
| 670 |
|
| 671 |
do k=1,ktop |
| 672 |
x11(k) = xmix |
| 673 |
end do |
| 674 |
|
| 675 |
#endif |
| 676 |
|
| 677 |
return |
| 678 |
end |
| 679 |
|
| 680 |
! ==================== |
| 681 |
Block Data Meta_data |
| 682 |
! ==================== |
| 683 |
|
| 684 |
#include "chem_para" |
| 685 |
#include "chem_meta" |
| 686 |
|
| 687 |
#if ( defined CPL_CHEM ) && ( defined CPL_META ) |
| 688 |
|
| 689 |
#if ( N_LAT == 24 ) |
| 690 |
data rlati/90.0,82.2,74.3,66.5,58.7,50.9, |
| 691 |
& 43.0,35.2,27.4,19.6,11.7, 3.9, |
| 692 |
& 3.9,11.7,19.6,27.4,35.2,43.0, |
| 693 |
& 50.9,58.7,66.5,74.3,82.2,90.0/ |
| 694 |
|
| 695 |
|
| 696 |
data results_mon/4176*0.0/ |
| 697 |
|
| 698 |
data raqino /72*0.1/ |
| 699 |
data raqinoo/72*0.1/ |
| 700 |
data raqivoc/72*0.1/ |
| 701 |
data raqiozo/72*0.1/ |
| 702 |
data raqisox/72*0.1/ |
| 703 |
#endif |
| 704 |
|
| 705 |
#if ( N_LAT == 46 ) |
| 706 |
data rlati |
| 707 |
& / |
| 708 |
& 90.0, 86.0, 82.0, 78.0, 74.0, |
| 709 |
& 70.0, 66.0, 62.0, 58.0, 54.0, |
| 710 |
& 50.0, 46.0, 42.0, 38.0, 34.0, |
| 711 |
& 30.0, 26.0, 22.0, 18.0, 14.0, |
| 712 |
& 10.0, 6.0, 2.0, 2.0, 6.0, |
| 713 |
& 10.0, 14.0, 18.0, 22.0, 26.0, |
| 714 |
& 30.0, 34.0, 38.0, 42.0, 46.0, |
| 715 |
& 50.0, 54.0, 58.0, 62.0, 66.0, |
| 716 |
& 70.0, 74.0, 78.0, 82.0, 86.0, |
| 717 |
& 90.0 |
| 718 |
& / |
| 719 |
|
| 720 |
data results_mon/8004*0.0/ |
| 721 |
|
| 722 |
data raqino /138*0.1/ |
| 723 |
data raqinoo/138*0.1/ |
| 724 |
data raqivoc/138*0.1/ |
| 725 |
data raqiozo/138*0.1/ |
| 726 |
data raqisox/138*0.1/ |
| 727 |
#endif |
| 728 |
|
| 729 |
data nstep_meta/0/ |
| 730 |
|
| 731 |
data xc_meta/ -86.4, -88.4,-117.6, |
| 732 |
& -111.8, 71.2, 81.1, |
| 733 |
& 198.9, 82.7,-101.0, |
| 734 |
& 86.6, 89.7, 95.7, |
| 735 |
& 104.6,-126.0, 47.9, |
| 736 |
& -74.5,-114.3,-124.8, |
| 737 |
& -106.5,-121.6,-115.6, |
| 738 |
& -108.7,-102.3, 73.8, |
| 739 |
& 85.7, 76.7, 0.0, |
| 740 |
& -84.4,-112.5, 81.9, |
| 741 |
& 6*0.0, |
| 742 |
& 97.9, 99.4,20*0.0/ |
| 743 |
|
| 744 |
data w_meta /183.6,184.3,184.8, |
| 745 |
& 184.2,183.9,184.0, |
| 746 |
& 183.6,183.1,184.9, |
| 747 |
& 185.7,181.0,182.9, |
| 748 |
& 183.9,184.1,189.3, |
| 749 |
& 183.8,184.1,184.9, |
| 750 |
& 183.0,184.6,182.9, |
| 751 |
& 183.1,184.6,184.0, |
| 752 |
& 182.1,184.2, 0.0, |
| 753 |
& 183.3,183.4,183.3, |
| 754 |
& 6* 0.0, |
| 755 |
& 184.7,183.1,20*0.0/ |
| 756 |
|
| 757 |
data a_meta / 0.015,0.153,0.288, |
| 758 |
& 0.466,8.040,9.880, |
| 759 |
& 0.007,0.797,0.014, |
| 760 |
& 0.886,1.016,0.154, |
| 761 |
& 0.235,0.013,0.044, |
| 762 |
& 0.323,0.188,0.007, |
| 763 |
& 0.004,0.028,0.009, |
| 764 |
& 0.042,0.052,0.053, |
| 765 |
& 0.080,0.006, 0.0, |
| 766 |
& 0.141,0.242,6.485, |
| 767 |
& 6*0.0, |
| 768 |
& 0.496,0.184,20*0.0/ |
| 769 |
|
| 770 |
data c_meta / 11.4, -0.8, 4.0, |
| 771 |
& 4.5, 3.6, 3.9, |
| 772 |
& 10.5, 4.2, 1.1, |
| 773 |
& 79.0, 87.0, 11.2, |
| 774 |
& 7.6, 6.5, 10.3, |
| 775 |
& 2.6, 5.3, 6.7, |
| 776 |
& 12.4, 5.7, 12.8, |
| 777 |
& 15.5, 10.1, 2.8, |
| 778 |
& 2.0, 3.1, 0.0, |
| 779 |
& 10.2, 8.8, 4.1, |
| 780 |
& 6*0.0, |
| 781 |
& 227.5, 7.6,20*0.0/ |
| 782 |
|
| 783 |
data urban_beta_1/1.0, 0.0, 0.0/ |
| 784 |
data urban_beta_2/0.9, 1.3, 0.0/ |
| 785 |
data urban_beta_3/0.8, 1.25, 3.0/ |
| 786 |
|
| 787 |
#endif |
| 788 |
|
| 789 |
end |
| 790 |
|
| 791 |
|
| 792 |
|