1 |
jscott |
1.1 |
|
2 |
|
|
#include "ctrparam.h" |
3 |
|
|
|
4 |
|
|
! ========================================================== |
5 |
|
|
! |
6 |
|
|
! SURFACE.F: THIS SUBROUTINE CALCULATES THE SURFACE FLUXES |
7 |
|
|
! WHICH INCLUDE SENSIBLE HEAT, EVAPORATION, |
8 |
|
|
! THERMAL RADIATION, AND MOMENTUM DRAG. IT ALSO |
9 |
|
|
! CALCULATES INSTANTANEOUSLY SURFACE TEMPERATURE, |
10 |
|
|
! SURFACE SPECIFIC HUMIDITY, AND SURFACE WIND |
11 |
|
|
! COMPONENTS. |
12 |
|
|
! |
13 |
|
|
! ---------------------------------------------------------- |
14 |
|
|
! |
15 |
|
|
! Author of Chemistry Modules: Chien Wang |
16 |
|
|
! |
17 |
|
|
! ---------------------------------------------------------- |
18 |
|
|
! |
19 |
|
|
! Revision History: |
20 |
|
|
! |
21 |
|
|
! When Who What |
22 |
|
|
! ---- ---------- ------- |
23 |
|
|
! 073100 Chien Wang repack based on CliChem3 and add cpp |
24 |
|
|
! 092301 Chien Wang add bc and oc |
25 |
|
|
! |
26 |
|
|
! ========================================================== |
27 |
|
|
|
28 |
|
|
SUBROUTINE SURFCE 5801. |
29 |
|
|
|
30 |
|
|
C**** 5802. |
31 |
|
|
C**** THIS SUBROUTINE CALCULATES THE SURFACE FLUXES WHICH INCLUDE 5803. |
32 |
|
|
C**** SENSIBLE HEAT, EVAPORATION, THERMAL RADIATION, AND MOMENTUM 5804. |
33 |
|
|
C**** DRAG. IT ALSO CALCULATES INSTANTANEOUSLY SURFACE TEMPERATURE, 5805. |
34 |
|
|
C**** SURFACE SPECIFIC HUMIDITY, AND SURFACE WIND COMPONENTS. 5806. |
35 |
|
|
C**** 5807. |
36 |
|
|
|
37 |
|
|
#if ( defined CPL_CHEM ) |
38 |
|
|
! |
39 |
|
|
#include "chem_para" |
40 |
|
|
#include "chem_com" |
41 |
|
|
! |
42 |
|
|
#endif |
43 |
|
|
|
44 |
|
|
#include "BD2G04.COM" |
45 |
|
|
|
46 |
|
|
#if ( defined CLM ) |
47 |
|
|
#include "CLM.COM" |
48 |
|
|
#endif |
49 |
|
|
|
50 |
|
|
COMMON/SPEC2/KM,KINC,COEK,C3LAND(IO0,JM0),C3OICE(IO0,JM0) 5808.1 |
51 |
|
|
* ,C3LICE(IO0,JM0),WMGE(IO0,JM0),TSSFC(1,JM0,4) 5808.2 |
52 |
|
|
COMMON U,V,T,P,Q 5809. |
53 |
|
|
COMMON/WORK1/CONV(IM0,JM0,LM0),PK(IM0,JM0,LM0),PREC(IM0,JM0), |
54 |
|
|
& TPREC(IM0,JM0), 5810. |
55 |
|
|
* COSZ1(IO0,JM0) 5811. |
56 |
|
|
COMMON/WORK2/UT(IM0,JM0,LM0),VT(IM0,JM0,LM0),DU1(IO0,JM0), |
57 |
|
|
& DV1(IO0,JM0), 5812. |
58 |
|
|
* RA(8),ID(8),UMS(8) 5813. |
59 |
|
|
COMMON/WORK3/E0(IO0,JM0,4),E1(IO0,JM0,4),EVAPOR(IO0,JM0,4), 5814. |
60 |
|
|
* TGRND(IO0,JM0,4) 5814.1 |
61 |
|
|
COMMON/RDATA/ROUGHL(IO0,JM0) 5815. |
62 |
|
|
DIMENSION SINI(72),COSI(72) 5816. |
63 |
|
|
DIMENSION WMGMINO(JM0) |
64 |
|
|
LOGICAL POLE,PRNT,HPRNT |
65 |
|
|
common/conprn/HPRNT |
66 |
|
|
common/TSUR/TSURFC(JM0,0:13),TSURFT(JM0),TSURFD(JM0),DTEMSR(JM0) |
67 |
|
|
common/SURRAD/TRSURF(JM0,4),SRSURF(JM0,4) |
68 |
|
|
c REAL*8 B,TGV,TKV,TSV0,TSV1,TSV 5818. |
69 |
|
|
COMMON/CWMG/WMGEA(JM0),NWMGEA(JM0),CHAVER(JM0),DTAV(JM0),DQAV(JM0) |
70 |
|
|
& ,Z0AV(JM0),WSAV(JM0),WS0AV(JM0),TAUAV(JM0) |
71 |
|
|
C |
72 |
|
|
#if ( defined OCEAN_3D || defined ML_2D) |
73 |
jscott |
1.2 |
#include "AGRID.h" |
74 |
jscott |
1.1 |
#endif |
75 |
|
|
c |
76 |
|
|
DATA RVAP/461.5/ 5819. |
77 |
|
|
DATA SHV/0./,SHW/4185./,SHI/2060./,RHOW/1000./,RHOI/916.6/, 5820. |
78 |
|
|
* ALAMI/2.1762/,STBO/.5672573E-7/,TF/273.16/,TFO/-1.56/ 5821. |
79 |
|
|
DATA Z1I/.1/,Z2LI/2.9/,Z1E/.1/,Z2E/4./,RHOS/91.66/,ALAMS/.35/ 5822. |
80 |
|
|
DIMENSION AROUGH(20),BROUGH(20),CROUGH(20),DROUGH(20),EROUGH(20) 5823. |
81 |
|
|
DATA AROUGH/16.59,13.99,10.4,7.35,5.241,3.926,3.126,2.632,2.319, 5824. |
82 |
|
|
*2.116,1.982,1.893,1.832,1.788,1.757,1.733,1.714,1.699,1.687,1.677/5825. |
83 |
|
|
DATA BROUGH/3.245,1.733,0.8481,0.3899,0.1832,0.9026E-1,0.4622E-1, 5826. |
84 |
|
|
* .241E-1,.1254E-1,.6414E-2,.3199E-2,.1549E-2,.7275E-3,.3319E-3, 5827. |
85 |
|
|
* .1474E-3,.6392E-4,.2713E-4,.1130E-4,.4630E-5,.1868E-5/ 5828. |
86 |
|
|
DATA CROUGH/5.111,3.088,1.682,.9239,.5626,.3994,.3282,.3017,.299 5829. |
87 |
|
|
*,.3114,.3324,.3587,.3881,.4186,.4492,.4792,.5082,.5361,.5627, 5830. |
88 |
|
|
* .5882/ 5831. |
89 |
|
|
DATA DROUGH/1.24,1.02,0.806,0.682,0.661,0.771,0.797,0.895,0.994, 5832. |
90 |
|
|
* 1.09,1.18,1.27,1.35,1.43,1.50,1.58,1.65,1.71,1.78,1.84/ 5833. |
91 |
|
|
DATA EROUGH/0.128,0.130,0.141,0.174,0.238,0.330,0.438,0.550,0.660,5834. |
92 |
|
|
* 0.766,0.866,0.962,1.05,1.14,1.22,1.30,1.37,1.45,1.52,1.58/ 5835. |
93 |
|
|
QSAT(TM,PR,QLH)=3.797915*EXP(QLH*(7.93252E-6-2.166847E-3/TM))/PR 5836. |
94 |
|
|
DLQSDT(TM,QLH)=QLH*2.166847E-3/(TM*TM) |
95 |
|
|
c TLOG(Z0)=ALOG(.36*SQRTT/(FMAG*Z0))+2.302585*ROUGH-.08 5837. |
96 |
|
|
DATA IFIRST/1/ 5838. |
97 |
|
|
ROSNOW(X)=0.54*X/LOG(1.+0.54*X/275.) |
98 |
|
|
ALSNOW(X)=2.8E-6*X**2 |
99 |
|
|
C**** 5839. |
100 |
|
|
C**** FDATA 2 LAND COVERAGE (1) 5840. |
101 |
|
|
C**** 3 RATIO OF LAND ICE COVERAGE TO LAND COVERAGE (1) 5841. |
102 |
|
|
C**** 5842. |
103 |
|
|
C**** ODATA 1 OCEAN TEMPERATURE (C) 5843. |
104 |
|
|
C**** 2 RATIO OF OCEAN ICE COVERAGE TO WATER COVERAGE (1) 5844. |
105 |
|
|
C**** 3 OCEAN ICE AMOUNT OF SECOND LAYER (KG/M**2) 5845. |
106 |
|
|
C**** 5846. |
107 |
|
|
C**** GDATA 1 OCEAN ICE SNOW AMOUNT (KG/M**2) 5847. |
108 |
|
|
C**** 2 EARTH SNOW AMOUNT (KG/M**2) 5848. |
109 |
|
|
C**** 3 OCEAN ICE TEMPERATURE OF FIRST LAYER (C) 5849. |
110 |
|
|
C**** 4 EARTH TEMPERATURE OF FIRST LAYER (C) 5850. |
111 |
|
|
C**** 5 EARTH WATER OF FIRST LAYER (KG/M**2) 5851. |
112 |
|
|
C**** 6 EARTH ICE OF FIRST LAYER (KG/M**2) 5852. |
113 |
|
|
C**** 7 OCEAN ICE TEMPERATURE OF SECOND LAYER (C) 5853. |
114 |
|
|
C**** 8 EARTH TEMPERATURE OF SECOND LAYER (C) 5854. |
115 |
|
|
C**** 9 EARTH WATER OF SECOND LAYER (KG/M**2) 5855. |
116 |
|
|
C**** 10 EARTH ICE OF SECOND LAYER (KG/M**2) 5856. |
117 |
|
|
C**** 12 LAND ICE SNOW AMOUNT (KG/M**2) 5857. |
118 |
|
|
C**** 13 LAND ICE TEMPERATURE OF FIRST LAYER (C) 5858. |
119 |
|
|
C**** 14 LAND ICE TEMPERATURE OF SECOND LAYER (C) 5859. |
120 |
|
|
C**** 5860. |
121 |
|
|
C**** BLDATA 1 COMPOSITE SURFACE WIND MAGNITUDE (M/S) 5861. |
122 |
|
|
C**** 2 COMPOSITE SURFACE AIR TEMPERATURE (K) 5862. |
123 |
|
|
C**** 3 COMPOSITE SURFACE AIR SPECIFIC HUMIDITY (1) 5863. |
124 |
|
|
C**** 4 LAYER TO WHICH DRY CONVECTION MIXES (1) 5864. |
125 |
|
|
C**** 5 SURFACE MOMENTUM TRANSFER (TAU) OCEAN 5865. |
126 |
|
|
C**** 6 COMPOSITE SURFACE U WIND 5866. |
127 |
|
|
C**** 7 COMPOSITE SURFACE V WIND 5867. |
128 |
|
|
C**** 8 COMPOSITE SURFACE MOMENTUM TRANSFER (TAU) 5868. |
129 |
|
|
C**** 5869. |
130 |
|
|
C**** VDATA 9 WATER FIELD CAPACITY OF FIRST LAYER (KG/M**2) 5870. |
131 |
|
|
C**** 10 WATER FIELD CAPACITY OF SECOND LAYER (KG/M**2) 5871. |
132 |
|
|
C**** 5872. |
133 |
|
|
C**** ROUGHL LOG(ZGS/ROUGHNESS LENGTH) (LOGARITHM TO BASE 10) 5873. |
134 |
|
|
C**** ROUGHL will be ROUGHNESS LENGTH |
135 |
|
|
C**** 5874. |
136 |
|
|
c print *,'surface TAU=',TAU |
137 |
|
|
NSTEPS=NSURF*NSTEP/NDYN 5875. |
138 |
|
|
IF(IFIRST.NE.1) GO TO 50 5876. |
139 |
|
|
print *,' SURFACE CORSR=',CORSR |
140 |
|
|
print *,' ZGS=30 m for LAND ' |
141 |
|
|
IFIRST=0 5877. |
142 |
|
|
WMGMINL = 5.0 |
143 |
|
|
print *,'WMGMIN 4 LAND=',WMGMINL |
144 |
|
|
print *,'over land WMG=max(WMG0,WMGMIN)' |
145 |
|
|
WMGM0=8.0 |
146 |
|
|
WMGM45=25. |
147 |
|
|
print *,' WMGM0=', WMGM0,' WMGM45=',WMGM45 |
148 |
|
|
WMGMAV=0.5*( WMGM0+WMGM45) |
149 |
|
|
DWGM=0.5*( WMGM0-WMGM45) |
150 |
|
|
do j = 1,jm0 |
151 |
|
|
rhrad = 3.14159*(-90.+4.*(j-1))/180. |
152 |
|
|
WMGMINO(j) = WMGMAV+DWGM*cos(4.*rhrad) |
153 |
|
|
enddo |
154 |
|
|
print *,'WMGMIN 4 OCEAN is a function of latitude' |
155 |
|
|
print 258,(WMGMINO(J),J=1,JM) |
156 |
|
|
print *,' WMGE' |
157 |
|
|
print 258,(WMGE(1,J),J=1,JM) |
158 |
|
|
258 format(12f5.1) |
159 |
|
|
! print *,'ODATA(1,7,2)=',ODATA(1,7,2) |
160 |
|
|
COEFSN=100./ROSNOW(10.) |
161 |
|
|
COEFSN=1. |
162 |
|
|
print *,' COEFSN=',COEFSN |
163 |
|
|
do 2567 J=1,JM |
164 |
|
|
NWMGEA(J)=0 |
165 |
|
|
WMGEA(J)=0. |
166 |
|
|
CHAVER(J)=0. |
167 |
|
|
DTAV(J)=0. |
168 |
|
|
DQAV(J)=0. |
169 |
|
|
Z0AV(J)=0. |
170 |
|
|
WSAV(J)=0. |
171 |
|
|
WS0AV(J)=0. |
172 |
|
|
TAUAV(J)=0. |
173 |
|
|
2567 CONTINUE |
174 |
|
|
READ (519) ((ROUGHL(I,J),I=1,IO),J=1,JM) 5878. |
175 |
|
|
c DO 10 J=2,JMM1 5878.01 |
176 |
|
|
C ************* |
177 |
|
|
DO 10 J=1,JM |
178 |
|
|
C ************* |
179 |
|
|
ILAND=0. |
180 |
|
|
SUM1=0. 5878.02 |
181 |
|
|
CONT1=0. 5878.03 |
182 |
|
|
CONT2=0. |
183 |
|
|
DO 11 I=1,IO 5878.04 |
184 |
|
|
PLAND=C3LAND(I,J) 5878.05 |
185 |
|
|
CONT1=CONT1+PLAND 5878.06 |
186 |
|
|
ROUGHL(I,J)=10**(log10(30.)-ROUGHL(I,J)) |
187 |
|
|
C**** ROUGHL IS NOW ROUGHNESS LENGTH |
188 |
|
|
11 SUM1=SUM1+PLAND*ROUGHL(I,J) 5878.07 |
189 |
|
|
IF(CONT1.LE.0.) GO TO 10 5878.08 |
190 |
|
|
SUM1=SUM1/CONT1 5878.09 |
191 |
|
|
DO 12 I=1,IO 5878.1 |
192 |
|
|
12 ROUGHL(I,J)=SUM1 5878.11 |
193 |
|
|
10 CONTINUE 5878.12 |
194 |
|
|
C SRCORX=1. 5878.13 |
195 |
|
|
CIAX=0.3 |
196 |
|
|
print *,' surfacen CIAX=',CIAX |
197 |
|
|
print *,' QS=Q1, TS=T1' |
198 |
|
|
print *,' WS=sqrt(0.75*W1+WGEM) ' |
199 |
|
|
print *,' ROUGHL' |
200 |
|
|
print *,(ROUGHL(1,J),J=1,jm) |
201 |
|
|
REWIND 519 5879. |
202 |
|
|
LBLMM1=LBLM-1 5880. |
203 |
|
|
IQ1=IM/4+1 5881. |
204 |
|
|
IQ2=IM/2+1 5882. |
205 |
|
|
IQ3=3*IM/4+1 5883. |
206 |
|
|
DTSURF=NDYN*DT/NSURF 5884. |
207 |
|
|
print *,' DTSURF=',DTSURF |
208 |
|
|
DTSRCE=DT*NDYN 5885. |
209 |
|
|
SHA=RGAS/KAPA 5886. |
210 |
|
|
RVX=0. 5887. |
211 |
|
|
ACE1I=Z1I*RHOI 5888. |
212 |
|
|
HC1I=ACE1I*SHI 5889. |
213 |
|
|
HC2LI=Z2LI*RHOI*SHI 5890. |
214 |
|
|
HC1DE=Z1E*1129950. 5891. |
215 |
|
|
HC2DE=Z2E*1129950.+3.5*.125*RHOW*3100. 5892. |
216 |
|
|
Z1IBYL=Z1I/ALAMI 5893. |
217 |
|
|
Z2LI3L=Z2LI/(3.*ALAMI) 5894. |
218 |
|
|
BYRSL=1./(RHOS*ALAMS) 5895. |
219 |
|
|
ZS1CO=.5*DSIG(1)*RGAS/GRAV 5896. |
220 |
|
|
P1000K=EXPBYK(1000.) 5897. |
221 |
|
|
COEFS=GRAV/(100.*DSIG(1)) 5898. |
222 |
|
|
COEF1=(1.-SIG(2))/DSIGO(1) 5899. |
223 |
|
|
COEF2=(SIG(1)-1.)/DSIGO(1) 5900. |
224 |
|
|
DO 20 I=1,IM 5901. |
225 |
|
|
SINI(I)=SIN((I-1)*TWOPI/FIM) 5902. |
226 |
|
|
20 COSI(I)=COS((I-1)*TWOPI/FIM) 5903. |
227 |
|
|
50 S0=S0X*1367./RSDIST 5904. |
228 |
|
|
BYS0=RSDIST/1367. 5905. |
229 |
|
|
C**** ZERO OUT ENERGY AND EVAPORATION FOR GROUND AND INITIALIZE TGRND 5906. |
230 |
|
|
DO 70 J=1,JM 5907. |
231 |
|
|
DO 70 I=1,IM 5908. |
232 |
|
|
TGRND(I,J,2)=GDATA(I,J,3) 5909. |
233 |
|
|
TGRND(I,J,3)=GDATA(I,J,13) 5910. |
234 |
|
|
TGRND(I,J,4)=GDATA(I,J,4) 5911. |
235 |
|
|
DO 70 K=1,12 5912. |
236 |
|
|
70 E0(I,J,K)=0. 5913. |
237 |
|
|
IHOUR=1.5+TOFDAY 5914. |
238 |
|
|
C**** 5915. |
239 |
|
|
C**** OUTSIDE LOOP OVER TIME STEPS, EXECUTED NSURF TIMES EVERY HOUR 5916. |
240 |
|
|
C**** 5917. |
241 |
|
|
DO 9000 NS=1,NSURF 5918. |
242 |
|
|
MODDSF=MOD(NSTEPS+NS-1,NDASF) 5919. |
243 |
|
|
IF(MODDSF.EQ.0) IDACC(3)=IDACC(3)+1 5920. |
244 |
|
|
MODD6=MOD(IDAY+NS,NSURF) 5921. |
245 |
|
|
C**** ZERO OUT LAYER 1 WIND INCREMENTS 5922. |
246 |
|
|
DO 60 J=1,JM 5923. |
247 |
|
|
DO 60 I=1,IM 5924. |
248 |
|
|
DU1(I,J)=0. 5925. |
249 |
|
|
60 DV1(I,J)=0. 5926. |
250 |
|
|
C**** 5927. |
251 |
|
|
C**** OUTSIDE LOOP OVER J AND I, EXECUTED ONCE FOR EACH GRID POINT 5928. |
252 |
|
|
C**** 5929. |
253 |
|
|
JPR=-7 |
254 |
|
|
DO 7000 J=1,JM 5930. |
255 |
|
|
PRNT=j.eq.8 |
256 |
|
|
PRNT=.FALSE. |
257 |
|
|
if(PRNT)then |
258 |
|
|
if(ns.eq.1)then |
259 |
|
|
write(78,*) ,' ' |
260 |
|
|
write(78,*) ,'TAU=',TAU |
261 |
|
|
endif |
262 |
|
|
write(78,*),'NS=',ns |
263 |
|
|
endif |
264 |
|
|
HEMI=1. 5931. |
265 |
|
|
IF(J.LE.JM/2) HEMI=-1. 5932. |
266 |
|
|
FCOR=2.*OMEGA*SINP(J) 5933. |
267 |
|
|
FMAG=FCOR*HEMI 5934. |
268 |
|
|
ROOT2F=SQRT(2.*FMAG) 5935. |
269 |
|
|
IF(J.EQ.1) GO TO 80 5936. |
270 |
|
|
IF(J.EQ.JM) GO TO 90 5937. |
271 |
|
|
WMG0=.5*(WMGE(1,J)+WMGE(1,J+1))+.001 5937.5 |
272 |
|
|
POLE=.FALSE. 5938. |
273 |
|
|
IMAX=IM 5939. |
274 |
|
|
GO TO 100 5940. |
275 |
|
|
C**** CONDITIONS AT THE SOUTH POLE 5941. |
276 |
|
|
80 POLE=.TRUE. 5942. |
277 |
|
|
IMAX=1 5943. |
278 |
|
|
JVPO=2 5944. |
279 |
|
|
RAPO=2.*RAPVN(1) 5945. |
280 |
|
|
U1=.25*(U(1,2,1)+V(IQ1,2,1)-U(IQ2,2,1)-V(IQ3,2,1)) 5946. |
281 |
|
|
V1=.25*(V(1,2,1)-U(IQ1,2,1)-V(IQ2,2,1)+U(IQ3,2,1)) 5947. |
282 |
|
|
WMG0=WMGE(1,2)+.001 5947.5 |
283 |
|
|
GO TO 100 5948. |
284 |
|
|
C**** CONDITIONS AT THE NORTH POLE 5949. |
285 |
|
|
90 POLE=.TRUE. 5950. |
286 |
|
|
IMAX=1 5951. |
287 |
|
|
JVPO=JM 5952. |
288 |
|
|
RAPO=2.*RAPVS(JM) 5953. |
289 |
|
|
U1=.25*(U(1,JM,1)-V(IQ1,JM,1)-U(IQ2,JM,1)+V(IQ3,JM,1)) 5954. |
290 |
|
|
V1=.25*(V(1,JM,1)+U(IQ1,JM,1)-V(IQ2,JM,1)-U(IQ3,JM,1)) 5955. |
291 |
|
|
WMG0=WMGE(1,JM)+.001 5955.5 |
292 |
|
|
C**** ZERO OUT SURFACE DIAGNOSTICS WHICH WILL BE SUMMED OVER LONGITUDE 5956. |
293 |
|
|
100 ATRHDT=0. 5957. |
294 |
|
|
BTRHDT=0. 5958. |
295 |
|
|
CTRHDT=0. 5959. |
296 |
|
|
ASHDT=0. 5960. |
297 |
|
|
BSHDT=0. 5961. |
298 |
|
|
CSHDT=0. 5962. |
299 |
|
|
AEVHDT=0. 5963. |
300 |
|
|
BEVHDT=0. 5964. |
301 |
|
|
CEVHDT=0. 5965. |
302 |
|
|
ATS=0. 5966. |
303 |
|
|
BTS=0. 5967. |
304 |
|
|
CTS=0. 5968. |
305 |
|
|
AT2=0. 5966. |
306 |
|
|
BT2=0. 5967. |
307 |
|
|
CT2=0. 5968. |
308 |
|
|
ATAUL=0. |
309 |
|
|
ATAUF=0. |
310 |
|
|
BTAUL=0. |
311 |
|
|
BTAUF=0. |
312 |
|
|
CTAUL=0. |
313 |
|
|
CTAUF=0. |
314 |
|
|
AWS=0. |
315 |
|
|
BWS=0. |
316 |
|
|
CWS=0. |
317 |
|
|
AWMG=0. |
318 |
|
|
BWMG=0. |
319 |
|
|
CWMG=0. |
320 |
|
|
ACH=0. |
321 |
|
|
BCH=0. |
322 |
|
|
CCH=0. |
323 |
|
|
IM1=IM 5969. |
324 |
|
|
#if ( defined CLM ) |
325 |
|
|
if(NS.eq.1)then |
326 |
|
|
tsl4clm(j)=0.0 |
327 |
|
|
qs4clm(j)=0.0 |
328 |
|
|
ps4clm(j)=0.0 |
329 |
|
|
ws4clm(j)=0.0 |
330 |
|
|
us4clm(j)=0.0 |
331 |
|
|
vs4clm(j)=0.0 |
332 |
|
|
endif |
333 |
|
|
#endif |
334 |
|
|
DO 6000 I=1,IMAX 5970. |
335 |
|
|
C**** 5971. |
336 |
|
|
C**** DETERMINE SURFACE CONDITIONS 5972. |
337 |
|
|
C**** 5973. |
338 |
|
|
PLAND=FDATA(I,J,2) 5974. |
339 |
|
|
PWATER=1.-PLAND 5975. |
340 |
|
|
PLICE=FDATA(I,J,3)*PLAND 5976. |
341 |
|
|
PEARTH=PLAND-PLICE 5977. |
342 |
|
|
POICE=ODATA(I,J,2)*PWATER 5978. |
343 |
|
|
POCEAN=PWATER-POICE 5979. |
344 |
|
|
if(POCEAN.LE.1.E-5)then |
345 |
|
|
POCEAN=0. |
346 |
|
|
POICE=PWATER |
347 |
|
|
endif |
348 |
|
|
TTOFR=PEARTH+PLICE+POICE+POCEAN |
349 |
|
|
if(abs(TTOFR-1).gt.1.e-3)then |
350 |
|
|
print *,' From surface TTOFR=',TTOFR |
351 |
|
|
print *,' J=',J,' PLAND=',PLAND,' POCEAN=',POCEAN |
352 |
|
|
print *,'POICE=',POICE,' ODATA(I,J,2)=',ODATA(I,J,2) |
353 |
|
|
stop |
354 |
|
|
end if |
355 |
|
|
SP=P(I,J) 5980. |
356 |
|
|
PS=SP+PTOP 5981. |
357 |
|
|
PSK=EXPBYK(PS) 5982. |
358 |
|
|
P1=SIG(1)*SP+PTOP 5983. |
359 |
|
|
P1K=EXPBYK(P1) 5984. |
360 |
|
|
WSOLD=BLDATA(I,J,1) 5985. |
361 |
|
|
USOLD=BLDATA(I,J,6) 5986. |
362 |
|
|
VSOLD=BLDATA(I,J,7) 5987. |
363 |
|
|
TOLD=BLDATA(I,J,8) 5988. |
364 |
|
|
SQRTT=SQRT(TOLD) 5989. |
365 |
|
|
GKBYFW=.1296*GRAV/(FCOR*FMAG*WSOLD+1.E-20) 5990. |
366 |
|
|
COSWS=GKBYFW*USOLD 5991. |
367 |
|
|
SINWS=GKBYFW*VSOLD 5992. |
368 |
|
|
IF(POLE) GO TO 1200 5993. |
369 |
|
|
U1=.25*(U(IM1,J,1)+U(I,J,1)+U(IM1,J+1,1)+U(I,J+1,1)) 5994. |
370 |
|
|
V1=.25*(V(IM1,J,1)+V(I,J,1)+V(IM1,J+1,1)+V(I,J+1,1)) 5995. |
371 |
|
|
if(J.eq.JPR.or.J.eq.-12)then |
372 |
|
|
print *,' J=',J |
373 |
|
|
print *,'TAU=',TAU,' NS=',NS,' ITYPE=',ITYPE |
374 |
|
|
print *,'U(I,J,1)=',U(I,J,1),' V(I,J,1)=',V(I,J,1) |
375 |
|
|
print *,'U(I,J+1,1)=',U(I,J+1,1),' V(I,J+1,1)=',V(I,J+1,1) |
376 |
|
|
print *,'U(IM1,J,1)=',U(IM1,J,1),' V(IM1,J,1)=',V(IM1,J,1) |
377 |
|
|
print *,'U(IM1,J+1,1)=',U(IM1,J+1,1), |
378 |
|
|
& ' V(IM1,J+1,1)=',V(IM1,J+1,1) |
379 |
|
|
endif |
380 |
|
|
1200 TH1=T(I,J,1) 5996. |
381 |
|
|
Q1=Q(I,J,1) 5997. |
382 |
|
|
DTH1=0.0 |
383 |
|
|
DQQ1=0.0 |
384 |
|
|
THV1=TH1*(1.+Q1*RVX) 5998. |
385 |
|
|
c SRHEAT=SRHR(I,J,1)*COSZ1(I,J)*SRCOR 5999. |
386 |
|
|
c SRHDT=SRHEAT*DTSURF 6000. |
387 |
|
|
RMBYA=100.*SP*DSIG(1)/GRAV 6001. |
388 |
|
|
C**** ZERO OUT QUANTITIES TO BE SUMMED OVER SURFACE TYPES 6002. |
389 |
|
|
USS=0. 6003. |
390 |
|
|
VSS=0. 6004. |
391 |
|
|
WSS=0. 6005. |
392 |
|
|
TSS=0. 6006. |
393 |
|
|
QSS=0. 6007. |
394 |
|
|
TAUS=0. 6008. |
395 |
|
|
SINAPS=0. 6009. |
396 |
|
|
COSAPS=0. 6010. |
397 |
|
|
JR=J |
398 |
|
|
DXYPJ=DXYP(J) 6012. |
399 |
|
|
TG1S=0. 6013. |
400 |
|
|
QGS=0. 6014. |
401 |
|
|
BETAS=0. 6015. |
402 |
|
|
TRHDTS=0. 6016. |
403 |
|
|
SHDTS=0. 6017. |
404 |
|
|
EVHDTS=0. 6018. |
405 |
|
|
UGS=0. 6019. |
406 |
|
|
VGS=0. 6020. |
407 |
|
|
WGS=0. 6021. |
408 |
|
|
USRS=0. 6022. |
409 |
|
|
VSRS=0. 6023. |
410 |
|
|
RIS1S=0. 6024. |
411 |
|
|
RIGSS=0. 6025. |
412 |
|
|
CDMS=0. 6026. |
413 |
|
|
CDHS=0. 6027. |
414 |
|
|
DGSS=0. 6028. |
415 |
|
|
EDS1S=0. 6029. |
416 |
|
|
PPBLS=0. 6030. |
417 |
|
|
EVAPS=0. 6031. |
418 |
|
|
C**** 6032. |
419 |
|
|
IF(POCEAN.LE.0.) GO TO 2200 6033. |
420 |
|
|
C**** 6034. |
421 |
|
|
C**** OCEAN 6035. |
422 |
|
|
C**** 6036. |
423 |
|
|
ITYPE=1 6037. |
424 |
|
|
PTYPE=POCEAN 6038. |
425 |
|
|
c formula charnoka |
426 |
|
|
TOCEAN=BLDATA(I,J,5) |
427 |
|
|
ROUGH=MAX(0.018*TOCEAN/GRAV,1.5E-4) |
428 |
|
|
c ROUGH=MAX(0.035*TOCEAN/GRAV,2.5E-4) used in 008.03 |
429 |
|
|
ZGS=10. 6041. |
430 |
|
|
! WMGMIN=8. |
431 |
|
|
WMGMIN=WMGMINO(J) |
432 |
|
|
NGRNDZ=1 6043. |
433 |
|
|
TG1=ODATA(I,J,1) 6044. |
434 |
|
|
BETA=1. 6045. |
435 |
|
|
ELHX=LHE 6046. |
436 |
|
|
TRHT0=TRSURF(J,1) |
437 |
|
|
SRHEAT=SRSURF(J,1)*COSZ1(I,J)*SRCOR |
438 |
|
|
GO TO 3000 6047. |
439 |
|
|
C**** 6048. |
440 |
|
|
2200 IF(POICE.LE.0.) GO TO 2400 6049. |
441 |
|
|
C**** 6050. |
442 |
|
|
C**** OCEAN ICE 6051. |
443 |
|
|
C**** 6052. |
444 |
|
|
ITYPE=2 6053. |
445 |
|
|
PTYPE=POICE 6054. |
446 |
|
|
NGRNDZ=NGRND 6055. |
447 |
|
|
SNOW=GDATA(I,J,1) 6056. |
448 |
|
|
TG1=TGRND(I,J,2) 6057. |
449 |
|
|
TG2=GDATA(I,J,7) 6058. |
450 |
|
|
ACE2=ODATA(I,J,3) 6059. |
451 |
|
|
Z2=ACE2/RHOI 6060. |
452 |
|
|
Z2BY4L=Z2/(4.*ALAMI) 6061. |
453 |
|
|
if (SNOW.gt.10.)then |
454 |
|
|
RHOS0=ROSNOW(SNOW) |
455 |
|
|
else |
456 |
|
|
RHOS0=275. |
457 |
|
|
endif |
458 |
|
|
RHOS=COEFSN*RHOS0 |
459 |
|
|
ALAMS=ALSNOW(RHOS0) |
460 |
|
|
BYRSL=1./(RHOS*ALAMS) |
461 |
|
|
c Z1BY6L=(Z1IBYL+SNOW*BYRSL)*.1666667 6062. |
462 |
|
|
c CDTERM=1.5*TG2-.5*TFO 6063. |
463 |
|
|
CDTERM=TG2 |
464 |
|
|
c CDENOM=1./(2.*Z1BY6L+Z2BY4L) 6064. |
465 |
|
|
Z1BY2L=(Z1IBYL+SNOW*BYRSL)*0.5 |
466 |
|
|
CDENOM=1./(Z1BY2L+2.*Z2BY4L) |
467 |
|
|
ROUGH=10**(log10(10.)-4.37) |
468 |
|
|
ZGS=10. 6067. |
469 |
|
|
! WMGMIN=8. |
470 |
|
|
WMGMIN=WMGMINO(J) |
471 |
|
|
HC1=HC1I+SNOW*SHI 6069. |
472 |
|
|
BETA=1. 6070. |
473 |
|
|
ELHX=LHS 6071. |
474 |
|
|
TRHT0=TRSURF(J,3) |
475 |
|
|
SRHEAT=SRSURF(J,3)*COSZ1(I,J)*SRCOR |
476 |
|
|
GO TO 3000 6072. |
477 |
|
|
C**** 6073. |
478 |
|
|
2400 IF(PLAND.LE.0.) GO TO 5000 6074. |
479 |
|
|
NGRNDZ=NGRND 6075. |
480 |
|
|
ROUGH=ROUGHL(I,J) 6076. |
481 |
|
|
ZGS=30. 6078. |
482 |
|
|
WMGMIN=WMGMINL |
483 |
|
|
TRHT0=TRSURF(J,2) |
484 |
|
|
SRHEAT=SRSURF(J,2)*COSZ1(I,J)*SRCOR |
485 |
|
|
IF(PLICE.LE.0.) GO TO 2600 6080. |
486 |
|
|
C**** 6081. |
487 |
|
|
C**** LAND ICE 6082. |
488 |
|
|
C**** 6083. |
489 |
|
|
ITYPE=3 6084. |
490 |
|
|
PTYPE=PLICE 6085. |
491 |
|
|
SNOW=GDATA(I,J,12) 6086. |
492 |
|
|
TG1=TGRND(I,J,3) 6087. |
493 |
|
|
TG2=GDATA(I,J,14) 6088. |
494 |
|
|
if (SNOW.gt.10.)then |
495 |
|
|
RHOS0=ROSNOW(SNOW) |
496 |
|
|
else |
497 |
|
|
RHOS0=275. |
498 |
|
|
endif |
499 |
|
|
RHOS=COEFSN*RHOS0 |
500 |
|
|
ALAMS=ALSNOW(RHOS0) |
501 |
|
|
BYRSL=1./(RHOS*ALAMS) |
502 |
|
|
c Z1BY6L=(Z1IBYL+SNOW*BYRSL)*.1666667 6089. |
503 |
|
|
CDTERM=TG2 6090. |
504 |
|
|
c CDENOM=1./(2.*Z1BY6L+Z2LI3L) 6091. |
505 |
|
|
Z1BY2L=(Z1IBYL+SNOW*BYRSL)*0.5 |
506 |
|
|
CDENOM=1./(Z1BY2L+3.*Z2LI3L/2.) |
507 |
|
|
HC1=HC1I+SNOW*SHI 6092. |
508 |
|
|
BETA=1. 6093. |
509 |
|
|
ELHX=LHS 6094. |
510 |
|
|
GO TO 3000 6095. |
511 |
|
|
C**** 6096. |
512 |
|
|
2600 IF(PEARTH.LE.0.) GO TO 5000 6097. |
513 |
|
|
C**** 6098. |
514 |
|
|
C**** EARTH 6099. |
515 |
|
|
C**** 6100. |
516 |
|
|
ITYPE=4 6101. |
517 |
|
|
PTYPE=PEARTH 6102. |
518 |
|
|
SNOW=GDATA(I,J,2) 6103. |
519 |
|
|
TG1=TGRND(I,J,4) 6104. |
520 |
|
|
WTR1=GDATA(I,J,5) 6105. |
521 |
|
|
ACE1=GDATA(I,J,6) 6106. |
522 |
|
|
TG2=GDATA(I,J,8) 6107. |
523 |
|
|
WTR2=GDATA(I,J,9) 6108. |
524 |
|
|
ACE2=GDATA(I,J,10) 6109. |
525 |
|
|
WFC1=VDATA(I,J,9) 6110. |
526 |
|
|
WFC2=VDATA(I,J,10) 6111. |
527 |
|
|
WTR1DRY=0.025*WFC1 |
528 |
|
|
HC1=HC1DE+WTR1*SHW+(ACE1+SNOW)*SHI 6112. |
529 |
|
|
ALAM1D=2.+.5*(1.+2.*WTR1/WFC1) 6113. |
530 |
|
|
ALAM2D=4. 6114. |
531 |
|
|
RMULCH=1. 6115. |
532 |
|
|
IF((SINP(J).GT..5).AND.(JDAY-91)*(273-JDAY).LT.0) RMULCH=.25 6116. |
533 |
|
|
IF((SINP(J).LT.-.5).AND.(JDAY-91)*(273-JDAY).GE.0) RMULCH=.25 6117. |
534 |
|
|
ALAM1V=RMULCH*(.4185+1.2555*WTR1/WFC1+ALAMI*ACE1/(Z1E*RHOI)) 6118. |
535 |
|
|
ALAM3V=.8370 6119. |
536 |
|
|
IF(TG2.LT.0.) ALAM3V=.4185+ALAMI*.15 6120. |
537 |
|
|
ALAM2V=.125*(.4185+1.2555*WTR2/WFC2+ALAMI*ACE2/(5.*Z1E*RHOI)) 6121. |
538 |
|
|
* +.875*ALAM3V 6122. |
539 |
|
|
ALAM1E=VDATA(I,J,1)*ALAM1D+(1.-VDATA(I,J,1))*ALAM1V 6123. |
540 |
|
|
ALAM2E=VDATA(I,J,1)*ALAM2D+(1.-VDATA(I,J,1))*ALAM2V 6124. |
541 |
|
|
if (SNOW.gt.10.)then |
542 |
|
|
RHOS0=ROSNOW(SNOW) |
543 |
|
|
else |
544 |
|
|
RHOS0=275. |
545 |
|
|
endif |
546 |
|
|
RHOS=COEFSN*RHOS0 |
547 |
|
|
ALAMS=ALSNOW(RHOS0) |
548 |
|
|
BYRSL=1./(RHOS*ALAMS) |
549 |
|
|
c Z1BY6L=(Z1E/ALAM1E+SNOW*BYRSL)*.1666667 6125. |
550 |
|
|
Z1BY2L=(Z1E/ALAM1E+SNOW*BYRSL)*0.5 |
551 |
|
|
CDTERM=TG2 6126. |
552 |
|
|
c CDENOM=1./(2.*Z1BY6L+Z2E/(3.*ALAM2E)) 6127. |
553 |
|
|
CDENOM=1./(Z1BY2L+Z2E/(2.*ALAM2E)) |
554 |
|
|
BETA=1. 6128. |
555 |
|
|
ELHX=LHS 6129. |
556 |
|
|
IF(SNOW.GT.0.) GO TO 3000 6130. |
557 |
|
|
BETA=(WTR1+ACE1)/WFC1 6131. |
558 |
|
|
BETA=max(((WTR1+ACE1-WTR1DRY)/WFC1),0.0) |
559 |
|
|
PFROZN=ACE1/(WTR1+ACE1+1.E-20) 6132. |
560 |
|
|
ELHX=LHE+LHM*PFROZN 6133. |
561 |
|
|
HC2E=HC2DE+WTR2*SHW+ACE2*SHI |
562 |
|
|
C**** 6134. |
563 |
|
|
C**** BOUNDARY LAYER INTERACTION 6135. |
564 |
|
|
C**** 6136. |
565 |
|
|
3000 continue |
566 |
|
|
SRHDT=SRHEAT*DTSURF |
567 |
|
|
TKV=THV1*PSK 6137. |
568 |
|
|
ZS1=ZS1CO*TKV*SP/PS 6138. |
569 |
|
|
P1=SIG(1)*SP+PTOP 6139. |
570 |
|
|
DTGRND=DTSURF/NGRNDZ 6143. |
571 |
|
|
SHDT=0. 6144. |
572 |
|
|
EVHDT=0. 6145. |
573 |
|
|
TRHDT=0. 6146. |
574 |
|
|
F1DT=0. 6147. |
575 |
|
|
C**** LOOP OVER GROUND TIME STEPS 6148. |
576 |
|
|
DO 3600 NG=1,NGRNDZ 6149. |
577 |
|
|
TG=TG1+TF 6150. |
578 |
|
|
QG=QSAT(TG,PS,ELHX) 6151. |
579 |
|
|
TGV=TG*(1.+QG*RVX) 6152. |
580 |
|
|
W1=SQRT(U1*U1+V1*V1) |
581 |
|
|
WS0=W1 |
582 |
|
|
c WS=SQRT(W1*W1+0.8*WMG) |
583 |
|
|
! WMG=WMG0+WMGMIN |
584 |
|
|
! 07/17/2006 |
585 |
|
|
if(ITYPE.le.2)then |
586 |
|
|
WMG=WMG0+WMGMIN |
587 |
|
|
else |
588 |
|
|
WMG=max(WMG0,WMGMIN) |
589 |
|
|
endif |
590 |
|
|
! 07/17/2006 |
591 |
|
|
WS=SQRT((0.75*W1)**2+WMG) |
592 |
|
|
if(J.eq.JPR)then |
593 |
|
|
print *,' ' |
594 |
|
|
print *,'TAU=',TAU,' NS=',NS,' ITYPE=',ITYPE |
595 |
|
|
print *,'TG=',TG,' QG=',QG |
596 |
|
|
print *,'RVX=',RVX,' TG1=',TG1 |
597 |
|
|
endif |
598 |
|
|
|
599 |
|
|
#if ( defined CPL_OCEANCO2 || defined OCEAN_3D) |
600 |
|
|
if(ITYPE.eq.1)then |
601 |
|
|
NWMGEA(J)=NWMGEA(J)+1 |
602 |
|
|
WSAV(J)=WSAV(J)+WS |
603 |
|
|
end if |
604 |
|
|
#endif |
605 |
|
|
|
606 |
|
|
WG=WS |
607 |
|
|
THS=TH1 |
608 |
|
|
QS=Q1 |
609 |
|
|
TSV=THS*PSK |
610 |
|
|
Z0=ROUGH |
611 |
|
|
ROUGH=log10(ZGS/ROUGH) |
612 |
|
|
CDN=.0231/(ROUGH*ROUGH) |
613 |
|
|
c if(ITYPE.eq.1)then |
614 |
|
|
c CDN=.00075+.000067*WSOLD |
615 |
|
|
c ROUGH=7.126-1.068*LOG(WSOLD+1.E-12) |
616 |
|
|
c endif |
617 |
|
|
LR=ROUGH*2.-.5 |
618 |
|
|
IF(LR.GT.20) LR=20 |
619 |
|
|
IF(LR.LT.1) LR=1 |
620 |
|
|
RIGS=ZGS*GRAV*(TSV-TGV)/(TGV*WS*WS) |
621 |
|
|
SINAP=0. |
622 |
|
|
COSAP=1. |
623 |
|
|
IF(RIGS.LE.0) THEN |
624 |
|
|
C surface layer has unstable stratification |
625 |
|
|
CIA=TWOPI*0.0625/(1.+WS*CIAX) |
626 |
|
|
DM=SQRT((1.-AROUGH(LR)*RIGS)*(1.-BROUGH(LR)*RIGS)/ |
627 |
|
|
* (1.-CROUGH(LR)*RIGS)) |
628 |
|
|
DH=1.35*SQRT((1.-DROUGH(LR)*RIGS)/(1.-EROUGH(LR)*RIGS)) |
629 |
|
|
ELSE |
630 |
|
|
C surface layer has stable stratification |
631 |
|
|
CIA=TWOPI*(0.09375-0.03125/(1.+4*RIGS**2))/(1.+WS*CIAX) |
632 |
|
|
DM=1./(1.+(11.238+89.9*RIGS)*RIGS) |
633 |
|
|
DH=1.35/(1.+1.93*RIGS) |
634 |
|
|
END IF |
635 |
|
|
CDH=CDN*DM*DH |
636 |
|
|
if(J.eq.JPR)then |
637 |
|
|
print *,'TAU=',TAU,' NS=',NS,' ITYPE=',ITYPE |
638 |
|
|
print *,'WS=',WS,' ZGS=',ZGS |
639 |
|
|
print *,'DM=',DM,' DH=',DH |
640 |
|
|
print *,'RIGS=',RIGS,' TGV=',TGV |
641 |
|
|
endif |
642 |
|
|
USR=COS(CIA) |
643 |
|
|
VSR=SIN(CIA)*HEMI |
644 |
|
|
UG=U1 |
645 |
|
|
VG=V1 |
646 |
|
|
US=(USR*UG-VSR*VG) |
647 |
|
|
VS=(VSR*UG+USR*VG) |
648 |
|
|
RCDHWS=CDH*WS*100.*PS/(RGAS*TSV) |
649 |
|
|
if(J.eq.JPR)then |
650 |
|
|
c print *,' ' |
651 |
|
|
print *,'TAU=',TAU,' NS=',NS,' ITYPE=',ITYPE |
652 |
|
|
print *,'CDH=',CDH,' RGAS=',RGAS |
653 |
|
|
print *,'PS=',PS,' TSV=',TSV |
654 |
|
|
print *,'WS=',WS,' RCDHWS=',RCDHWS |
655 |
|
|
endif |
656 |
|
|
TS=TSV/(1.+QS*RVX) 6467. |
657 |
|
|
QSATS=QSAT(TS,PS,ELHX) 6468. |
658 |
|
|
c dLQS/dTs |
659 |
|
|
DLQSDTS=DLQSDT(TS,ELHX) |
660 |
|
|
c dLQS/dTs |
661 |
|
|
IF(QS.LE.QSATS) GO TO 3500 6469. |
662 |
|
|
DQSSDT=QSATS*ELHX/(RVAP*TS*TS) 6470. |
663 |
|
|
X=(QS-QSATS)/(DQSSDT+(SHA/ELHX)) 6471. |
664 |
|
|
TS=TS+X 6472. |
665 |
|
|
QS=QS+X*(SHA/ELHX) 6473. |
666 |
|
|
C**** CALCULATE RHOS*CDM*WS AND RHOS*CDH*WS 6474. |
667 |
|
|
3500 CDM=CDN*DM 6475. |
668 |
|
|
RCDMWS=CDM*WS*100.*PS/(RGAS*TS) 6476. |
669 |
|
|
C**** CALCULATE FLUXES OF SENSIBLE HEAT, LATENT HEAT, THERMAL 6478. |
670 |
|
|
C**** RADIATION, AND CONDUCTION HEAT (WATTS/M**2) 6479. |
671 |
|
|
SHEAT=SHA*RCDHWS*(TS-TG) 6480. |
672 |
|
|
BETAUP=BETA 6481. |
673 |
|
|
IF(QS.GT.QG) BETAUP=1. 6482. |
674 |
|
|
EVHEAT=(LHE+TG1*SHV)*BETAUP*RCDHWS*(QS-QG) 6483. |
675 |
|
|
c TRHEAT=TRHR(I,J,1)-STBO*(TG*TG)*(TG*TG) 6484. |
676 |
|
|
TRHEAT=TRHT0-STBO*(TG*TG)*(TG*TG) |
677 |
|
|
#if ( defined CLM ) |
678 |
|
|
if(NS.eq.1)then |
679 |
|
|
if(ITYPE.EQ.4.or.ITYPE.EQ.3)then |
680 |
|
|
tsl4clm(j)=tsl4clm(j)+TS*PTYPE/PLAND |
681 |
|
|
qs4clm(j)=qs4clm(j)+QS*PTYPE/PLAND |
682 |
|
|
ps4clm(j)=ps4clm(j)+PS*PTYPE/PLAND |
683 |
|
|
ws4clm(j)=ws4clm(j)+WS*PTYPE/PLAND |
684 |
|
|
us4clm(j)=us4clm(j)+US*PTYPE/PLAND |
685 |
|
|
vs4clm(j)=vs4clm(j)+VS*PTYPE/PLAND |
686 |
|
|
endif |
687 |
|
|
endif |
688 |
|
|
#endif |
689 |
|
|
if(J.eq.JPR)then |
690 |
|
|
c print *,' ' |
691 |
|
|
print *,'TAU=',TAU,' NS=',NS,' ITYPE=',ITYPE |
692 |
|
|
print *,'TRHT0=',TRHT0,' STBO=',STBO |
693 |
|
|
print *,'TG=',TG,' TS=',TS |
694 |
|
|
print *,'TRHEAT=',TRHEAT |
695 |
|
|
print *,'SHA=',SHA,' RCDHWS=',RCDHWS |
696 |
|
|
print *,'SHEAT=',SHEAT |
697 |
|
|
endif |
698 |
|
|
TG1OLD=TG1 |
699 |
|
|
SHEATOLD=SHEAT |
700 |
|
|
#if ( defined OCEAN_3D ) |
701 |
|
|
IF(ITYPE.EQ.1 .or. ITYPE.EQ.2) GO TO 3620 |
702 |
|
|
#else |
703 |
|
|
IF(ITYPE.EQ.1) GO TO 3620 6485. |
704 |
|
|
#endif |
705 |
|
|
C**** CALCULATE FLUXES USING IMPLICIT TIME STEP FOR NON-OCEAN POINTS 6486. |
706 |
|
|
F0=SRHEAT+TRHEAT+SHEAT+EVHEAT 6487. |
707 |
|
|
c F1=(TG1-CDTERM-F0*Z1BY6L)*CDENOM 6488. |
708 |
|
|
F1=(TG1-CDTERM)*CDENOM |
709 |
|
|
DSHDTG=-RCDHWS*SHA |
710 |
|
|
DQGDTG=QG*ELHX/(RVAP*TG*TG) 6490. |
711 |
|
|
DEVDTG=-RCDHWS*LHE*BETAUP*DQGDTG |
712 |
|
|
DTRDTG=-4.*STBO*TG*TG*TG 6492. |
713 |
|
|
DF0DTG=DSHDTG+DEVDTG+DTRDTG 6493. |
714 |
|
|
c DFDTG=DF0DTG-(1.-DF0DTG*Z1BY6L)*CDENOM 6493.5 |
715 |
|
|
DFDTG=DF0DTG-CDENOM |
716 |
|
|
c DF1DTG=(1.-DF0DTG*Z1BY6L)*CDENOM |
717 |
|
|
DF1DTG=CDENOM |
718 |
|
|
DTG=(F0-F1)*DTGRND/(HC1-DTGRND*DFDTG) 6494. |
719 |
|
|
SHDT=SHDT+DTGRND*(SHEAT+DTG*DSHDTG) 6495. |
720 |
|
|
EVHDT=EVHDT+DTGRND*(EVHEAT+DTG*DEVDTG) 6496. |
721 |
|
|
TRHDT=TRHDT+DTGRND*(TRHEAT+DTG*DTRDTG) 6497. |
722 |
|
|
TG1=TG1+DTG |
723 |
|
|
c F1DT=F1DT+DTGRND*(TG1-CDTERM-(F0+DTG*DF0DTG)*Z1BY6L)*CDENOM 6498. |
724 |
|
|
F1DT=F1DT+DTGRND*(TG1-CDTERM)*CDENOM |
725 |
|
|
DU1(I,J)=DU1(I,J)+PTYPE*DTGRND*RCDMWS*US*COEFS/SP 6499. |
726 |
|
|
DV1(I,J)=DV1(I,J)+PTYPE*DTGRND*RCDMWS*VS*COEFS/SP 6500. |
727 |
|
|
c TG1=TG1+DTG 6501. |
728 |
|
|
3600 CONTINUE 6502. |
729 |
|
|
GO TO 3700 6503. |
730 |
|
|
C**** CALCULATE FLUXES USING EXPLICIT TIME STEP FOR OCEAN POINTS 6504. |
731 |
|
|
3620 SHDT=DTSURF*SHEAT 6505. |
732 |
|
|
EVHDT=DTSURF*EVHEAT 6506. |
733 |
|
|
TRHDT=DTSURF*TRHEAT 6507. |
734 |
|
|
DU1(I,J)=DU1(I,J)+PTYPE*DTSURF*RCDMWS*US*COEFS/SP 6508. |
735 |
|
|
DV1(I,J)=DV1(I,J)+PTYPE*DTSURF*RCDMWS*VS*COEFS/SP 6509. |
736 |
|
|
3700 CONTINUE |
737 |
|
|
EPS=1.D-8 |
738 |
|
|
c print *,'FROM SURFACE NS=',NS |
739 |
|
|
c print *,'J=',J,' ITYPE=',ITYPE |
740 |
|
|
c print *,RCDMWS,WS |
741 |
|
|
WWS=max(W1,1.D-4) |
742 |
|
|
c RO=SP*100/(RGAS*TG) |
743 |
|
|
c print *,'RO=',RO |
744 |
|
|
c USTAR=SQRT(RCDMWS*WS/RO) |
745 |
|
|
c TSTAR=SHEATOLD/(0.35*1007.*RO*USTAR) |
746 |
|
|
c ALPHAH=DH |
747 |
|
|
c TT2M=TG+TSTAR/ALPHAH*LOG(2.0/Z0) |
748 |
|
|
c TT2M=TG+TSTAR/ALPHAH*LOG(ZGS/Z0) |
749 |
|
|
c print *,'RIGS=',RIGS,' Z0=',Z0 |
750 |
|
|
c print *,'CDN=',CDN |
751 |
|
|
c print *,'H=',SHDT/DTSURF,' TGM=',RCDMWS*WS |
752 |
|
|
c print *,' SHEATOLD=',SHEATOLD |
753 |
|
|
c print *,' USTAR=',USTAR,' TSTAR=',TSTAR |
754 |
|
|
c print *,' ALPHAH=',ALPHAH,' TT2M=',TT2M |
755 |
|
|
c print *,' TT2M=',TT2M |
756 |
|
|
ZTEM=ZGS |
757 |
|
|
ZTEM=2.0 |
758 |
|
|
c print *,'ZTEM=',ZTEM |
759 |
|
|
CALL TZM(T2M,TH2M,ZTEM,Z0,ZGS,SP,TG,TS,RIGS,WS, |
760 |
|
|
& -SHEATOLD,RCDMWS*WS,LR,EPS) |
761 |
|
|
c print *,'FROM SURFACE' |
762 |
|
|
c print *,'TS=',TS,' TG=',TG |
763 |
|
|
c print *,' T2M=',T2M,' TH2M=',TH2M |
764 |
|
|
F0DT=CORSR*SRHDT+TRHDT+SHDT+EVHDT 6510. |
765 |
|
|
if(J.eq.JPR)then |
766 |
|
|
print *,'TAU=',TAU,' NS=',NS,' ITYPE=',ITYPE |
767 |
|
|
print *,'DTSURF=',DTSURF,' CORSR=',CORSR |
768 |
|
|
print *,'SRHDT=',SRHDT,' TRHDT=',TRHDT |
769 |
|
|
print *,'SHDT=',SHDT,' EVHDT=',EVHDT |
770 |
|
|
print *,'F0DT=',F0DT |
771 |
|
|
print *,'US=',US,' VS=',VS |
772 |
|
|
print *,'COEFS=',COEFS,' SP=',SP |
773 |
|
|
endif |
774 |
|
|
c print *,'From surface ',TAU,CORSR,SRHDT,TRHDT,SHDT,EVHDT |
775 |
|
|
C**** CALCULATE EVAPORATION 6511. |
776 |
|
|
CCC DQ1=EVHDT/((LHE+TG1*SHV)*RMBYA) 6512. |
777 |
|
|
DQ1=EVHDT/(ELHX*RMBYA) |
778 |
|
|
IF(DQ1*PTYPE.LE.Q1) GO TO 3720 6513. |
779 |
|
|
DQ1=Q1/PTYPE 6514. |
780 |
|
|
CCC EVHDT=DQ1*(LHE+TG1*SHV)*RMBYA 6515. |
781 |
|
|
EVHDT=DQ1*ELHX*RMBYA |
782 |
|
|
3720 EVAP=-DQ1*RMBYA 6516. |
783 |
|
|
C**** ACCUMULATE SURFACE FLUXES AND PROGNOSTIC AND DIAGNOSTIC QUANTITIES6517. |
784 |
|
|
E0(I,J,ITYPE)=E0(I,J,ITYPE)+F0DT 6518. |
785 |
|
|
E1(I,J,ITYPE)=E1(I,J,ITYPE)+F1DT 6519. |
786 |
|
|
EVAPOR(I,J,ITYPE)=EVAPOR(I,J,ITYPE)+EVAP 6520. |
787 |
|
|
if(PRNT)then |
788 |
|
|
c write(78,*) ,' ' |
789 |
|
|
c write(78,*) ,'TAU=',TAU |
790 |
|
|
write(78,*) ,'J=',j,' ITYPE=',ITYPE,' PTYPE=',PTYPE |
791 |
|
|
write(78,*) ,'TS=',TS,' TG=',TG,' QS=',QS |
792 |
|
|
write(78,*) ,'TG1=',TG1,' TG1OLD=',TG1OLD |
793 |
|
|
write(78,*) ,'TG2=',TG2 |
794 |
|
|
write(78,*) ,'SHEAT=',SHEAT,' EVHEAT=',EVHEAT |
795 |
|
|
write(78,*) ,'TRHEAT=',TRHEAT,' SRHEAT=',SRHEAT |
796 |
|
|
write(78,*) ,'EVAP mm/day=',24.*3600.*EVAP/DTSURF |
797 |
|
|
write(78,*) ,'EVAP=',EVAP, |
798 |
|
|
& ' F0DT=',F0DT/DTSURF,' F1DT=',F1DT/DTSURF |
799 |
|
|
endif |
800 |
|
|
#if ( defined OCEAN_3D || defined ML_2D ) |
801 |
|
|
C For ocean model |
802 |
|
|
c if(NS.eq.2)then |
803 |
|
|
#if ( defined ML_2D ) |
804 |
|
|
if(ITYPE.eq.1)then |
805 |
|
|
#endif |
806 |
|
|
C DNetHeat by DTG |
807 |
|
|
DSHDTG=-RCDHWS*SHA |
808 |
|
|
DQGDTG=QG*ELHX/(RVAP*TG*TG) |
809 |
|
|
DEVDTG=-RCDHWS*LHE*BETAUP*DQGDTG |
810 |
|
|
DTRDTG=-4.*STBO*TG*TG*TG |
811 |
|
|
DF0DTG=DSHDTG+DEVDTG+DTRDTG |
812 |
|
|
if(EVHEAT.lt.0.0)then |
813 |
|
|
DEVDTGEQ=EVHEAT*DLQSDTS |
814 |
|
|
else |
815 |
|
|
DEVDTGEQ=0.0 |
816 |
|
|
endif |
817 |
|
|
C DNetHeat by DTG |
818 |
|
|
#if ( defined OCEAN_3D ) |
819 |
|
|
if(ITYPE.eq.1)then |
820 |
|
|
#endif |
821 |
|
|
dhfodtg(j)=dhfodtg(j)+DF0DTG |
822 |
|
|
devodtg(j)=devodtg(j)-DEVDTG/LHE |
823 |
|
|
dhfodtgeq(j)=dhfodtgeq(j)+DEVDTGEQ |
824 |
|
|
devodtgeq(j)=devodtgeq(j)-DEVDTGEQ/LHE |
825 |
|
|
evao(j)=evao(j)+EVAP |
826 |
|
|
hfluxo(j)=hfluxo(j)+F0DT |
827 |
|
|
naveo(j)=naveo(j)+1 |
828 |
|
|
endif |
829 |
|
|
if(ITYPE.eq.2)then |
830 |
|
|
evai(j)=evai(j)+EVAP |
831 |
|
|
hfluxi(j)=hfluxi(j)+F0DT |
832 |
|
|
dhfidtg(j)=dhfidtg(j)+DF0DTG |
833 |
|
|
devidtg(j)=devidtg(j)-DEVDTG/LHE |
834 |
|
|
dhfidtgeq(j)=dhfidtgeq(j)+DEVDTGEQ |
835 |
|
|
devidtgeq(j)=devidtgeq(j)-DEVDTGEQ/LHE |
836 |
|
|
c tairi(j)=tairi(j)+TS |
837 |
|
|
navei(j)=navei(j)+1 |
838 |
|
|
endif |
839 |
|
|
c endif ! NS |
840 |
|
|
tauu(j)=tauu(j)+RCDMWS*US*PTYPE |
841 |
|
|
tauv(j)=tauv(j)+RCDMWS*VS*PTYPE |
842 |
|
|
C For ocean model |
843 |
|
|
#endif |
844 |
|
|
TGRND(I,J,ITYPE)=TG1 6521. |
845 |
|
|
TSSFC(I,J,ITYPE)=TS 6521.5 |
846 |
|
|
|
847 |
|
|
c TH1=TH1-SHDT*PTYPE/(SHA*RMBYA*P1K) 6522. |
848 |
|
|
c Q1=Q1-DQ1*PTYPE 6523. |
849 |
|
|
|
850 |
|
|
DTH1=DTH1-SHDT*PTYPE/(SHA*RMBYA*P1K) |
851 |
|
|
DQQ1=DQQ1-DQ1*PTYPE |
852 |
|
|
|
853 |
|
|
USS=USS+US*PTYPE 6524. |
854 |
|
|
VSS=VSS+VS*PTYPE 6525. |
855 |
|
|
WSS=WSS+WS*PTYPE 6526. |
856 |
|
|
TSS=TSS+TS*PTYPE 6527. |
857 |
|
|
QSS=QSS+QS*PTYPE 6528. |
858 |
|
|
TAUS=TAUS+CDM*WS*W1*PTYPE 6529. |
859 |
|
|
SINAPS=SINAPS+SINAP*PTYPE 6530. |
860 |
|
|
COSAPS=COSAPS+COSAP*PTYPE 6531. |
861 |
|
|
TG1S=TG1S+TG1*PTYPE 6532. |
862 |
|
|
QGS=QGS+QG*PTYPE 6533. |
863 |
|
|
BETAS=BETAS+BETA*PTYPE 6534. |
864 |
|
|
TRHDTS=TRHDTS+TRHDT*PTYPE 6535. |
865 |
|
|
SHDTS=SHDTS+SHDT*PTYPE 6536. |
866 |
|
|
EVHDTS=EVHDTS+EVHDT*PTYPE 6537. |
867 |
|
|
UGS=UGS+UG*PTYPE 6538. |
868 |
|
|
VGS=VGS+VG*PTYPE 6539. |
869 |
|
|
WGS=WGS+WG*PTYPE 6540. |
870 |
|
|
USRS=USRS+USR*PTYPE 6541. |
871 |
|
|
VSRS=VSRS+VSR*PTYPE 6542. |
872 |
|
|
c RIS1S=RIS1S+RIS1*PTYPE 6543. |
873 |
|
|
RIGSS=RIGSS+RIGS*PTYPE 6544. |
874 |
|
|
CDMS=CDMS+CDM*PTYPE 6545. |
875 |
|
|
CDHS=CDHS+CDH*PTYPE 6546. |
876 |
|
|
c DGSS=DGSS+DGS*PTYPE 6547. |
877 |
|
|
c EDS1S=EDS1S+EDS1*PTYPE 6548. |
878 |
|
|
c PPBLS=PPBLS+PPBL*PTYPE 6549. |
879 |
|
|
EVAPS=EVAPS+EVAP*PTYPE 6550. |
880 |
|
|
GO TO (4000,4100,4400,4600),ITYPE 6551. |
881 |
|
|
C**** 6552. |
882 |
|
|
C**** OCEAN 6553. |
883 |
|
|
C**** 6554. |
884 |
|
|
4000 ASHDT=ASHDT+SHDT*POCEAN 6555. |
885 |
|
|
AEVHDT=AEVHDT+EVHDT*POCEAN 6556. |
886 |
|
|
ATRHDT=ATRHDT+TRHDT*POCEAN 6557. |
887 |
|
|
ATS=ATS+(TS-TF)*POCEAN 6558. |
888 |
|
|
AT2=AT2+(TH2M-TF)*POCEAN |
889 |
|
|
BLDATA(I,J,5)=CDM*WS*W1 |
890 |
|
|
ATAUL=ATAUL+RCDMWS*US*POCEAN |
891 |
|
|
ATAUF=ATAUF+RCDMWS*VS*POCEAN |
892 |
|
|
AWS=AWS+WS*POCEAN |
893 |
|
|
AWMG=AWMG+SQRT(WMG)*POCEAN |
894 |
|
|
ACH=ACH+RCDHWS*POCEAN |
895 |
|
|
GO TO 2200 6559. |
896 |
|
|
C**** 6560. |
897 |
|
|
C**** OCEAN ICE 6561. |
898 |
|
|
C**** 6562. |
899 |
|
|
4100 CSHDT=CSHDT+SHDT*POICE 6563. |
900 |
|
|
CEVHDT=CEVHDT+EVHDT*POICE 6564. |
901 |
|
|
CTRHDT=CTRHDT+TRHDT*POICE 6565. |
902 |
|
|
CTS=CTS+(TS-TF)*POICE 6566. |
903 |
|
|
CT2=CT2+(TH2M-TF)*POICE 6566. |
904 |
|
|
CTAUL=CTAUL+RCDMWS*US*POICE |
905 |
|
|
CTAUF=CTAUF+RCDMWS*VS*POICE |
906 |
|
|
CWS=CWS+WS*POICE |
907 |
|
|
CWMG=CWMG+SQRT(WMG)*POICE |
908 |
|
|
CCH=CCH+RCDHWS*POICE |
909 |
|
|
GO TO 2400 6567. |
910 |
|
|
C**** 6568. |
911 |
|
|
C**** LAND ICE 6569. |
912 |
|
|
C**** 6570. |
913 |
|
|
4400 BSHDT=BSHDT+SHDT*PLICE 6571. |
914 |
|
|
BEVHDT=BEVHDT+EVHDT*PLICE 6572. |
915 |
|
|
BTRHDT=BTRHDT+TRHDT*PLICE 6573. |
916 |
|
|
BTS=BTS+(TS-TF)*PLICE 6574. |
917 |
|
|
BT2=BT2+(TH2M-TF)*PLICE |
918 |
|
|
BTAUL=BTAUL+RCDMWS*US*PLICE |
919 |
|
|
BTAUF=BTAUF+RCDMWS*VS*PLICE |
920 |
|
|
BWS=BWS+WS*PLICE |
921 |
|
|
BWMG=BWMG+SQRT(WMG)*PLICE |
922 |
|
|
BCH=BCH+RCDHWS*PLICE |
923 |
|
|
GO TO 2600 6575. |
924 |
|
|
C**** 6576. |
925 |
|
|
C**** EARTH 6577. |
926 |
|
|
C**** 6578. |
927 |
|
|
4600 BSHDT=BSHDT+SHDT*PEARTH 6579. |
928 |
|
|
BEVHDT=BEVHDT+EVHDT*PEARTH 6580. |
929 |
|
|
BTRHDT=BTRHDT+TRHDT*PEARTH 6581. |
930 |
|
|
BTS=BTS+(TS-TF)*PEARTH 6582. |
931 |
|
|
BT2=BT2+(TH2M-TF)*PEARTH |
932 |
|
|
BTAUL=BTAUL+RCDMWS*US*PEARTH |
933 |
|
|
BTAUF=BTAUF+RCDMWS*VS*PEARTH |
934 |
|
|
BWS=BWS+WS*PEARTH |
935 |
|
|
BWMG=BWMG+SQRT(WMG)*PEARTH |
936 |
|
|
BCH=BCH+RCDHWS*PEARTH |
937 |
|
|
C**** NON-OCEAN POINTS WHICH ARE NOT MELTING OR FREEZING WATER USE 6583. |
938 |
|
|
C**** IMPLICIT TIME STEPS 6584. |
939 |
|
|
C**** 6585. |
940 |
|
|
C**** UPDATE SURFACE AND FIRST LAYER QUANTITIES 6586. |
941 |
|
|
C**** 6587. |
942 |
|
|
5000 CONTINUE |
943 |
|
|
T(I,J,1)=TH1 6588. |
944 |
|
|
& +DTH1 |
945 |
|
|
Q(I,J,1)=Q1 6589. |
946 |
|
|
& +DQQ1 |
947 |
|
|
BLDATA(I,J,1)=WSS 6590. |
948 |
|
|
BLDATA(I,J,2)=TSS 6591. |
949 |
|
|
BLDATA(I,J,3)=QSS 6592. |
950 |
|
|
BLDATA(I,J,6)=USS 6593. |
951 |
|
|
BLDATA(I,J,7)=VSS 6594. |
952 |
|
|
BLDATA(I,J,8)=TAUS 6595. |
953 |
|
|
c print *,j,T(I,J,1),Q(I,J,1) |
954 |
|
|
c print *,(TGRND(I,J,k),k=1,4) |
955 |
|
|
c print *,(EVAPOR(I,J,k),k=1,4) |
956 |
|
|
c print *,(E0(I,J,k),k=1,4) |
957 |
|
|
c print *,(E1(I,J,k),k=1,4) |
958 |
|
|
c print *,j,DU1(1,j),DV1(1,j) |
959 |
|
|
C**** 6596. |
960 |
|
|
C**** ACCUMULATE DIAGNOSTICS 6597. |
961 |
|
|
C**** 6598. |
962 |
|
|
C**** QUANTITIES ACCUMULATED FOR REGIONS IN DIAG1 6599. |
963 |
|
|
IF(JR.EQ.JM) GO TO 5700 6600. |
964 |
|
|
DJ(JR,9)=DJ(JR,9)+TRHDTS*DXYPJ 6601. |
965 |
|
|
DJ(JR,13)=DJ(JR,13)+SHDTS*DXYPJ 6602. |
966 |
|
|
DJ(JR,14)=DJ(JR,14)+EVHDTS*DXYPJ 6603. |
967 |
|
|
DJ(JR,19)=DJ(JR,19)+EVAPS*DXYPJ 6604. |
968 |
|
|
IF(MODDSF.NE.0) GO TO 5700 6605. |
969 |
|
|
DJ(JR,23)=DJ(JR,23)+(TSS-TF)*DXYPJ 6606. |
970 |
|
|
5700 CONTINUE |
971 |
|
|
6000 IM1=I 6662. |
972 |
|
|
C**** QUANTITIES ACCUMULATED FOR SURFACE TYPE TABLES IN DIAG1 6663. |
973 |
|
|
AJ(J,9)=AJ(J,9)+ATRHDT 6664. |
974 |
|
|
BJ(J,9)=BJ(J,9)+BTRHDT 6665. |
975 |
|
|
CJ(J,9)=CJ(J,9)+CTRHDT 6666. |
976 |
|
|
AJ(J,13)=AJ(J,13)+ASHDT 6667. |
977 |
|
|
BJ(J,13)=BJ(J,13)+BSHDT 6668. |
978 |
|
|
CJ(J,13)=CJ(J,13)+CSHDT 6669. |
979 |
|
|
AJ(J,14)=AJ(J,14)+AEVHDT 6670. |
980 |
|
|
BJ(J,14)=BJ(J,14)+BEVHDT 6671. |
981 |
|
|
CJ(J,14)=CJ(J,14)+CEVHDT 6672. |
982 |
|
|
AJ(J,32)=AJ(J,32)+ATAUL |
983 |
|
|
BJ(J,32)=BJ(J,32)+BTAUL |
984 |
|
|
CJ(J,32)=CJ(J,32)+CTAUL |
985 |
|
|
AJ(J,33)=AJ(J,33)+ATAUF |
986 |
|
|
BJ(J,33)=BJ(J,33)+BTAUF |
987 |
|
|
CJ(J,33)=CJ(J,33)+CTAUF |
988 |
|
|
AJ(J,37)=AJ(J,37)+AWS |
989 |
|
|
BJ(J,37)=BJ(J,37)+BWS |
990 |
|
|
CJ(J,37)=CJ(J,37)+CWS |
991 |
|
|
AJ(J,28)=AJ(J,28)+AWMG |
992 |
|
|
BJ(J,28)=BJ(J,28)+BWMG |
993 |
|
|
CJ(J,28)=CJ(J,28)+CWMG |
994 |
|
|
AJ(J,38)=AJ(J,38)+ATAUL/NSURF |
995 |
|
|
BJ(J,38)=BJ(J,38)+BTAUL/NSURF |
996 |
|
|
CJ(J,38)=CJ(J,38)+CTAUL/NSURF |
997 |
|
|
IF(MODDSF.NE.0) GO TO 7000 6673. |
998 |
|
|
AJ(J,23)=AJ(J,23)+ATS 6674. |
999 |
|
|
BJ(J,23)=BJ(J,23)+BTS 6675. |
1000 |
|
|
CJ(J,23)=CJ(J,23)+CTS 6676. |
1001 |
|
|
AJ(J,26)=AJ(J,26)+AT2 6674. |
1002 |
|
|
BJ(J,26)=BJ(J,26)+BT2 6675. |
1003 |
|
|
CJ(J,26)=CJ(J,26)+CT2 6676. |
1004 |
|
|
c print *,j,'ATS=',ATS,' AT2=',AT2 |
1005 |
|
|
c print *,'BLDATA' |
1006 |
|
|
c print *,(BLDATA(1,j,k),k=1,3) |
1007 |
|
|
c print *,(BLDATA(1,j,k),k=6,8) |
1008 |
|
|
|
1009 |
|
|
7000 CONTINUE 6677. |
1010 |
|
|
C**** 6678. |
1011 |
|
|
C**** ADD IN SURFACE FRICTION TO FIRST LAYER WIND 6679. |
1012 |
|
|
C**** 6680. |
1013 |
|
|
DO 7600 I=1,IM 6681. |
1014 |
|
|
U(I,2,1)=U(I,2,1)-2.*(DU1(1,1)*COSI(I)-DV1(1,1)*SINI(I))*RAPVN(1) 6682. |
1015 |
|
|
V(I,2,1)=V(I,2,1)-2.*(DV1(1,1)*COSI(I)+DU1(1,1)*SINI(I))*RAPVN(1) 6683. |
1016 |
|
|
U(I,JM,1)=U(I,JM,1) 6684. |
1017 |
|
|
* -2.*(DU1(1,JM)*COSI(I)+DV1(1,JM)*SINI(I))*RAPVS(JM) 6685. |
1018 |
|
|
7600 V(I,JM,1)=V(I,JM,1) 6686. |
1019 |
|
|
* -2.*(DV1(1,JM)*COSI(I)-DU1(1,JM)*SINI(I))*RAPVS(JM) 6687. |
1020 |
|
|
DO 7700 J=2,JMM1 6688. |
1021 |
|
|
I=IM 6689. |
1022 |
|
|
DO 7700 IP1=1,IM 6690. |
1023 |
|
|
if(J.eq.JPR.or.J.eq.-12)then |
1024 |
|
|
print *,' J=',J,' before' |
1025 |
|
|
print *,'U(I,J,1)=',U(I,J,1),' V(I,J,1)=',V(I,J,1) |
1026 |
|
|
print *,'U(I,J+1,1)=',U(I,J+1,1),' V(I,J+1,1)=',V(I,J+1,1) |
1027 |
|
|
print *,'DU1(I,J)=',DU1(I,J),' DU1(IP1,J)=',DU1(IP1,J) |
1028 |
|
|
endif |
1029 |
|
|
U(I,J,1)=U(I,J,1)-(DU1(I,J)+DU1(IP1,J))*RAPVS(J) 6691. |
1030 |
|
|
V(I,J,1)=V(I,J,1)-(DV1(I,J)+DV1(IP1,J))*RAPVS(J) 6692. |
1031 |
|
|
U(I,J+1,1)=U(I,J+1,1)-(DU1(I,J)+DU1(IP1,J))*RAPVN(J) 6693. |
1032 |
|
|
V(I,J+1,1)=V(I,J+1,1)-(DV1(I,J)+DV1(IP1,J))*RAPVN(J) 6694. |
1033 |
|
|
if(J.eq.JPR.or.J.eq.-12)then |
1034 |
|
|
print *,' J=',J,' after' |
1035 |
|
|
print *,'U(I,J,1)=',U(I,J,1),' V(I,J,1)=',V(I,J,1) |
1036 |
|
|
print *,'U(I,J+1,1)=',U(I,J+1,1),' V(I,J+1,1)=',V(I,J+1,1) |
1037 |
|
|
print *,'DU1(I,J)=',DU1(I,J),' DU1(IP1,J)=',DU1(IP1,J) |
1038 |
|
|
endif |
1039 |
|
|
7700 I=IP1 6695. |
1040 |
|
|
c print *,'U V' |
1041 |
|
|
c do j=1,jm |
1042 |
|
|
c print *,j,U(I,J,1),v(I,J,1) |
1043 |
|
|
c enddo |
1044 |
|
|
C**** 6696. |
1045 |
|
|
C**** DRY CONVECTION ORIGINATING FROM THE FIRST LAYER 6697. |
1046 |
|
|
C**** 6698. |
1047 |
|
|
C**** LOAD U,V INTO UT,VT. UT,VT WILL BE FIXED DURING DRY CONVECTION 6699. |
1048 |
|
|
C**** WHILE U,V WILL BE UPDATED. 6700. |
1049 |
|
|
DO 8050 L=1,LM 6701. |
1050 |
|
|
DO 8050 J=2,JM 6702. |
1051 |
|
|
DO 8050 I=1,IM 6703. |
1052 |
|
|
UT(I,J,L)=U(I,J,L) 6704. |
1053 |
|
|
8050 VT(I,J,L)=V(I,J,L) 6705. |
1054 |
|
|
C**** OUTSIDE LOOPS OVER J AND I 6706. |
1055 |
|
|
DO 8500 J=1,JM 6707. |
1056 |
|
|
POLE=.FALSE. 6708. |
1057 |
|
|
IF(J.EQ.1.OR.J.EQ.JM) POLE=.TRUE. 6709. |
1058 |
|
|
IMAX=IM 6710. |
1059 |
|
|
IF(POLE) IMAX=IM 6711. |
1060 |
|
|
DO 8120 K=1,2 6712. |
1061 |
|
|
RA(K)=RAPVS(J) 6713. |
1062 |
|
|
8120 RA(K+2)=RAPVN(J) 6714. |
1063 |
|
|
IM1=IM 6715. |
1064 |
|
|
DO 8500 I=1,IMAX 6716. |
1065 |
|
|
BLDATA(I,J,4)=1. 6717. |
1066 |
|
|
IF(T(I,J,1)*(1.+Q(I,J,1)*RVX).LE. 6718. |
1067 |
|
|
* T(I,J,2)*(1.+Q(I,J,2)*RVX)) GO TO 8500 6719. |
1068 |
|
|
C**** MIX HEAT AND MOISTURE THROUGHOUT THE BOUNDARY LAYER 6720. |
1069 |
|
|
PKMS=PK(I,J,1)*DSIG(1)+PK(I,J,2)*DSIG(2) 6721. |
1070 |
|
|
THPKMS=T(I,J,1)*(PK(I,J,1)*DSIG(1))+T(I,J,2)*(PK(I,J,2)*DSIG(2)) 6722. |
1071 |
|
|
QMS=Q(I,J,1)*DSIG(1)+Q(I,J,2)*DSIG(2) 6723. |
1072 |
|
|
TVMS=T(I,J,1)*(1.+Q(I,J,1)*RVX)*(PK(I,J,1)*DSIG(1)) 6724. |
1073 |
|
|
* +T(I,J,2)*(1.+Q(I,J,2)*RVX)*(PK(I,J,2)*DSIG(2)) 6725. |
1074 |
|
|
THETA=TVMS/PKMS 6726. |
1075 |
|
|
|
1076 |
|
|
#if ( defined CPL_CHEM ) |
1077 |
|
|
! |
1078 |
|
|
! --- 03/23/95 |
1079 |
|
|
! |
1080 |
|
|
cfc11ms = cfc11(i,j,1)*dsig(1) + cfc11(i,j,2)*dsig(2) |
1081 |
|
|
|
1082 |
|
|
cfc12ms = cfc12(i,j,1)*dsig(1) + cfc12(i,j,2)*dsig(2) |
1083 |
|
|
|
1084 |
|
|
xn2oms = xn2o (i,j,1)*dsig(1) + xn2o (i,j,2)*dsig(2) |
1085 |
|
|
|
1086 |
|
|
o3ms = o3 (i,j,1)*dsig(1) + o3 (i,j,2)*dsig(2) |
1087 |
|
|
|
1088 |
|
|
coms = co (i,j,1)*dsig(1) + co (i,j,2)*dsig(2) |
1089 |
|
|
|
1090 |
|
|
zco2ms = zco2 (i,j,1)*dsig(1) + zco2 (i,j,2)*dsig(2) |
1091 |
|
|
|
1092 |
|
|
xnoms = xno (i,j,1)*dsig(1) + xno (i,j,2)*dsig(2) |
1093 |
|
|
|
1094 |
|
|
xno2ms = xno2 (i,j,1)*dsig(1) + xno2 (i,j,2)*dsig(2) |
1095 |
|
|
|
1096 |
|
|
xn2o5ms = xn2o5(i,j,1)*dsig(1) + xn2o5(i,j,2)*dsig(2) |
1097 |
|
|
|
1098 |
|
|
hno3ms = hno3 (i,j,1)*dsig(1) + hno3 (i,j,2)*dsig(2) |
1099 |
|
|
|
1100 |
|
|
ch4ms = ch4 (i,j,1)*dsig(1) + ch4 (i,j,2)*dsig(2) |
1101 |
|
|
|
1102 |
|
|
ch2oms = ch2o (i,j,1)*dsig(1) + ch2o (i,j,2)*dsig(2) |
1103 |
|
|
|
1104 |
|
|
so2ms = so2 (i,j,1)*dsig(1) + so2 (i,j,2)*dsig(2) |
1105 |
|
|
|
1106 |
|
|
h2so4ms = h2so4(i,j,1)*dsig(1) + h2so4(i,j,2)*dsig(2) |
1107 |
|
|
|
1108 |
|
|
! === if hfc, pfc, and sf6 are included: |
1109 |
|
|
#ifdef INC_3GASES |
1110 |
|
|
! === 032698 |
1111 |
|
|
hfc134ams = hfc134a(i,j,1)*dsig(1) |
1112 |
|
|
& + hfc134a(i,j,2)*dsig(2) |
1113 |
|
|
|
1114 |
|
|
pfcms = pfc(i,j,1)*dsig(1) |
1115 |
|
|
& + pfc(i,j,2)*dsig(2) |
1116 |
|
|
|
1117 |
|
|
sf6ms = sf6(i,j,1)*dsig(1) |
1118 |
|
|
& + sf6(i,j,2)*dsig(2) |
1119 |
|
|
! === |
1120 |
|
|
#endif |
1121 |
|
|
|
1122 |
|
|
bcms = bcarbon (i,j,1)*dsig(1) + bcarbon (i,j,2)*dsig(2) |
1123 |
|
|
ocms = ocarbon (i,j,1)*dsig(1) + ocarbon (i,j,2)*dsig(2) |
1124 |
|
|
|
1125 |
|
|
c 062295 |
1126 |
|
|
c h2o2ms = h2o2 (i,j,1)*dsig(1) + h2o2 (i,j,2)*dsig(2) |
1127 |
|
|
|
1128 |
|
|
! |
1129 |
|
|
#endif |
1130 |
|
|
|
1131 |
|
|
DO 8140 L=3,LM 6727. |
1132 |
|
|
IF(THETA.LT.T(I,J,L)*(1.+Q(I,J,L)*RVX)) GO TO 8160 6728. |
1133 |
|
|
PKMS=PKMS+(PK(I,J,L)*DSIG(L)) 6729. |
1134 |
|
|
THPKMS=THPKMS+T(I,J,L)*(PK(I,J,L)*DSIG(L)) 6730. |
1135 |
|
|
QMS=QMS+Q(I,J,L)*DSIG(L) 6731. |
1136 |
|
|
TVMS=TVMS+T(I,J,L)*(1.+Q(I,J,L)*RVX)*(PK(I,J,L)*DSIG(L)) 6732. |
1137 |
|
|
|
1138 |
|
|
#if ( defined CPL_CHEM ) |
1139 |
|
|
! |
1140 |
|
|
! --- 03/23/95 |
1141 |
|
|
! |
1142 |
|
|
cfc11ms = cfc11ms + cfc11(i,j,l)*dsig(l) |
1143 |
|
|
|
1144 |
|
|
cfc12ms = cfc12ms + cfc12(i,j,l)*dsig(l) |
1145 |
|
|
|
1146 |
|
|
xn2oms = xn2oms + xn2o (i,j,l)*dsig(l) |
1147 |
|
|
|
1148 |
|
|
o3ms = o3ms + o3 (i,j,l)*dsig(l) |
1149 |
|
|
|
1150 |
|
|
coms = coms + co (i,j,l)*dsig(l) |
1151 |
|
|
|
1152 |
|
|
zco2ms = zco2ms + zco2 (i,j,l)*dsig(l) |
1153 |
|
|
|
1154 |
|
|
xnoms = xnoms + xno (i,j,l)*dsig(l) |
1155 |
|
|
|
1156 |
|
|
xno2ms = xno2ms + xno2 (i,j,l)*dsig(l) |
1157 |
|
|
|
1158 |
|
|
xn2o5ms = xn2o5ms + xn2o5(i,j,l)*dsig(l) |
1159 |
|
|
|
1160 |
|
|
hno3ms = hno3ms + hno3 (i,j,l)*dsig(l) |
1161 |
|
|
|
1162 |
|
|
ch4ms = ch4ms + ch4 (i,j,l)*dsig(l) |
1163 |
|
|
|
1164 |
|
|
ch2oms = ch2oms + ch2o (i,j,l)*dsig(l) |
1165 |
|
|
|
1166 |
|
|
so2ms = so2ms + so2 (i,j,l)*dsig(l) |
1167 |
|
|
|
1168 |
|
|
h2so4ms = h2so4ms + h2so4(i,j,l)*dsig(l) |
1169 |
|
|
|
1170 |
|
|
! === if hfc, pfc, and sf6 are included: |
1171 |
|
|
#ifdef INC_3GASES |
1172 |
|
|
! === 032698 |
1173 |
|
|
hfc134ams = hfc134ams |
1174 |
|
|
& + hfc134a(i,j,l)*dsig(l) |
1175 |
|
|
|
1176 |
|
|
pfcms = pfcms |
1177 |
|
|
& + pfc(i,j,l)*dsig(l) |
1178 |
|
|
|
1179 |
|
|
sf6ms = sf6ms |
1180 |
|
|
& + sf6(i,j,l)*dsig(l) |
1181 |
|
|
! === |
1182 |
|
|
#endif |
1183 |
|
|
|
1184 |
|
|
bcms = bcms + bcarbon (i,j,l)*dsig(l) |
1185 |
|
|
ocms = ocms + ocarbon (i,j,l)*dsig(l) |
1186 |
|
|
|
1187 |
|
|
c 062295 |
1188 |
|
|
c h2o2ms = h2o2ms + h2o2 (i,j,l)*dsig(l) |
1189 |
|
|
! |
1190 |
|
|
#endif |
1191 |
|
|
|
1192 |
|
|
8140 THETA=TVMS/PKMS 6733. |
1193 |
|
|
L=LM+1 6734. |
1194 |
|
|
8160 LMAX=L-1 6735. |
1195 |
|
|
RDSIGS=1./(SIGE(1)-SIGE(LMAX+1)) 6736. |
1196 |
|
|
THM=THPKMS/PKMS 6737. |
1197 |
|
|
QMS=QMS*RDSIGS 6738. |
1198 |
|
|
|
1199 |
|
|
#if ( defined CPL_CHEM ) |
1200 |
|
|
! |
1201 |
|
|
! --- 03/23/95 |
1202 |
|
|
! |
1203 |
|
|
cfc11ms = cfc11ms*rdsigs |
1204 |
|
|
|
1205 |
|
|
cfc12ms = cfc12ms*rdsigs |
1206 |
|
|
|
1207 |
|
|
xn2oms = xn2oms *rdsigs |
1208 |
|
|
|
1209 |
|
|
o3ms = o3ms *rdsigs |
1210 |
|
|
|
1211 |
|
|
coms = coms *rdsigs |
1212 |
|
|
|
1213 |
|
|
zco2ms = zco2ms *rdsigs |
1214 |
|
|
|
1215 |
|
|
xnoms = xnoms *rdsigs |
1216 |
|
|
|
1217 |
|
|
xno2ms = xno2ms *rdsigs |
1218 |
|
|
|
1219 |
|
|
xn2o5ms = xn2o5ms*rdsigs |
1220 |
|
|
|
1221 |
|
|
hno3ms = hno3ms *rdsigs |
1222 |
|
|
|
1223 |
|
|
ch4ms = ch4ms *rdsigs |
1224 |
|
|
|
1225 |
|
|
ch2oms = ch2oms *rdsigs |
1226 |
|
|
|
1227 |
|
|
so2ms = so2ms *rdsigs |
1228 |
|
|
|
1229 |
|
|
h2so4ms = h2so4ms*rdsigs |
1230 |
|
|
|
1231 |
|
|
! === if hfc, pfc, and sf6 are included: |
1232 |
|
|
#ifdef INC_3GASES |
1233 |
|
|
! === 032698 |
1234 |
|
|
hfc134ams = hfc134ams*rdsigs |
1235 |
|
|
|
1236 |
|
|
pfcms = pfcms*rdsigs |
1237 |
|
|
|
1238 |
|
|
sf6ms = sf6ms*rdsigs |
1239 |
|
|
! === |
1240 |
|
|
#endif |
1241 |
|
|
|
1242 |
|
|
bcms = bcms*rdsigs |
1243 |
|
|
ocms = ocms*rdsigs |
1244 |
|
|
|
1245 |
|
|
c 062295 |
1246 |
|
|
c h2o2ms = h2o2ms*rdsigs |
1247 |
|
|
c |
1248 |
|
|
! |
1249 |
|
|
#endif |
1250 |
|
|
|
1251 |
|
|
BLDATA(I,J,4)=LMAX 6739. |
1252 |
|
|
DO 8180 L=1,LMAX 6740. |
1253 |
|
|
AJL(J,L,12)=AJL(J,L,12)+(THM-T(I,J,L))*PK(I,J,L)*P(I,J) 6741. |
1254 |
|
|
T(I,J,L)=THM 6742. |
1255 |
|
|
|
1256 |
|
|
#if ( defined CPL_CHEM ) |
1257 |
|
|
! |
1258 |
|
|
! --- 03/23/95 |
1259 |
|
|
! |
1260 |
|
|
cfc11(i,j,l) = cfc11ms |
1261 |
|
|
|
1262 |
|
|
cfc12(i,j,l) = cfc12ms |
1263 |
|
|
|
1264 |
|
|
xn2o(i,j,l) = xn2oms |
1265 |
|
|
|
1266 |
|
|
o3(i,j,l) = o3ms |
1267 |
|
|
|
1268 |
|
|
co(i,j,l) = coms |
1269 |
|
|
|
1270 |
|
|
zco2(i,j,l) = zco2ms |
1271 |
|
|
|
1272 |
|
|
xno(i,j,l) = xnoms |
1273 |
|
|
|
1274 |
|
|
xno2(i,j,l) = xno2ms |
1275 |
|
|
|
1276 |
|
|
xn2o5(i,j,l) = xn2o5ms |
1277 |
|
|
|
1278 |
|
|
hno3(i,j,l) = hno3ms |
1279 |
|
|
|
1280 |
|
|
ch4(i,j,l) = ch4ms |
1281 |
|
|
|
1282 |
|
|
ch2o(i,j,l) = ch2oms |
1283 |
|
|
|
1284 |
|
|
so2(i,j,l) = so2ms |
1285 |
|
|
|
1286 |
|
|
h2so4(i,j,l) = h2so4ms |
1287 |
|
|
|
1288 |
|
|
! === if hfc, pfc, and sf6 are included: |
1289 |
|
|
#ifdef INC_3GASES |
1290 |
|
|
! === 032698 |
1291 |
|
|
hfc134a(i,j,l) = hfc134ams |
1292 |
|
|
|
1293 |
|
|
pfc(i,j,l) = pfcms |
1294 |
|
|
|
1295 |
|
|
sf6(i,j,l) = sf6ms |
1296 |
|
|
! === |
1297 |
|
|
#endif |
1298 |
|
|
|
1299 |
|
|
bcarbon(i,j,l) = bcms |
1300 |
|
|
ocarbon(i,j,l) = ocms |
1301 |
|
|
|
1302 |
|
|
c 062295 |
1303 |
|
|
c h2o2(i,j,l) = h2o2ms |
1304 |
|
|
c |
1305 |
|
|
! |
1306 |
|
|
#endif |
1307 |
|
|
|
1308 |
|
|
8180 Q(I,J,L)=QMS 6743. |
1309 |
|
|
IF(POLE) GO TO 8300 6744. |
1310 |
|
|
C**** MIX MOMENTUM THROUGHOUT THE BOUNDARY LAYER AT NON-POLAR GRID BOXES6745. |
1311 |
|
|
ID(1)=I+(J-1)*IM 6748. |
1312 |
|
|
ID(2)=ID(1)+IM*JM*LM 6749. |
1313 |
|
|
ID(3)=I+J*IM 6752. |
1314 |
|
|
ID(4)=ID(3)+IM*JM*LM 6753. |
1315 |
|
|
if(J.eq.JPR)then |
1316 |
|
|
print *,'ID for J=',j |
1317 |
|
|
print *,(ID(k),k=1,4) |
1318 |
|
|
print *,'RA for J=',j |
1319 |
|
|
print *,(RA(k),k=1,4) |
1320 |
|
|
endif |
1321 |
|
|
DO 8240 K=1,4 6754. |
1322 |
|
|
UMS(K)=0. 6755. |
1323 |
|
|
DO 8220 L=1,LMAX 6756. |
1324 |
|
|
8220 UMS(K)=UMS(K)+UT(ID(K),1,L)*DSIG(L) 6757. |
1325 |
|
|
8240 UMS(K)=UMS(K)*RDSIGS 6758. |
1326 |
|
|
DO 8260 L=1,LMAX 6759. |
1327 |
|
|
AJL(J,L,38)=AJL(J,L,38)+(UMS(1)-UT(I,J,L))*.5* 6760. |
1328 |
|
|
* P(I,J)*RA(1) 6761. |
1329 |
|
|
AJL(J+1,L,38)=AJL(J+1,L,38)+(UMS(3)- 6762. |
1330 |
|
|
* UT(I,J+1,L))*P(I,J)*RA(3)*.5 6763. |
1331 |
|
|
DO 8260 K=1,4 6764. |
1332 |
|
|
if(J.eq.JPR)then |
1333 |
|
|
print *,'L=',L,' K=',K |
1334 |
|
|
print *,'ID(K)=',ID(K),' RA(K)=',RA(K) |
1335 |
|
|
print *,'UMS(K)=',UMS(K),' UT(ID(K),1,L)=',UT(ID(K),1,L) |
1336 |
|
|
endif |
1337 |
|
|
8260 U(ID(K),1,L)=U(ID(K),1,L)+(UMS(K)-UT(ID(K),1,L))*RA(K) 6765. |
1338 |
|
|
GO TO 8400 6766. |
1339 |
|
|
C**** MIX MOMENTUM THROUGHOUT THE BOUNDARY LAYER AT POLAR GRID BOXES 6767. |
1340 |
|
|
8300 JVPO=2 6768. |
1341 |
|
|
IF(J.EQ.JM) JVPO=JM 6769. |
1342 |
|
|
RAPO=2.*RAPVN(1) 6770. |
1343 |
|
|
DO 8360 IPO=1,IM 6771. |
1344 |
|
|
UMSPO=0. 6772. |
1345 |
|
|
VMSPO=0. 6773. |
1346 |
|
|
DO 8320 L=1,LMAX 6774. |
1347 |
|
|
UMSPO=UMSPO+UT(IPO,JVPO,L)*DSIG(L) 6775. |
1348 |
|
|
8320 VMSPO=VMSPO+VT(IPO,JVPO,L)*DSIG(L) 6776. |
1349 |
|
|
UMSPO=UMSPO*RDSIGS 6777. |
1350 |
|
|
VMSPO=VMSPO*RDSIGS 6778. |
1351 |
|
|
DO 8340 L=1,LMAX 6779. |
1352 |
|
|
U(IPO,JVPO,L)=U(IPO,JVPO,L)+(UMSPO-UT(IPO,JVPO,L))*RAPO 6780. |
1353 |
|
|
V(IPO,JVPO,L)=V(IPO,JVPO,L)+(VMSPO-VT(IPO,JVPO,L))*RAPO 6781. |
1354 |
|
|
8340 AJL(JVPO,L,38)=AJL(JVPO,L,38) 6782. |
1355 |
|
|
* +(UMSPO-UT(IPO,JVPO,L))*P(1,J)*RAPO 6783. |
1356 |
|
|
8360 CONTINUE 6784. |
1357 |
|
|
C**** ACCUMULATE BOUNDARY LAYER DIAGNOSTICS 6785. |
1358 |
|
|
8400 IF(MODD6.NE.0) GO TO 8500 6786. |
1359 |
|
|
DO 8420 KR=1,4 6787. |
1360 |
|
|
IF(I.EQ.IJD6(1,KR).AND.J.EQ.IJD6(2,KR)) GO TO 8440 6788. |
1361 |
|
|
8420 CONTINUE 6789. |
1362 |
|
|
GO TO 8500 6790. |
1363 |
|
|
8440 ADAILY(IHOUR,47,KR)=ADAILY(IHOUR,47,KR)+1. 6791. |
1364 |
|
|
ADAILY(IHOUR,48,KR)=ADAILY(IHOUR,48,KR)+LMAX 6792. |
1365 |
|
|
8500 IM1=I 6793. |
1366 |
|
|
do j=1,jm |
1367 |
|
|
I=1 |
1368 |
|
|
if(J.eq.JPR.or.J.eq.-12)then |
1369 |
|
|
print *,' J=',J,' after dry convection' |
1370 |
|
|
print *,'U(I,J,1)=',U(I,J,1),' V(I,J,1)=',V(I,J,1) |
1371 |
|
|
print *,'U(I,J+1,1)=',U(I,J+1,1),' V(I,J+1,1)=',V(I,J+1,1) |
1372 |
|
|
endif |
1373 |
|
|
enddo |
1374 |
|
|
9000 CONTINUE 6794. |
1375 |
|
|
do 9001 J=1,JM |
1376 |
|
|
TSURFD(J)=TSURFD(J)+(BLDATA(1,J,2)-273.16)/24. |
1377 |
|
|
9001 continue |
1378 |
|
|
c write (935) ,ps4clm, |
1379 |
|
|
c & tsl4clm, |
1380 |
|
|
c & qs4clm,ws4clm |
1381 |
|
|
c & ,us4clm,vs4clm |
1382 |
|
|
RETURN 6795. |
1383 |
|
|
990 FORMAT ('0PPBL',3I4,14F8.2) 6818. |
1384 |
|
|
991 FORMAT ('0SURFACE ',4I4,5F10.4,3F11.7) 6819. |
1385 |
|
|
992 FORMAT ('0',I2,10F10.4/23X,4F10.4,10X,2F10.4/ 6820. |
1386 |
|
|
* 33X,3F10.4,10X,2F10.4) 6821. |
1387 |
|
|
993 FORMAT ('0',I2,10F10.4/23X,7F10.4/33X,7F10.4) 6822. |
1388 |
|
|
994 FORMAT ('0',I2,11F10.4) 6823. |
1389 |
|
|
END 6824. |