| 1 |
|
| 2 |
#include "ctrparam.h" |
| 3 |
|
| 4 |
! ============================================================ |
| 5 |
! |
| 6 |
! CHEMADV.F: Calculating advection and eddy |
| 7 |
! transport of chemical species |
| 8 |
! |
| 9 |
! chemadv0 |
| 10 |
! chemadv |
| 11 |
! chemadv2 |
| 12 |
! |
| 13 |
! ------------------------------------------------------------ |
| 14 |
! |
| 15 |
! Author: Chien Wang |
| 16 |
! MIT Joint Program on Science and Policy |
| 17 |
! of Global Change |
| 18 |
! |
| 19 |
! ---------------------------------------------------------- |
| 20 |
! |
| 21 |
! Revision History: |
| 22 |
! |
| 23 |
! When Who What |
| 24 |
! ---- ---------- ------- |
| 25 |
! 062298 Chien Wang rev. |
| 26 |
! 080200 Chien Wang repack based on CliChem3 & add cpp |
| 27 |
! 101800 Chien Wang replaced if_3gases with cpp |
| 28 |
! 092001 Chien Wang add bc and oc |
| 29 |
! 051804 Chien Wang rev. for 46x11 |
| 30 |
! |
| 31 |
! ========================================================== |
| 32 |
|
| 33 |
! ======================= |
| 34 |
subroutine chemadv0 (dt) |
| 35 |
! ======================= |
| 36 |
|
| 37 |
|
| 38 |
#include "chem_para" |
| 39 |
#include "chem_com" |
| 40 |
|
| 41 |
dimension tracert(nlon,nlat,nlev) |
| 42 |
|
| 43 |
|
| 44 |
#if ( defined CPL_CHEM ) |
| 45 |
c |
| 46 |
c----------------------------------- |
| 47 |
c Calculating advection and eddy diffusion: |
| 48 |
c |
| 49 |
|
| 50 |
c |
| 51 |
c CFC11: |
| 52 |
c |
| 53 |
|
| 54 |
do i=1,n3d |
| 55 |
tracert(i,1,1)=cfc11(i,1,1) |
| 56 |
enddo |
| 57 |
|
| 58 |
call chemadv(8, |
| 59 |
& tracert,cfc11,cfc110,dt,ddepref) |
| 60 |
c |
| 61 |
c CFC12: |
| 62 |
c |
| 63 |
do i=1,n3d |
| 64 |
tracert(i,1,1) = cfc12(i,1,1) |
| 65 |
enddo |
| 66 |
|
| 67 |
call chemadv(8, |
| 68 |
& tracert,cfc12,cfc12,dt,ddepref) |
| 69 |
c |
| 70 |
c N2O: |
| 71 |
c |
| 72 |
do i=1,n3d |
| 73 |
tracert(i,1,1) = xn2o(i,1,1) |
| 74 |
enddo |
| 75 |
|
| 76 |
call chemadv(8, |
| 77 |
& tracert,xn2o,xn2o,dt,ddepref) |
| 78 |
|
| 79 |
! === if hfc, pfc, and sf6 are included: |
| 80 |
#if ( defined INC_3GASES ) |
| 81 |
|
| 82 |
! === 032698 |
| 83 |
! === HFC134a: |
| 84 |
! === |
| 85 |
|
| 86 |
do i=1,n3d |
| 87 |
tracert(i,1,1) = hfc134a(i,1,1) |
| 88 |
enddo |
| 89 |
|
| 90 |
call chemadv(8, |
| 91 |
& tracert,hfc134a,hfc134a,dt,ddepref) |
| 92 |
|
| 93 |
! === |
| 94 |
! === PFC: |
| 95 |
! === |
| 96 |
|
| 97 |
do i=1,n3d |
| 98 |
tracert(i,1,1) = pfc(i,1,1) |
| 99 |
enddo |
| 100 |
|
| 101 |
call chemadv(8, |
| 102 |
& tracert,pfc,pfc,dt,ddepref) |
| 103 |
|
| 104 |
! === |
| 105 |
! === SF6: |
| 106 |
! === |
| 107 |
|
| 108 |
do i=1,n3d |
| 109 |
tracert(i,1,1) = sf6(i,1,1) |
| 110 |
enddo |
| 111 |
|
| 112 |
call chemadv(8, |
| 113 |
& tracert,sf6,sf6,dt,ddepref) |
| 114 |
|
| 115 |
#endif |
| 116 |
|
| 117 |
! |
| 118 |
! === Black Carbon: |
| 119 |
! |
| 120 |
|
| 121 |
do i=1,n3d |
| 122 |
tracert(i,1,1) = bcarbon(i,1,1) |
| 123 |
enddo |
| 124 |
|
| 125 |
call chemadv(8, |
| 126 |
& tracert,bcarbon,bcarbon,dt,ddepbc) |
| 127 |
|
| 128 |
! |
| 129 |
! === Organic Carbon: |
| 130 |
! |
| 131 |
|
| 132 |
do i=1,n3d |
| 133 |
tracert(i,1,1) = ocarbon(i,1,1) |
| 134 |
enddo |
| 135 |
|
| 136 |
call chemadv(8, |
| 137 |
& tracert,ocarbon,ocarbon,dt,ddepoc) |
| 138 |
|
| 139 |
|
| 140 |
! === |
| 141 |
|
| 142 |
c |
| 143 |
c O3: |
| 144 |
c |
| 145 |
do i=1,n3d |
| 146 |
tracert(i,1,1) = o3(i,1,1) |
| 147 |
enddo |
| 148 |
|
| 149 |
c 051295 use chemadv2 with different top vbc: |
| 150 |
|
| 151 |
call chemadv2(8, |
| 152 |
& tracert,o3,o3,dt,ddepo3) |
| 153 |
c call chemadv(tracert,o3,o3,dt) |
| 154 |
|
| 155 |
c 051698 use prescribed top o3: |
| 156 |
|
| 157 |
do k=n_tropopause+1,nlev |
| 158 |
do j=1,nlat |
| 159 |
o3(1,j,k) = o3top(j,k-n_tropopause,mymonth) |
| 160 |
end do |
| 161 |
end do |
| 162 |
c |
| 163 |
c CO: |
| 164 |
c |
| 165 |
do i=1,n3d |
| 166 |
tracert(i,1,1) = co(i,1,1) |
| 167 |
enddo |
| 168 |
|
| 169 |
call chemadv(8, |
| 170 |
& tracert,co,co,dt,ddepref) |
| 171 |
|
| 172 |
c |
| 173 |
c CO2: |
| 174 |
c |
| 175 |
do i=1,n3d |
| 176 |
tracert(i,1,1) = zco2(i,1,1) |
| 177 |
enddo |
| 178 |
|
| 179 |
call chemadv(8, |
| 180 |
& tracert,zco2,zco2,dt,ddepref) |
| 181 |
|
| 182 |
c |
| 183 |
c NO: |
| 184 |
c |
| 185 |
do i=1,n3d |
| 186 |
tracert(i,1,1) = xno(i,1,1) |
| 187 |
enddo |
| 188 |
|
| 189 |
call chemadv(8, |
| 190 |
& tracert,xno,xno,dt,ddepno) |
| 191 |
|
| 192 |
c |
| 193 |
c NO2: |
| 194 |
c |
| 195 |
do i=1,n3d |
| 196 |
tracert(i,1,1) = xno2(i,1,1) |
| 197 |
enddo |
| 198 |
|
| 199 |
call chemadv(8, |
| 200 |
& tracert,xno2,xno2,dt,ddepno2) |
| 201 |
|
| 202 |
c |
| 203 |
c N2O5: |
| 204 |
c |
| 205 |
do i=1,n3d |
| 206 |
tracert(i,1,1) = xn2o5(i,1,1) |
| 207 |
enddo |
| 208 |
|
| 209 |
call chemadv(8, |
| 210 |
& tracert,xn2o5,xn2o5,dt,ddepn2o5) |
| 211 |
|
| 212 |
c |
| 213 |
c HNO3: |
| 214 |
c |
| 215 |
do i=1,n3d |
| 216 |
tracert(i,1,1) = hno3(i,1,1) |
| 217 |
enddo |
| 218 |
|
| 219 |
call chemadv(8, |
| 220 |
& tracert,hno3,hno3,dt,ddephno3) |
| 221 |
|
| 222 |
c |
| 223 |
c CH4: |
| 224 |
c |
| 225 |
do i=1,n3d |
| 226 |
tracert(i,1,1) = ch4(i,1,1) |
| 227 |
enddo |
| 228 |
|
| 229 |
call chemadv(8, |
| 230 |
& tracert,ch4,ch4,dt,ddepref) |
| 231 |
|
| 232 |
c |
| 233 |
c CH2O: |
| 234 |
c |
| 235 |
do i=1,n3d |
| 236 |
tracert(i,1,1) = ch2o(i,1,1) |
| 237 |
enddo |
| 238 |
|
| 239 |
call chemadv(8, |
| 240 |
& tracert,ch2o,ch2o,dt,ddepref) |
| 241 |
|
| 242 |
c |
| 243 |
c SO2: |
| 244 |
c |
| 245 |
do i=1,n3d |
| 246 |
tracert(i,1,1) = so2(i,1,1) |
| 247 |
enddo |
| 248 |
|
| 249 |
call chemadv(8, |
| 250 |
& tracert,so2,so2,dt,ddepref) |
| 251 |
|
| 252 |
c |
| 253 |
c H2SO4: |
| 254 |
c |
| 255 |
do i=1,n3d |
| 256 |
tracert(i,1,1) = h2so4(i,1,1) |
| 257 |
enddo |
| 258 |
|
| 259 |
call chemadv(8, |
| 260 |
& tracert,h2so4,h2so4,dt,ddepref) |
| 261 |
|
| 262 |
#endif |
| 263 |
|
| 264 |
return |
| 265 |
end |
| 266 |
|
| 267 |
|
| 268 |
c ===================================================== |
| 269 |
Subroutine chemadv(ifdiff, |
| 270 |
& x00,x11,xinit,dt1,ddepspd) |
| 271 |
c ===================================================== |
| 272 |
|
| 273 |
c==================================================================c |
| 274 |
c c |
| 275 |
c CHEMADV.F: Subroutine for calculating advection and eddy c |
| 276 |
c transport of MIT Global Chemistry Model c |
| 277 |
c ------------------------------------------------- c |
| 278 |
c Author: Chien Wang c |
| 279 |
c MIT Joint Program on Science and Policy c |
| 280 |
c of Global Change c |
| 281 |
c Last Revised on: January 30, 1996 c |
| 282 |
c c |
| 283 |
c==================================================================c |
| 284 |
|
| 285 |
parameter(xxx1 = 1./6., xxx2 = 4.0*xxx1) |
| 286 |
parameter(yyy3 = 1./36.,yyy2 =10.0*yyy3, yyy1 =25.0*yyy3) |
| 287 |
|
| 288 |
#include "chem_para" |
| 289 |
#include "chem_com" |
| 290 |
#include "BD2G04.COM" |
| 291 |
|
| 292 |
common /WORK1/pit(nlon,nlat),sd(nlon,nlat,nlev1) |
| 293 |
|
| 294 |
dimension x00 (nlon,nlat,nlev) |
| 295 |
dimension x11 (nlon,nlat,nlev) |
| 296 |
dimension xinit(nlon,nlat,nlev) |
| 297 |
|
| 298 |
c 062095 dry deposition speed, in sigma/second and positive |
| 299 |
c speed is updraft |
| 300 |
c |
| 301 |
dimension ddepspd(nlon,nlat) |
| 302 |
|
| 303 |
dimension c(nlat+1),x(nlat),w1(4,2),w2(nlat,3), |
| 304 |
& w4(nlat,5),ww(nlat+1,5),ww2(nlat+1,5) |
| 305 |
|
| 306 |
! --------------------------------------------------------- |
| 307 |
|
| 308 |
#if ( defined CPL_CHEM ) |
| 309 |
|
| 310 |
c------------------------------------------------------- |
| 311 |
c Definitions of parameters: |
| 312 |
c |
| 313 |
c Basic time step for advection |
| 314 |
c dta =dt1*3.0 ! dta=1 hr. |
| 315 |
dta =dt1 ! dt1=20 min in GISS therefore here |
| 316 |
c |
| 317 |
c 111596: |
| 318 |
c |
| 319 |
dt1hr = dta*3.0 |
| 320 |
|
| 321 |
dt2 =dta*0.5 |
| 322 |
|
| 323 |
istart=1 |
| 324 |
iend =nlon |
| 325 |
|
| 326 |
c------------------------------- |
| 327 |
c Start do loop for tracers: |
| 328 |
|
| 329 |
do 1000 ntime=1,3 |
| 330 |
|
| 331 |
c------------------------------------------------------- |
| 332 |
c Scaling mixing ratio with PAI: |
| 333 |
c |
| 334 |
do 1 k=1,nlev |
| 335 |
do 1 i=1,n2dh |
| 336 |
x00(i,1,k)=x00(i,1,k)*p00(i,1) |
| 337 |
1 continue |
| 338 |
|
| 339 |
do 11 k=1,nlev |
| 340 |
pvv(1,1,k)=0.0 |
| 341 |
11 continue |
| 342 |
|
| 343 |
do 12 j=1,nlat |
| 344 |
pww(1,j,1)=0.0 |
| 345 |
12 continue |
| 346 |
|
| 347 |
c------------------------------------------------------- |
| 348 |
c Calculating meridional advection: |
| 349 |
c |
| 350 |
i = 1 |
| 351 |
do 61 k=1,nlev |
| 352 |
c do 61 i=istart,iend |
| 353 |
|
| 354 |
c c(1)=0.0 |
| 355 |
c(1)= c(2) |
| 356 |
do 62 j=2,nlat |
| 357 |
c(j) =pvv(i,j,k)/dyv(j)*dta |
| 358 |
62 continue |
| 359 |
c c(nlat+1)=0.0 |
| 360 |
c(nlat+1)= c(nlat) |
| 361 |
|
| 362 |
call pdadv1(c,w4,w2,w1,nlat) |
| 363 |
|
| 364 |
do 63 j=1,nlat |
| 365 |
x(j)=x00(i,j,k) |
| 366 |
63 continue |
| 367 |
|
| 368 |
call pdadv2(c,x,w4,w2,w1,ww,ww2,nlat,1) |
| 369 |
|
| 370 |
c--------------------------- |
| 371 |
c Lateral BC: |
| 372 |
c |
| 373 |
c South pole: |
| 374 |
c |
| 375 |
fluxl=pvv(i,2,k)*(x00(i,2,k)+x00(i,1,k))/dyv(2) |
| 376 |
& *dta*0.5 |
| 377 |
|
| 378 |
fluxl=max(-x00(i,2,k), |
| 379 |
& min( x00(i,1,k),fluxl)) |
| 380 |
|
| 381 |
fluxr=pvv(i,3,k)*(x00(i,3,k)+x00(i,2,k))/dyv(3) |
| 382 |
& *dta*0.5 |
| 383 |
|
| 384 |
fluxr=max(-x00(i,3,k), |
| 385 |
& min( x00(i,2,k),fluxr)) |
| 386 |
|
| 387 |
x00(i,2,k)=x00(i,2,k) |
| 388 |
& -(fluxr-fluxl) |
| 389 |
|
| 390 |
fluxlbc = |
| 391 |
& -min(0.0,pvv(i,2,k)) |
| 392 |
& *(x11(i,2,k)-x11(i,1,k))/dyv(2) |
| 393 |
& *(p00(i,2)+p00(i,1))*0.5 |
| 394 |
& *dta |
| 395 |
fluxlbc = |
| 396 |
& max(-x00(i,1,k), |
| 397 |
& min( x00(i,2,k),fluxlbc)) |
| 398 |
|
| 399 |
x00(i,1,k)=x00(i,1,k) |
| 400 |
& +fluxlbc |
| 401 |
|
| 402 |
c |
| 403 |
c North pole: |
| 404 |
c |
| 405 |
fluxl=pvv(i,nlat1,k)*(x00(i,nlat1,k) |
| 406 |
& +x00(i,nlat2,k))/dyv(nlat1) |
| 407 |
& *dta*0.5 |
| 408 |
|
| 409 |
fluxl=max(-x00(i,nlat1,k), |
| 410 |
& min( x00(i,nlat2,k),fluxl)) |
| 411 |
|
| 412 |
fluxr=pvv(i,nlat, k)*(x00(i,nlat, k) |
| 413 |
& +x00(i,nlat1,k))/dyv(nlat) |
| 414 |
& *dta*0.5 |
| 415 |
|
| 416 |
fluxr= |
| 417 |
& max(-x00(i,nlat, k), |
| 418 |
& min( x00(i,nlat1,k),fluxr)) |
| 419 |
|
| 420 |
x00(i,nlat1,k)=x00(i,nlat1,k) |
| 421 |
& -(fluxr-fluxl) |
| 422 |
|
| 423 |
fluxlbc = |
| 424 |
& -max(0.0,pvv(i,nlat,k)) |
| 425 |
& *(x11(i,nlat,k)-x11(i,nlat1,k))/dyv(nlat) |
| 426 |
& *(p00(i,nlat)+p00(i,nlat1))*0.5 |
| 427 |
& *dta |
| 428 |
fluxlbc = |
| 429 |
& max(-x00(i,nlat,k), |
| 430 |
& min( x00(i,nlat1,k),fluxlbc)) |
| 431 |
|
| 432 |
x00(i,nlat,k) =x00(i,nlat,k) |
| 433 |
& +fluxlbc |
| 434 |
|
| 435 |
c--- |
| 436 |
c Adjustment of momentum equation |
| 437 |
c |
| 438 |
c do 64 j=2,nlat1 |
| 439 |
do 64 j=3,nlat2 |
| 440 |
if(k.ne.1 |
| 441 |
& .and.k.ne.nlev |
| 442 |
& )then |
| 443 |
deltac = max(-1.0, |
| 444 |
& min(+1.0,c(j+1)-c(j))) |
| 445 |
x00(i,j,k)=x(j) |
| 446 |
& +x00(i,j,k)*deltac |
| 447 |
endif |
| 448 |
64 continue |
| 449 |
|
| 450 |
c 051595: |
| 451 |
|
| 452 |
if( k.ne.1 |
| 453 |
& .and.k.ne.nlev |
| 454 |
& )then |
| 455 |
x00(i,2,k)=x00(i,2,k) |
| 456 |
& *(1.0+(pvv(i,3,k)/dyv(3) |
| 457 |
& -pvv(i,2,k)/dyv(2))*dta) |
| 458 |
x00(i,1,k)=x00(i,1,k) |
| 459 |
& *(1.0+pvv(i,2,k)/dyv(2) |
| 460 |
& *dta) |
| 461 |
x00(i,nlat1,k)=x00(i,nlat1,k) |
| 462 |
& *(1.0+(pvv(i,nlat, k)/dyv(nlat) |
| 463 |
& -pvv(i,nlat1,k)/dyv(nlat1))*dta) |
| 464 |
x00(i,nlat,k) =x00(i,nlat,k) |
| 465 |
& *(1.0-pvv(i,nlat,k)/dyv(nlat) |
| 466 |
& *dta) |
| 467 |
endif |
| 468 |
c===== |
| 469 |
|
| 470 |
61 continue |
| 471 |
|
| 472 |
c------------------------------------------------------- |
| 473 |
c Calculating vertical advection: |
| 474 |
c |
| 475 |
c do 66 i=istart,iend |
| 476 |
i = 1 |
| 477 |
do 66 j=1,nlat |
| 478 |
c do 66 j=2,nlat1 |
| 479 |
|
| 480 |
c(1) =0.0 |
| 481 |
do 67 k=2,nlev1 |
| 482 |
c(k) =-pww(i,j,k)/dsig(k)*dta |
| 483 |
67 continue |
| 484 |
c(nlev) =-pww(i,j,nlev1)/dsig(nlev1)*dta |
| 485 |
c(nlev+1)=0.0 |
| 486 |
|
| 487 |
call pdadv1(c,w4,w2,w1,nlev) |
| 488 |
|
| 489 |
do 68 k=1,nlev |
| 490 |
x(k)=x00(i,j,k) |
| 491 |
68 continue |
| 492 |
|
| 493 |
call pdadv2(c,x,w4,w2,w1,ww,ww2,nlev,1) |
| 494 |
|
| 495 |
c--- |
| 496 |
c VBC: |
| 497 |
c |
| 498 |
fluxt=pww(i,j,3)*(x00(i,j,3)+x00(i,j,2)) |
| 499 |
& /dsig(3) |
| 500 |
& *dta*0.5 |
| 501 |
|
| 502 |
c 112596: |
| 503 |
c fluxt=-max(-x00(i,j,3), |
| 504 |
c & min( x00(i,j,2),-fluxt)) |
| 505 |
fluxt=-max(-x00(i,j,3)*0.5, |
| 506 |
& min( x00(i,j,2)*0.5,-fluxt)) |
| 507 |
|
| 508 |
fluxb=pww(i,j,2)*(x00(i,j,2)+x00(i,j,1)) |
| 509 |
& /dsig(2) |
| 510 |
& *dta*0.5 |
| 511 |
|
| 512 |
c 112596: |
| 513 |
c fluxb=-max(-x00(i,j,2), |
| 514 |
c & min( x00(i,j,1),-fluxb)) |
| 515 |
fluxb=-max(-x00(i,j,2)*0.5, |
| 516 |
& min( x00(i,j,1)*0.5,-fluxb)) |
| 517 |
|
| 518 |
x00(i,j,2)=x00(i,j,2) |
| 519 |
& +(fluxt-fluxb) |
| 520 |
|
| 521 |
x00(i,j,1)=x00(i,j,1) |
| 522 |
cc & +fluxb |
| 523 |
c & +pww(i,j,2) |
| 524 |
c 062095 add dry deposition: |
| 525 |
! & +max(0.0,pww(i,j,2)-ddepspd(i,j)) |
| 526 |
& +(pww(i,j,2)-ddepspd(i,j)) |
| 527 |
& *(x11(i,j,2)-x11(i,j,1))/dsig(1) |
| 528 |
& *p00(i,j) |
| 529 |
& *dta |
| 530 |
|
| 531 |
fluxt=pww(i,j,nlev)*(x00(i,j,nlev) |
| 532 |
& +x00(i,j,nlev1)) |
| 533 |
& /dsig(nlev) |
| 534 |
& *dta*0.5 |
| 535 |
|
| 536 |
c 112596: |
| 537 |
c fluxt=-max(-x00(i,j,nlev), |
| 538 |
c & min( x00(i,j,nlev1),-fluxt)) |
| 539 |
fluxt=-max(-x00(i,j,nlev)*0.5, |
| 540 |
& min( x00(i,j,nlev1)*0.5,-fluxt)) |
| 541 |
|
| 542 |
fluxb=pww(i,j,nlev1)*(x00(i,j,nlev1) |
| 543 |
& +x00(i,j,nlev2)) |
| 544 |
& /dsig(nlev1) |
| 545 |
& *dta*0.5 |
| 546 |
|
| 547 |
c 112596 |
| 548 |
c fluxb=-max(-x00(i,j,nlev1), |
| 549 |
c & min( x00(i,j,nlev2),-fluxb)) |
| 550 |
fluxb=-max(-x00(i,j,nlev1)*0.5, |
| 551 |
& min( x00(i,j,nlev2)*0.5,-fluxb)) |
| 552 |
|
| 553 |
x00(i,j,nlev1)=x00(i,j,nlev1) |
| 554 |
& +(fluxt-fluxb) |
| 555 |
|
| 556 |
x00(i,j,nlev)=x00(i,j,nlev) |
| 557 |
c & -fluxb |
| 558 |
& +min(0.0,pww(i,j,nlev)) |
| 559 |
& *(x11(i,j,nlev)-x11(i,j,nlev1))/dsig(nlev) |
| 560 |
& *p00(i,j) |
| 561 |
& *dta |
| 562 |
|
| 563 |
c--- |
| 564 |
c |
| 565 |
c do 69 k=2,nlev1 |
| 566 |
do 69 k=3,nlev2 |
| 567 |
if(j.ne.1.and.j.ne.nlat)then |
| 568 |
deltac = max(-1.0, |
| 569 |
& min(+1.0,c(k+1)-c(k))) |
| 570 |
x00(i,j,k)=x(k) |
| 571 |
& +x00(i,j,k)*deltac |
| 572 |
endif |
| 573 |
69 continue |
| 574 |
|
| 575 |
c 051595: |
| 576 |
|
| 577 |
if( j.ne.1.and.j.ne.nlat |
| 578 |
c & .and.j.ne.2.and.j.ne.nlat1 |
| 579 |
& )then |
| 580 |
c === |
| 581 |
c === 081295: set limitation of xyz |
| 582 |
c === |
| 583 |
xyz = (pww(i,j,3)/dsig(3) |
| 584 |
& -pww(i,j,2)/dsig(2))*dta |
| 585 |
xyz = min( 1.0, |
| 586 |
& max(-1.0 ,xyz)) |
| 587 |
|
| 588 |
x00(i,j,2)=x00(i,j,2) |
| 589 |
& *(1.0-xyz) |
| 590 |
|
| 591 |
xyz = (pww(i,j,nlev) /dsig(nlev) |
| 592 |
& -pww(i,j,nlev1)/dsig(nlev1))*dta |
| 593 |
xyz = min( 1.0, |
| 594 |
& max(-1.0 ,xyz)) |
| 595 |
|
| 596 |
x00(i,j,nlev1)=x00(i,j,nlev1) |
| 597 |
& *(1.0-xyz) |
| 598 |
endif |
| 599 |
c===== |
| 600 |
|
| 601 |
66 continue |
| 602 |
|
| 603 |
c goto 2001 |
| 604 |
c9000 continue |
| 605 |
|
| 606 |
c-------------------------------------------------------- |
| 607 |
c Rescaling mixing ratio with PAI: |
| 608 |
c |
| 609 |
|
| 610 |
do 200 k=1,nlev |
| 611 |
do 200 i=1,n2dh |
| 612 |
x00(i,1,k)=x00(i,1,k)/p11(i,1) |
| 613 |
|
| 614 |
c 012797: limit error |
| 615 |
deltazu =1.2*x11(i,1,k) |
| 616 |
deltazl =0.8*x11(i,1,k) |
| 617 |
x00(i,1,k) = max(deltazl, min(deltazu, x00(i,1,k))) |
| 618 |
|
| 619 |
deltax =abs(x00(i,1,k)-x11(i,1,k)) |
| 620 |
deltay =1.e-10*x11(i,1,k) |
| 621 |
if(deltax.gt.deltay)then |
| 622 |
x11(i,1,k)=x00(i,1,k) |
| 623 |
else |
| 624 |
x00(i,1,k)=x11(i,1,k) |
| 625 |
endif |
| 626 |
200 continue |
| 627 |
|
| 628 |
c---------------------------------------------------- |
| 629 |
c Corner points: |
| 630 |
c |
| 631 |
|
| 632 |
x00(1,1,1) = xxx1*(x00(1,1,2) + x00(1,2,1)) |
| 633 |
& + xxx2* x00(1,1,1) |
| 634 |
x11(1,1,1) = x00(1,1,1) |
| 635 |
|
| 636 |
x00(1,nlat,1) = xxx1*(x00(1,nlat,2) + x00(1,nlat1,1)) |
| 637 |
& + xxx2* x00(1,nlat,1) |
| 638 |
x11(1,nlat,1) = x00(1,nlat,1) |
| 639 |
|
| 640 |
x00(1,1,nlev) = xxx1*(x00(1,1,nlev1) + x00(1,2,nlev)) |
| 641 |
& + xxx2* x00(1,1,nlev) |
| 642 |
x11(1,1,nlev) = x00(1,1,nlev) |
| 643 |
|
| 644 |
x00(1,nlat,nlev) = xxx1*(x00(1,nlat,nlev1) + x00(1,nlat1,nlev)) |
| 645 |
& + xxx2* x00(1,nlat,nlev) |
| 646 |
x11(1,nlat,nlev) = x00(1,nlat,nlev) |
| 647 |
|
| 648 |
c----------------------------------------------------- |
| 649 |
c LBC smoothing: |
| 650 |
c |
| 651 |
|
| 652 |
do k=1,nlev |
| 653 |
c x00(1,2,k) = xxx1*(x00(1,1,k) + x00(1,3,k)) |
| 654 |
c & + xxx2* x00(1,2,k) |
| 655 |
|
| 656 |
c x00(1,nlat1,k) = xxx1*(x00(1,nlat2,k) + x00(1,nlat,k)) |
| 657 |
c & + xxx2* x00(1,nlat1,k) |
| 658 |
|
| 659 |
x00(1,1,k) = yyy1*x00(1,1,k) + yyy2*x00(1,2,k) |
| 660 |
& + yyy3*x00(1,3,k) |
| 661 |
|
| 662 |
x00(1,nlat,k) = yyy1*x00(1,nlat,k) + yyy2*x00(1,nlat1,k) |
| 663 |
& + yyy3*x00(1,nlat2,k) |
| 664 |
|
| 665 |
x11(1,1,k) = x00(1,1,k) |
| 666 |
c x11(1,2,k) = x00(1,2,k) |
| 667 |
x11(1,nlat,k) = x00(1,nlat,k) |
| 668 |
c x11(1,nlat1,k) = x00(1,nlat1,k) |
| 669 |
|
| 670 |
enddo |
| 671 |
|
| 672 |
c------------------------ |
| 673 |
c Artificial diffusion |
| 674 |
c for top two levels: |
| 675 |
c |
| 676 |
atfk=1.e-3 |
| 677 |
|
| 678 |
i=1 |
| 679 |
k=nlev1 |
| 680 |
do 606 j=1,nlat |
| 681 |
x00(i,j,k)=x00(i,j,k) |
| 682 |
& +atfk |
| 683 |
& *(x00(i,j,k+1)+x00(i,j,k-1)-2.0*x00(i,j,k)) |
| 684 |
x11(i,j,k)=x00(i,j,k) |
| 685 |
606 continue |
| 686 |
|
| 687 |
k=nlev |
| 688 |
do 607 j=1,nlat |
| 689 |
x00(i,j,k)=x00(i,j,k) |
| 690 |
& +atfk |
| 691 |
& *min(0.0,(x00(i,j,k-1)-x00(i,j,k))) |
| 692 |
x11(i,j,k)=x00(i,j,k) |
| 693 |
607 continue |
| 694 |
|
| 695 |
c------------------------- |
| 696 |
c Artificial diffusion |
| 697 |
c for bottom two levels: |
| 698 |
c |
| 699 |
atfk = 1.e-6 !1.e-5 !1.e-4 |
| 700 |
|
| 701 |
c k=2 |
| 702 |
c do 616 j=1,nlat |
| 703 |
c x00(i,j,k)=x00(i,j,k) |
| 704 |
c & +atfk |
| 705 |
c & *(x00(i,j,k+1)+x00(i,j,k-1)-2.0*x00(i,j,k)) |
| 706 |
c x11(i,j,k)=x00(i,j,k) |
| 707 |
c616 continue |
| 708 |
c |
| 709 |
c k=1 |
| 710 |
c do 617 j=1,nlat |
| 711 |
c x00(i,j,k)=x00(i,j,k) |
| 712 |
c & +atfk |
| 713 |
c & *(x00(i,j,k+1)-x00(i,j,k)) |
| 714 |
c x11(i,j,k)=x00(i,j,k) |
| 715 |
c617 continue |
| 716 |
|
| 717 |
1000 continue |
| 718 |
|
| 719 |
c----------------------- |
| 720 |
c Calculate eddy diffusion |
| 721 |
c and re-scale mass: |
| 722 |
c |
| 723 |
do 501 k=1,nlev |
| 724 |
do 501 i=1,n2dh |
| 725 |
x00(i,1,k)=x00(i,1,k)*p00(i,1) |
| 726 |
501 continue |
| 727 |
|
| 728 |
c 111596: |
| 729 |
c |
| 730 |
dteddy = dt1hr !GISS model calculate eddy diffusion |
| 731 |
!at every 1 hr in new version |
| 732 |
|
| 733 |
if(meddy1.eq.1) call chemeddy(ifdiff,x00,x11,dteddy) |
| 734 |
|
| 735 |
do 502 k=1,nlev |
| 736 |
do 502 i=1,n2dh |
| 737 |
x00(i,1,k)=x00(i,1,k) |
| 738 |
& +x11(i,1,k)*(p11(i,1)-p00(i,1)) |
| 739 |
x00(i,1,k)=x00(i,1,k)/p11(i,1) |
| 740 |
|
| 741 |
c 012797: limit error |
| 742 |
deltazu =1.2*x11(i,1,k) |
| 743 |
deltazl =0.8*x11(i,1,k) |
| 744 |
x00(i,1,k) = max(deltazl, min(deltazu, x00(i,1,k))) |
| 745 |
|
| 746 |
x11(i,1,k)=x00(i,1,k) |
| 747 |
502 continue |
| 748 |
|
| 749 |
c |
| 750 |
c----------------------- |
| 751 |
|
| 752 |
#endif |
| 753 |
|
| 754 |
return |
| 755 |
end |
| 756 |
|
| 757 |
|
| 758 |
c ====================================================== |
| 759 |
Subroutine chemadv2(ifdiff, |
| 760 |
& x00,x11,xinit,dt1,ddepspd) |
| 761 |
c ====================================================== |
| 762 |
|
| 763 |
c==================================================================c |
| 764 |
c c |
| 765 |
c CHEMADV.F: Subroutine for calculating advection and eddy c |
| 766 |
c transport of MIT Global Chemistry Model c |
| 767 |
c ------------------------------------------------- c |
| 768 |
c Author: Chien Wang c |
| 769 |
c MIT Joint Program on Science and Policy c |
| 770 |
c of Global Change c |
| 771 |
c Last Revised on: January 30, 1996 c |
| 772 |
c c |
| 773 |
c==================================================================c |
| 774 |
|
| 775 |
parameter(xxx1 = 1./6., xxx2 = 4.0*xxx1) |
| 776 |
parameter(yyy3 = 1./36.,yyy2 =10.0*yyy3, yyy1 =25.0*yyy3) |
| 777 |
|
| 778 |
#include "chem_para" |
| 779 |
#include "chem_com" |
| 780 |
#include "BD2G04.COM" |
| 781 |
|
| 782 |
common /WORK1/pit(nlon,nlat),sd(nlon,nlat,nlev1) |
| 783 |
|
| 784 |
dimension x00 (nlon,nlat,nlev) |
| 785 |
dimension x11 (nlon,nlat,nlev) |
| 786 |
dimension xinit(nlon,nlat,nlev) |
| 787 |
|
| 788 |
c 062095 dry deposition speed, in sigma/second and positive |
| 789 |
c speed is updraft |
| 790 |
c |
| 791 |
dimension ddepspd(nlon,nlat) |
| 792 |
|
| 793 |
dimension c(nlat+1),x(nlat),w1(4,2),w2(nlat,3), |
| 794 |
& w4(nlat,5),ww(nlat+1,5),ww2(nlat+1,5) |
| 795 |
|
| 796 |
! --------------------------------------------------------- |
| 797 |
|
| 798 |
#if ( defined CPL_CHEM ) |
| 799 |
|
| 800 |
c------------------------------------------------------- |
| 801 |
c Definitions of parameters: |
| 802 |
c |
| 803 |
c Basic time step for advection |
| 804 |
c dta =dt1*3.0 ! dta=1 hr. |
| 805 |
dta =dt1 ! dt1=20 min in GISS therefore here |
| 806 |
c |
| 807 |
c 111596: |
| 808 |
c |
| 809 |
dt1hr = dta*3.0 |
| 810 |
|
| 811 |
dt2 =dta*0.5 |
| 812 |
|
| 813 |
istart=1 |
| 814 |
iend =nlon |
| 815 |
|
| 816 |
c------------------------------- |
| 817 |
c Start do loop for tracers: |
| 818 |
|
| 819 |
do 1000 ntime=1,3 |
| 820 |
|
| 821 |
c------------------------------------------------------- |
| 822 |
c Scaling mixing ratio with PAI: |
| 823 |
c |
| 824 |
do 1 k=1,nlev |
| 825 |
do 1 i=1,n2dh |
| 826 |
x00(i,1,k)=x00(i,1,k)*p00(i,1) |
| 827 |
1 continue |
| 828 |
|
| 829 |
do 11 k=1,nlev |
| 830 |
pvv(1,1,k)=0.0 |
| 831 |
11 continue |
| 832 |
|
| 833 |
do 12 j=1,nlat |
| 834 |
pww(1,j,1)=0.0 |
| 835 |
12 continue |
| 836 |
|
| 837 |
c------------------------------------------------------- |
| 838 |
c Calculating meridional advection: |
| 839 |
c |
| 840 |
i = 1 |
| 841 |
do 61 k=1,nlev |
| 842 |
c do 61 i=istart,iend |
| 843 |
|
| 844 |
c c(1)=0.0 |
| 845 |
c(1)= c(2) |
| 846 |
do 62 j=2,nlat |
| 847 |
c(j) =pvv(i,j,k)/dyv(j)*dta |
| 848 |
62 continue |
| 849 |
c c(nlat+1)=0.0 |
| 850 |
c(nlat+1)= c(nlat) |
| 851 |
|
| 852 |
call pdadv1(c,w4,w2,w1,nlat) |
| 853 |
|
| 854 |
do 63 j=1,nlat |
| 855 |
x(j)=x00(i,j,k) |
| 856 |
63 continue |
| 857 |
|
| 858 |
call pdadv2(c,x,w4,w2,w1,ww,ww2,nlat,1) |
| 859 |
|
| 860 |
c--------------------------- |
| 861 |
c Lateral BC: |
| 862 |
c |
| 863 |
c South pole: |
| 864 |
c |
| 865 |
fluxl=pvv(i,2,k)*(x00(i,2,k)+x00(i,1,k))/dyv(2) |
| 866 |
& *dta*0.5 |
| 867 |
|
| 868 |
fluxl=max(-x00(i,2,k), |
| 869 |
& min( x00(i,1,k),fluxl)) |
| 870 |
|
| 871 |
fluxr=pvv(i,3,k)*(x00(i,3,k)+x00(i,2,k))/dyv(3) |
| 872 |
& *dta*0.5 |
| 873 |
|
| 874 |
fluxr=max(-x00(i,3,k), |
| 875 |
& min( x00(i,2,k),fluxr)) |
| 876 |
|
| 877 |
x00(i,2,k)=x00(i,2,k) |
| 878 |
& -(fluxr-fluxl) |
| 879 |
|
| 880 |
fluxlbc = |
| 881 |
& -min(0.0,pvv(i,2,k)) |
| 882 |
& *(x11(i,2,k)-x11(i,1,k))/dyv(2) |
| 883 |
& *(p00(i,2)+p00(i,1))*0.5 |
| 884 |
& *dta |
| 885 |
fluxlbc = |
| 886 |
& max(-x00(i,1,k), |
| 887 |
& min( x00(i,2,k),fluxlbc)) |
| 888 |
|
| 889 |
x00(i,1,k)=x00(i,1,k) |
| 890 |
& +fluxlbc |
| 891 |
|
| 892 |
c |
| 893 |
c North pole: |
| 894 |
c |
| 895 |
fluxl=pvv(i,nlat1,k)*(x00(i,nlat1,k) |
| 896 |
& +x00(i,nlat2,k))/dyv(nlat1) |
| 897 |
& *dta*0.5 |
| 898 |
|
| 899 |
fluxl=max(-x00(i,nlat1,k), |
| 900 |
& min( x00(i,nlat2,k),fluxl)) |
| 901 |
|
| 902 |
fluxr=pvv(i,nlat, k)*(x00(i,nlat, k) |
| 903 |
& +x00(i,nlat1,k))/dyv(nlat) |
| 904 |
& *dta*0.5 |
| 905 |
|
| 906 |
fluxr= |
| 907 |
& max(-x00(i,nlat, k), |
| 908 |
& min( x00(i,nlat1,k),fluxr)) |
| 909 |
|
| 910 |
x00(i,nlat1,k)=x00(i,nlat1,k) |
| 911 |
& -(fluxr-fluxl) |
| 912 |
|
| 913 |
fluxlbc = |
| 914 |
& -max(0.0,pvv(i,nlat,k)) |
| 915 |
& *(x11(i,nlat,k)-x11(i,nlat1,k))/dyv(nlat) |
| 916 |
& *(p00(i,nlat)+p00(i,nlat1))*0.5 |
| 917 |
& *dta |
| 918 |
fluxlbc = |
| 919 |
& max(-x00(i,nlat,k), |
| 920 |
& min( x00(i,nlat1,k),fluxlbc)) |
| 921 |
|
| 922 |
x00(i,nlat,k) =x00(i,nlat,k) |
| 923 |
& +fluxlbc |
| 924 |
|
| 925 |
c--- |
| 926 |
c Adjustment of momentum equation |
| 927 |
c |
| 928 |
c do 64 j=2,nlat1 |
| 929 |
do 64 j=3,nlat2 |
| 930 |
if(k.ne.1 |
| 931 |
& .and.k.ne.nlev |
| 932 |
& )then |
| 933 |
deltac = max(-1.0, |
| 934 |
& min(+1.0,c(j+1)-c(j))) |
| 935 |
x00(i,j,k)=x(j) |
| 936 |
& +x00(i,j,k)*deltac |
| 937 |
endif |
| 938 |
64 continue |
| 939 |
|
| 940 |
c 051595: |
| 941 |
|
| 942 |
if( k.ne.1 |
| 943 |
& .and.k.ne.nlev |
| 944 |
& )then |
| 945 |
x00(i,2,k)=x00(i,2,k) |
| 946 |
& *(1.0+(pvv(i,3,k)/dyv(3) |
| 947 |
& -pvv(i,2,k)/dyv(2))*dta) |
| 948 |
x00(i,1,k)=x00(i,1,k) |
| 949 |
& *(1.0+pvv(i,2,k)/dyv(2) |
| 950 |
& *dta) |
| 951 |
x00(i,nlat1,k)=x00(i,nlat1,k) |
| 952 |
& *(1.0+(pvv(i,nlat, k)/dyv(nlat) |
| 953 |
& -pvv(i,nlat1,k)/dyv(nlat1))*dta) |
| 954 |
x00(i,nlat,k) =x00(i,nlat,k) |
| 955 |
& *(1.0-pvv(i,nlat,k)/dyv(nlat) |
| 956 |
& *dta) |
| 957 |
endif |
| 958 |
c===== |
| 959 |
|
| 960 |
61 continue |
| 961 |
|
| 962 |
c------------------------------------------------------- |
| 963 |
c Calculating vertical advection: |
| 964 |
c |
| 965 |
c do 66 i=istart,iend |
| 966 |
i = 1 |
| 967 |
do 66 j=1,nlat |
| 968 |
c do 66 j=2,nlat1 |
| 969 |
|
| 970 |
c(1) =0.0 |
| 971 |
do 67 k=2,nlev1 |
| 972 |
c(k) =-pww(i,j,k)/dsig(k)*dta |
| 973 |
67 continue |
| 974 |
c(nlev) =-pww(i,j,nlev1)/dsig(nlev1)*dta |
| 975 |
c(nlev+1)=0.0 |
| 976 |
|
| 977 |
call pdadv1(c,w4,w2,w1,nlev) |
| 978 |
|
| 979 |
do 68 k=1,nlev |
| 980 |
x(k)=x00(i,j,k) |
| 981 |
68 continue |
| 982 |
|
| 983 |
call pdadv2(c,x,w4,w2,w1,ww,ww2,nlev,1) |
| 984 |
|
| 985 |
c--- |
| 986 |
c VBC: |
| 987 |
c |
| 988 |
fluxt=pww(i,j,3)*(x00(i,j,3)+x00(i,j,2)) |
| 989 |
& /dsig(3) |
| 990 |
& *dta*0.5 |
| 991 |
|
| 992 |
c 112796 |
| 993 |
c fluxt=-max(-x00(i,j,3), |
| 994 |
c & min( x00(i,j,2),-fluxt)) |
| 995 |
fluxt=-max(-x00(i,j,3)*0.5, |
| 996 |
& min( x00(i,j,2)*0.5,-fluxt)) |
| 997 |
|
| 998 |
fluxb=pww(i,j,2)*(x00(i,j,2)+x00(i,j,1)) |
| 999 |
& /dsig(2) |
| 1000 |
& *dta*0.5 |
| 1001 |
|
| 1002 |
c 112796 |
| 1003 |
c fluxb=-max(-x00(i,j,2), |
| 1004 |
c & min( x00(i,j,1),-fluxb)) |
| 1005 |
fluxb=-max(-x00(i,j,2)*0.5, |
| 1006 |
& min( x00(i,j,1)*0.5,-fluxb)) |
| 1007 |
|
| 1008 |
x00(i,j,2)=x00(i,j,2) |
| 1009 |
& +(fluxt-fluxb) |
| 1010 |
|
| 1011 |
x00(i,j,1)=x00(i,j,1) |
| 1012 |
cc & +fluxb |
| 1013 |
c & +pww(i,j,2) |
| 1014 |
c 062095 add dry deposition: |
| 1015 |
! & +max(0.0,pww(i,j,2)-ddepspd(i,j)) |
| 1016 |
& +(pww(i,j,2)-ddepspd(i,j)) |
| 1017 |
& *(x11(i,j,2)-x11(i,j,1))/dsig(1) |
| 1018 |
& *p00(i,j) |
| 1019 |
& *dta |
| 1020 |
|
| 1021 |
fluxt=pww(i,j,nlev)*(x00(i,j,nlev) |
| 1022 |
& +x00(i,j,nlev1)) |
| 1023 |
& /dsig(nlev) |
| 1024 |
& *dta*0.5 |
| 1025 |
|
| 1026 |
c 112796 |
| 1027 |
c fluxt=-max(-x00(i,j,nlev), |
| 1028 |
c & min( x00(i,j,nlev1),-fluxt)) |
| 1029 |
fluxt=-max(-x00(i,j,nlev)*0.5, |
| 1030 |
& min( x00(i,j,nlev1)*0.5,-fluxt)) |
| 1031 |
|
| 1032 |
fluxb=pww(i,j,nlev1)*(x00(i,j,nlev1) |
| 1033 |
& +x00(i,j,nlev2)) |
| 1034 |
& /dsig(nlev1) |
| 1035 |
& *dta*0.5 |
| 1036 |
|
| 1037 |
c 112796 |
| 1038 |
c fluxb=-max(-x00(i,j,nlev1), |
| 1039 |
c & min( x00(i,j,nlev2),-fluxb)) |
| 1040 |
fluxb=-max(-x00(i,j,nlev1)*0.5, |
| 1041 |
& min( x00(i,j,nlev2)*0.5,-fluxb)) |
| 1042 |
|
| 1043 |
x00(i,j,nlev1)=x00(i,j,nlev1) |
| 1044 |
& +(fluxt-fluxb) |
| 1045 |
|
| 1046 |
x00(i,j,nlev)=x00(i,j,nlev) |
| 1047 |
c & -fluxb |
| 1048 |
& +min(0.0,pww(i,j,nlev)) |
| 1049 |
& *(x11(i,j,nlev)-x11(i,j,nlev1))/dsig(nlev) |
| 1050 |
& *p00(i,j) |
| 1051 |
& *dta |
| 1052 |
|
| 1053 |
|
| 1054 |
c--- |
| 1055 |
c |
| 1056 |
c do 69 k=2,nlev1 |
| 1057 |
do 69 k=3,nlev2 |
| 1058 |
if(j.ne.1.and.j.ne.nlat)then |
| 1059 |
deltac = max(-1.0, |
| 1060 |
& min(+1.0,c(k+1)-c(k))) |
| 1061 |
x00(i,j,k)=x(k) |
| 1062 |
& +x00(i,j,k)*deltac |
| 1063 |
endif |
| 1064 |
69 continue |
| 1065 |
|
| 1066 |
c 051595: |
| 1067 |
|
| 1068 |
if( j.ne.1.and.j.ne.nlat |
| 1069 |
c & .and.j.ne.2.and.j.ne.nlat1 |
| 1070 |
& )then |
| 1071 |
c === |
| 1072 |
c === 081295: set limitation of xyz |
| 1073 |
c === |
| 1074 |
xyz = (pww(i,j,3)/dsig(3) |
| 1075 |
& -pww(i,j,2)/dsig(2))*dta |
| 1076 |
xyz = min( 1.0, |
| 1077 |
& max(-1.0 ,xyz)) |
| 1078 |
|
| 1079 |
x00(i,j,2)=x00(i,j,2) |
| 1080 |
& *(1.0-xyz) |
| 1081 |
|
| 1082 |
xyz = (pww(i,j,nlev) /dsig(nlev) |
| 1083 |
& -pww(i,j,nlev1)/dsig(nlev1))*dta |
| 1084 |
xyz = min( 1.0, |
| 1085 |
& max(-1.0 ,xyz)) |
| 1086 |
|
| 1087 |
x00(i,j,nlev1)=x00(i,j,nlev1) |
| 1088 |
& *(1.0-xyz) |
| 1089 |
endif |
| 1090 |
c===== |
| 1091 |
|
| 1092 |
66 continue |
| 1093 |
|
| 1094 |
c goto 2001 |
| 1095 |
c9000 continue |
| 1096 |
|
| 1097 |
c-------------------------------------------------------- |
| 1098 |
c Rescaling mixing ratio with PAI: |
| 1099 |
c |
| 1100 |
|
| 1101 |
do 200 k=1,nlev |
| 1102 |
do 200 i=1,n2dh |
| 1103 |
x00(i,1,k)=x00(i,1,k)/p11(i,1) |
| 1104 |
|
| 1105 |
c 012797: limit error |
| 1106 |
deltazu =1.2*x11(i,1,k) |
| 1107 |
deltazl =0.8*x11(i,1,k) |
| 1108 |
x00(i,1,k) = max(deltazl, min(deltazu, x00(i,1,k))) |
| 1109 |
|
| 1110 |
deltax =abs(x00(i,1,k)-x11(i,1,k)) |
| 1111 |
deltay =1.e-10*x11(i,1,k) |
| 1112 |
if(deltax.gt.deltay)then |
| 1113 |
x11(i,1,k)=x00(i,1,k) |
| 1114 |
else |
| 1115 |
x00(i,1,k)=x11(i,1,k) |
| 1116 |
endif |
| 1117 |
200 continue |
| 1118 |
|
| 1119 |
c---------------------------------------------------- |
| 1120 |
c Corner points: |
| 1121 |
c |
| 1122 |
|
| 1123 |
x00(1,1,1) = xxx1*(x00(1,1,2) + x00(1,2,1)) |
| 1124 |
& + xxx2* x00(1,1,1) |
| 1125 |
x11(1,1,1) = x00(1,1,1) |
| 1126 |
|
| 1127 |
x00(1,nlat,1) = xxx1*(x00(1,nlat,2) + x00(1,nlat1,1)) |
| 1128 |
& + xxx2* x00(1,nlat,1) |
| 1129 |
x11(1,nlat,1) = x00(1,nlat,1) |
| 1130 |
|
| 1131 |
x00(1,1,nlev) = xxx1*(x00(1,1,nlev1) + x00(1,2,nlev)) |
| 1132 |
& + xxx2* x00(1,1,nlev) |
| 1133 |
x11(1,1,nlev) = x00(1,1,nlev) |
| 1134 |
|
| 1135 |
x00(1,nlat,nlev) = xxx1*(x00(1,nlat,nlev1) + x00(1,nlat1,nlev)) |
| 1136 |
& + xxx2* x00(1,nlat,nlev) |
| 1137 |
x11(1,nlat,nlev) = x00(1,nlat,nlev) |
| 1138 |
|
| 1139 |
c----------------------------------------------------- |
| 1140 |
c LBC smoothing: |
| 1141 |
c |
| 1142 |
|
| 1143 |
do k=1,nlev |
| 1144 |
c x00(1,2,k) = xxx1*(x00(1,1,k) + x00(1,3,k)) |
| 1145 |
c & + xxx2* x00(1,2,k) |
| 1146 |
|
| 1147 |
c x00(1,nlat1,k) = xxx1*(x00(1,nlat2,k) + x00(1,nlat,k)) |
| 1148 |
c & + xxx2* x00(1,nlat1,k) |
| 1149 |
|
| 1150 |
x00(1,1,k) = yyy1*x00(1,1,k) + yyy2*x00(1,2,k) |
| 1151 |
& + yyy3*x00(1,3,k) |
| 1152 |
|
| 1153 |
x00(1,nlat,k) = yyy1*x00(1,nlat,k) + yyy2*x00(1,nlat1,k) |
| 1154 |
& + yyy3*x00(1,nlat2,k) |
| 1155 |
|
| 1156 |
x11(1,1,k) = x00(1,1,k) |
| 1157 |
c x11(1,2,k) = x00(1,2,k) |
| 1158 |
x11(1,nlat,k) = x00(1,nlat,k) |
| 1159 |
c x11(1,nlat1,k) = x00(1,nlat1,k) |
| 1160 |
|
| 1161 |
enddo |
| 1162 |
|
| 1163 |
c------------------------ |
| 1164 |
c Artificial diffusion |
| 1165 |
c for top two levels: |
| 1166 |
c |
| 1167 |
c ===== 091495: |
| 1168 |
c atfk=1.e-4 !138 d |
| 1169 |
c atfk=2.e-5 !690 d |
| 1170 |
atfk= 1.e-10 !1.e-6 better - 031696 !20*690 d |
| 1171 |
|
| 1172 |
i=1 |
| 1173 |
k=nlev1 |
| 1174 |
do 606 j=1,nlat |
| 1175 |
x00(i,j,k)=x00(i,j,k) |
| 1176 |
& +atfk |
| 1177 |
& *(x00(i,j,k+1)+x00(i,j,k-1)-2.0*x00(i,j,k)) |
| 1178 |
x11(i,j,k)=x00(i,j,k) |
| 1179 |
606 continue |
| 1180 |
|
| 1181 |
c k=nlev |
| 1182 |
c do 607 j=1,nlat |
| 1183 |
c x00(i,j,k)=x00(i,j,k) |
| 1184 |
c & +atfk |
| 1185 |
c & *min(0.0,(x00(i,j,k-1)-x00(i,j,k))) |
| 1186 |
c x11(i,j,k)=x00(i,j,k) |
| 1187 |
c607 continue |
| 1188 |
|
| 1189 |
c------------------------- |
| 1190 |
c Artificial diffusion |
| 1191 |
c for bottom two levels: |
| 1192 |
c |
| 1193 |
atfk = 1.e-6 !1.e-5 !1.e-4 |
| 1194 |
|
| 1195 |
c k=2 |
| 1196 |
c do 616 j=1,nlat |
| 1197 |
c x00(i,j,k)=x00(i,j,k) |
| 1198 |
c & +atfk |
| 1199 |
c & *(x00(i,j,k+1)+x00(i,j,k-1)-2.0*x00(i,j,k)) |
| 1200 |
c x11(i,j,k)=x00(i,j,k) |
| 1201 |
c616 continue |
| 1202 |
c |
| 1203 |
c k=1 |
| 1204 |
c do 617 j=1,nlat |
| 1205 |
c x00(i,j,k)=x00(i,j,k) |
| 1206 |
c & +atfk |
| 1207 |
c & *(x00(i,j,k+1)-x00(i,j,k)) |
| 1208 |
c x11(i,j,k)=x00(i,j,k) |
| 1209 |
c617 continue |
| 1210 |
|
| 1211 |
1000 continue |
| 1212 |
|
| 1213 |
c----------------------- |
| 1214 |
c Calculate eddy diffusion |
| 1215 |
c and re-scale mass: |
| 1216 |
c |
| 1217 |
do 501 k=1,nlev |
| 1218 |
do 501 i=1,n2dh |
| 1219 |
x00(i,1,k)=x00(i,1,k)*p00(i,1) |
| 1220 |
501 continue |
| 1221 |
|
| 1222 |
c 111596: |
| 1223 |
c |
| 1224 |
dteddy = dt1hr !GISS model calculate eddy diffusion |
| 1225 |
!at every 1 hr in new version |
| 1226 |
|
| 1227 |
if(meddy1.eq.1) call chemeddy(ifdiff,x00,x11,dteddy) |
| 1228 |
|
| 1229 |
do 502 k=1,nlev |
| 1230 |
do 502 i=1,n2dh |
| 1231 |
x00(i,1,k)=x00(i,1,k) |
| 1232 |
& +x11(i,1,k)*(p11(i,1)-p00(i,1)) |
| 1233 |
x00(i,1,k)=x00(i,1,k)/p11(i,1) |
| 1234 |
|
| 1235 |
c 012797: limit error |
| 1236 |
deltazu =1.2*x11(i,1,k) |
| 1237 |
deltazl =0.8*x11(i,1,k) |
| 1238 |
x00(i,1,k) = max(deltazl, min(deltazu, x00(i,1,k))) |
| 1239 |
|
| 1240 |
x11(i,1,k)=x00(i,1,k) |
| 1241 |
502 continue |
| 1242 |
|
| 1243 |
c |
| 1244 |
c----------------------- |
| 1245 |
#endif |
| 1246 |
|
| 1247 |
return |
| 1248 |
end |
| 1249 |
|