1 |
|
2 |
#include "ctrparam.h" |
3 |
|
4 |
! ========================================================== |
5 |
! |
6 |
! RADIA.F: THIS SUBROUTINES ADDS THE RADIATION HEATING TO |
7 |
! THE TEMPERATURES |
8 |
! |
9 |
! ---------------------------------------------------------- |
10 |
! |
11 |
! Author of Chemistry Modules: Chien Wang |
12 |
! |
13 |
! ---------------------------------------------------------- |
14 |
! |
15 |
! Revision History: |
16 |
! |
17 |
! When Who What |
18 |
! ---- ---------- ------- |
19 |
! 073100 Chien Wang repack based on CliChem3 & M24x11, |
20 |
! and add cpp. |
21 |
! 081100 Chien/Andrei add missing sulfr call. |
22 |
! |
23 |
! ========================================================== |
24 |
|
25 |
SUBROUTINE RADIA_CHEM |
26 |
C**** 5002. |
27 |
C**** THIS SUBROUTINES ADDS THE RADIATION HEATING TO THE TEMPERATURES 5003. |
28 |
C**** 5004. |
29 |
|
30 |
#include "BD2G04.COM" 5005. |
31 |
#include "chem_para" |
32 |
#include "chem_com" |
33 |
|
34 |
parameter (nghg=5) |
35 |
|
36 |
COMMON U,V,T,P,Q 5006. |
37 |
COMMON/WORK1/CONV(IM0,JM0,LM0),PK(IM0,JM0,LM0),PREC(IM0,JM0), |
38 |
& TPREC(IM0,JM0), 5007. |
39 |
* COSZ1(IO0,JM0),COSZ2(IO0,JM0),COSZA(IO0,JM0), 5008. |
40 |
* TRINCG(IO0,JM0),BTMPW(IO0,JM0),SNFS(IO0,JM0,4),TNFS(IO0,JM0,4), 5009. |
41 |
* TRHRS(IO0,JM0,3),SRHRS(IO0,JM0,3),ALB(IO0,JM0,9) 5010. |
42 |
COMMON/WORK2/CLDSS(IM0,JM0,LM0),CLDMC(IM0,JM0,LM0), 5011. |
43 |
* TOTCLD(36) 5012. |
44 |
DIMENSION TRNFP0(JM0),TRNFP1(JM0),ALBJ(JM0,9) |
45 |
real ODATA2(JM0,2),GDATA2(JM0,14),BDATA2(JM0,2),FDATA2(JM0,2), |
46 |
* RQT2(JM0,3) |
47 |
common/SURRAD/TRSURF(JM0,4),SRSURF(JM0,4) |
48 |
common/FORAERSOL/FORSULF,FORBC,FORVOL |
49 |
logical FORSULF,FORBC,FORVOL |
50 |
C COMMON/WORK4/ IS BEING USED BY THE RADIATION ROUTINES 5013. |
51 |
C 5014. |
52 |
C RADCOM: CONTROL/INPUT PARAMETERS 5015. |
53 |
C 5016. |
54 |
COMMON/RADCOM/VADATA(11,4,3),DGLAT(46),DGLON(72),TMINSR,FULGAS(18)5017. |
55 |
A ,FRACSL,RATQSL,FOGTSL,PTLISO,TLGRAD,TKCICE,FGOLDU(18)5018. |
56 |
B ,FLONO3,FRAYLE,FCLDTR,FCLDSR,FALGAE,FMARCL,FEMTRA(6) 5019. |
57 |
C ,WETTRA,WETSRA,DMOICE,DMLICE,LICETK,NTRCE,FZASRA(6) 5020. |
58 |
D ,ID5(5),ITR(4),IMG(2),ILG(2),LAPGAS,KWVCON,NORMS0,NV 5021. |
59 |
E ,KEEPRH,KEEPAL,ISOSCT,IHGSCT,KFRACC,KGASSR,KAERSR 5022. |
60 |
F ,MARCLD,LAYTOP,LMR,LMRP,JMLAT,IMLON,KFORCE,LASTVC 5023. |
61 |
C 5024. |
62 |
C BASIC RADCOM INPUT DATA 5025. |
63 |
C 5026. |
64 |
G ,PLE(40),HLB(40),TLB(40),TLT(40),TL(40),U0GAS(40,9) 5027. |
65 |
H ,ULGAS(40,9),TRACER(40,4),RTAU(40),QL(40),RHL(40) 5028. |
66 |
I ,POCEAN,PEARTH,POICE,PLICE,AGESN,SNOWE,SNOWOI,SNOWLI 5029. |
67 |
J ,TGO,TGE,TGOI,TGLI,TS,WS,WEARTH,ZOICE,FSPARE(200) 5030. |
68 |
K ,S0,COSZ,PVT(11),BXA(153),SRBXAL(15,2),FRC(5),LUXGAS 5031. |
69 |
L ,JYEARR,JDAYR,JLAT,ILON,MEANAL,KALVIS,ISPARE(25),SGPS5032. |
70 |
C 5033. |
71 |
C BASIC RADCOM OUTPUT DATA 5034. |
72 |
C 5035. |
73 |
M ,TRDFLB(40),TRUFLB(40),TRNFLB(40),TRFCRL(40),TRSLCR 5036. |
74 |
N ,SRDFLB(40),SRUFLB(40),SRNFLB(40),SRFHRL(40),SRSLHR 5037. |
75 |
O ,SRIVIS,SROVIS,PLAVIS,SRINIR,SRONIR,PLANIR,SRXATM(4) 5038. |
76 |
P ,SRDVIS,SRUVIS,ALBVIS,SRDNIR,SRUNIR,ALBNIR,FSRNFG(4) 5039. |
77 |
Q ,SRTVIS,SRRVIS,SRAVIS,SRTNIR,SRRNIR,SRANIR,FTRUFG(4) 5040. |
78 |
R ,TRDFGW,TRUFGW,TRUFTW,BTEMPW,TRDFSL,TRUFSL,DTRUFG(4) 5041. |
79 |
S ,TRSLTS,TRSLTG,TRSLWV,TRSLBS,TTRUFG,LBOTCL,LTOPCL 5042. |
80 |
DIMENSION COE(39) 5043. |
81 |
LOGICAL POLE,DC25,HPRNT,WRCLD,CLDFEED 5044. |
82 |
#if ( defined OCEAN_3D ) |
83 |
#include "AGRID.h" |
84 |
#endif |
85 |
dimension SWNET(jm0,2),SWIN(jm0,2) |
86 |
|
87 |
#if ( defined CLM ) |
88 |
#include "CLM.h" |
89 |
#endif |
90 |
c |
91 |
common/conprn/HPRNT |
92 |
common/COMCLD/READGHG,PCLOUD,WRCLD,NWRCLD,NWRCL,INYEAR,JNDAY |
93 |
&,CFAEROSOL,ALFA,CFBC,cfvolaer |
94 |
COMMON/ADDALB/BVSURFA,XVSURFA,BNSURFA,XNSURFA |
95 |
dimension STAERMN(JM0,12,2000),JDY(12) |
96 |
DATA JDY/31,59,90,120,151,181,212,243,278,304,334,365/ |
97 |
common/cldfdb/coefcl(3),CLDFEED |
98 |
common/aexpc/AEXP,ISTRT1 |
99 |
common/ SNOWALB/FRSNALB |
100 |
dimension CLDSSF(JM0,LM0),CLDMCF(JM0,LM0) |
101 |
&,BSO4LAND(JM0),BSO4OCEAN(JM0),BSO4TOTAL(JM0) |
102 |
dimension DSWSRF(jm0),DLWSRF(jm0),DSWVIS(jm0),DSWNIR(jm0) |
103 |
integer PCLOUD |
104 |
! common/TSUR/TSURFC(JM0,0:13),TSURFT(JM0),TSURFD(JM0),DTSURF(JM0) |
105 |
! *,cfcld(JM0,3) |
106 |
#include "TSRF.COM" |
107 |
CHARACTER*4 JMNTHF,JMLAST |
108 |
DATA JMLAST /'LAST'/ |
109 |
DATA TF/273.16/,TCIR/258.16/,STBO/.567257E-7/,IFIRST/1/,JDLAST/-9/5045. |
110 |
DATA IRFIRST /1/ |
111 |
C **** CLEAR SKY |
112 |
dimension SRHRCL(JM0),TRHRCL(JM0),ALBCL(JM0),SNP1CL(JM0), |
113 |
*SNP0CL(JM0),TRINCL(JM0),TRP0CL(JM0),TRP1CL(JM0) |
114 |
common/clrsk/CLEAR(JM0),NCLR(JM0),AJCLR(JM0,12),BJCLR(JM0,12), |
115 |
* CJCLR(JM0,12) |
116 |
integer CLEAR |
117 |
C AJCLR |
118 |
C 1 SW INC AT P0 RD (AJ(1)) |
119 |
C 2 SW ABS BELOW P0 RD (AJ(2)) |
120 |
C 3 SW ABS BELOW P1 RD (AJ(3)) |
121 |
C 4 SW ABS AT Z0 RD (AJ(6)) |
122 |
C 5 SW INC AT Z0 RD (AJ(5)) |
123 |
C 6 LW INC AT Z0 RD (AJ(67)) |
124 |
C 7 NET LW AT Z0 SF (AJ(9)) |
125 |
C 8 NET LW AT P0 RD (AJ(7)) |
126 |
C 9 NET LW AT P1 RD (AJ(8)) |
127 |
C 10 NET RAD AT P0 DG (AJ(10)) |
128 |
C 11 NET RAD AT P1 DG (AJ(11)) |
129 |
C 12 NET RAD AT Z0 DG (AJ(12)) |
130 |
C **** CLEAR SKY |
131 |
C**** 5046. |
132 |
C**** FDATA 2 LAND COVERAGE (1) 5047. |
133 |
C**** 3 RATIO OF LAND ICE COVERAGE TO LAND COVERAGE (1) 5048. |
134 |
C**** 5049. |
135 |
C**** ODATA 1 OCEAN TEMPERATURE (C) 5050. |
136 |
C**** 2 RATIO OF OCEAN ICE COVERAGE TO WATER COVERAGE (1) 5051. |
137 |
C**** 5052. |
138 |
C**** GDATA 1 OCEAN ICE SNOW AMOUNT (KG/M**2) 5053. |
139 |
C**** 2 EARTH SNOW AMOUNT (KG/M**2) 5054. |
140 |
C**** 3 OCEAN ICE TEMPERATURE OF FIRST LAYER (C) 5055. |
141 |
C**** 4 EARTH TEMPERATURE OF FIRST LAYER (C) 5056. |
142 |
C**** 5 EARTH WATER OF FIRST LAYER (KG/M**2) 5057. |
143 |
C**** 6 EARTH ICE OF FIRST LAYER (KG/M**2) 5058. |
144 |
C**** 11 AGE OF SNOW (DAYS) 5059. |
145 |
C**** 12 LAND ICE SNOW AMOUNT (KG/M**2) 5060. |
146 |
C**** 13 LAND ICE TEMPERATURE OF FIRST LAYER (C) 5061. |
147 |
C**** 5062. |
148 |
C**** BLDATA 1 COMPOSITE SURFACE WIND MAGNITUDE (M/S) 5063. |
149 |
C**** 2 COMPOSITE SURFACE AIR TEMPERATURE (K) 5064. |
150 |
C**** 5 FREE 5065. |
151 |
C**** 5066. |
152 |
C**** VDATA 1-8 EARTH RATIOS FOR THE 8 VEGETATION TYPES (1) 5067. |
153 |
C**** 9 WATER FIELD CAPACITY OF FIRST LAYER (KG/M**2) 5068. |
154 |
C**** 5069. |
155 |
IF(MODRD.EQ.0) IDACC(2)=IDACC(2)+1 5070. |
156 |
IF (IFIRST.NE.1) GO TO 50 5071. |
157 |
BETA=0.29 |
158 |
JDAYR=JNDAY |
159 |
JYEARR=INYEAR |
160 |
nreadcld=0 |
161 |
nrbyyr=24*365/5 |
162 |
nrcldmax=20*nrbyyr |
163 |
c print *,' CLOUDS for ',nrcldmax/nrbyyr,' years' |
164 |
KTREND=-CO2 |
165 |
JDAY00=-1 |
166 |
print *,' Radiation for Climate-chemistry model' |
167 |
print *,' READGHG=',READGHG |
168 |
print *,' CFAEROSOL=',CFAEROSOL |
169 |
print *,' Aerosol land/ocean distribution from HC data' |
170 |
print *,' separate caclulations for land and ocean' |
171 |
if(CFBC.gt.0.0)then |
172 |
print *,'With black carbon forcing CFBC=',CFBC |
173 |
else |
174 |
print *,'Without black carbon forcing CFBC=',CFBC |
175 |
endif |
176 |
RVOL=0.012 |
177 |
#if ( defined VOL_AER ) |
178 |
print *,'With volcanic forcing cfvolaer=',cfvolaer |
179 |
#endif |
180 |
if(FORSULF) then |
181 |
print *,'SULFATE AEROSOL FORCING IS CALCULATED' |
182 |
endif |
183 |
if(FORBC) then |
184 |
print *,'BC AEROSOL FORCING IS CALCULATED' |
185 |
endif |
186 |
if(FORVOL) then |
187 |
print *,'VOL AEROSOL FORCING IS CALCULATED' |
188 |
endif |
189 |
if(CLDFEED)then |
190 |
print *,' for low and middle clouds',coefcl(1) |
191 |
print *,' for top clouds',coefcl(2) |
192 |
print *,' for MC clouds',coefcl(3) |
193 |
endif |
194 |
DC25=.TRUE. |
195 |
c DC25=.FALSE. |
196 |
if(DC25)then |
197 |
print *,' with DC' |
198 |
else |
199 |
print *,' without DC' |
200 |
print *,' subroutine COSZR' |
201 |
end if |
202 |
if(abs(PCLOUD-3.).gt.1.5.and..NOT.WRCLD)IFIRST=0 5072. |
203 |
LMP1=LM+1 5072.1 |
204 |
DTCNDS=NCNDS*DT 5073. |
205 |
C**** SET THE CONTROL PARAMETERS FOR THE RADIATION 5074. |
206 |
JMLAT=JM 5074.1 |
207 |
! if(JM.ne.24) then |
208 |
DO J=1,JMLAT |
209 |
DGLAT(J)=acos(COSP(J))*360./TWOPI |
210 |
if(J.le.JMLAT/2)DGLAT(J)=-DGLAT(J) |
211 |
END DO |
212 |
! endif |
213 |
c print *,' DGLAT' |
214 |
c print '(13f7.3)',DGLAT |
215 |
IMLON=IO 5074.2 |
216 |
LMR=LM+3 5075. |
217 |
COEX=.01*GRAV*KAPA/RGAS 5076. |
218 |
PSFMPT=PSF-PTOP 5077. |
219 |
DO 30 L=1,LM 5078. |
220 |
COE(L)=DTCNDS*COEX/DSIG(L) 5079. |
221 |
30 PLE(L)=SIGE(L)*(PSF-PTOP)+PTOP 5080. |
222 |
PLE(LMP1)=PTOP 5081. |
223 |
PLE(LM+2)=.5*PTOP 5082. |
224 |
PLE(LMR)=.2*PTOP 5083. |
225 |
PLE(LMR+1)=1.E-5 5084. |
226 |
DO 40 LR=LMP1,LMR 5085. |
227 |
COE(LR)=DT*NRAD*COEX/(PLE(LR)-PLE(LR+1)) 5086. |
228 |
QL(LR)=.3E-5 5087. |
229 |
40 RTAU(LR)=0. 5088. |
230 |
DPMICE=10. 5089. |
231 |
C S0X=1. 5089.1 |
232 |
#if ( defined VOL_AER ) |
233 |
call read_staer (NYVADAT,STAERMN) |
234 |
#else |
235 |
FVOL=0.0 |
236 |
#endif |
237 |
CALL RADIA0 (IO,JM,CO2,READGHG) 5090. |
238 |
INCHM=NRAD/NDYN 5091. |
239 |
C**** CLOUD LAYER INDICES USED FOR DIAGNOSTICS 5092. |
240 |
DO 43 L=1,LM 5093. |
241 |
LLOW=L 5094. |
242 |
IF (.5*(PLE(L+1)+PLE(L+2)).LT.786.) GO TO 44 5095. |
243 |
43 CONTINUE 5096. |
244 |
44 LMID1=LLOW+1 5097. |
245 |
DO 45 L=LMID1,LM 5098. |
246 |
LMID=L 5099. |
247 |
IF (.5*(PLE(L+1)+PLE(L+2)).LT.430.) GO TO 46 5100. |
248 |
45 CONTINUE 5101. |
249 |
46 LHI1=LMID+1 5102. |
250 |
LHI=LM 5103. |
251 |
IF (LHI1.GT.LHI) LHI=LHI1 5104. |
252 |
WRITE (6,47) LLOW,LMID1,LMID,LHI1,LHI 5105. |
253 |
47 FORMAT (' LOW CLOUDS IN LAYERS 1-',I2,' MID LEVEL CLOUDS IN',5106. |
254 |
* ' LAYERS',I3,'-',I2,' HIGH CLOUDS IN LAYERS',I3,'-',I2) 5107. |
255 |
C**** NO RADIATION AVERAGING IJRA=1 JRA=1 IRA=1 5108. |
256 |
C**** RADIATION AVERAGING IN I 2 1 2 5109. |
257 |
C**** RADIATION AVERAGING IN I AND J 4 2 2 5110. |
258 |
JRA=(IJRA+2)/3 5111. |
259 |
IRA=IJRA/JRA 5112. |
260 |
50 JALTER=MOD(NSTEP,NRAD*JRA)/NRAD 5113. |
261 |
JDAYR=JDAY |
262 |
JYEARR=JYEAR |
263 |
IALTER=MOD(NSTEP,NRAD*IJRA)/(NRAD*JRA) 5114. |
264 |
S0=S0X*1367./RSDIST 5115. |
265 |
C**** CALCULATE AVERAGE COSINE OF ZENITH ANGLE FOR CURRENT COMP3 STEP 5116. |
266 |
C**** AND RADIATION PERIOD 5117. |
267 |
ROT1=TWOPI*TOFDAY/24. 5118. |
268 |
if(DC25)then |
269 |
ROT2=ROT1+TWOPI*DTCNDS/SDAY 5119. |
270 |
CALL COSZT (IO,JM,SIND,COSD,ROT1,ROT2,COSZ1) 5120. |
271 |
else |
272 |
ROT2=ROT1+TWOPI |
273 |
CALL COSZR (IO,JM,SIND,COSD,ROT1,ROT2,COSZ1) |
274 |
end if |
275 |
if(HPRNT)then |
276 |
print *,' radia TAU=',TAU |
277 |
print *,' CLDSS' |
278 |
print *,(CLDSS(1,7,L),L=1,LM) |
279 |
print *,' CLDMC' |
280 |
print *,(CLDMC(1,7,L),L=1,LM) |
281 |
endif |
282 |
cprint *,' form radia TAU=',TAU,'MODRD=',MODRD |
283 |
C |
284 |
IF(MODRD.NE.0) GO TO 840 5121. |
285 |
C |
286 |
ROT2=ROT1+TWOPI*NRAD*DT/SDAY 5122. |
287 |
CALL COSZS (IO,JM,SIND,COSD,ROT1,ROT2,COSZ2,COSZA) 5123. |
288 |
C**** 5124. |
289 |
C**** COMPUTE EARTH ALBEDOS AND OTHER PARAMETERS FOR BEGINNING OF DAY 5125. |
290 |
|
291 |
TNOW=JYEAR+(JDAY-.5)/365. 5127.1 |
292 |
if(READGHG.eq.1) TNOW=INYEAR+(JDAY-.5)/365. |
293 |
KWRITE=0 |
294 |
if(JMONTH.ne.JMLAST) then |
295 |
KWRITE=1 |
296 |
if(READGHG.eq.2) call tgases(CO2,JMONTH) |
297 |
if(READGHG.eq.1) call rtgases(CO2,JMONTH) |
298 |
#if ( defined VOL_AER ) |
299 |
do MNAER=1,12 |
300 |
if (JDAY.le.JDY(MNAER)) go to 458 |
301 |
enddo |
302 |
458 continue |
303 |
c print *,' MNAER=', MNAER,' MONTH=',JMONTH |
304 |
#endif |
305 |
endif |
306 |
JMLAST=JMONTH |
307 |
c print *,'FROM radia, JDAY=',JDAY,' JDLAST=',JDLAST |
308 |
c print *,' KTREND=',KTREND |
309 |
IF (JDAY.NE.JDLAST.AND.KTREND.GT.0) |
310 |
& CALL FORGET(TNOW,KTREND,KWRITE) |
311 |
IF (JDAY.NE.JDLAST)then |
312 |
|
313 |
#ifdef PREDICTED_GASES |
314 |
call chemglobal(P) |
315 |
#endif |
316 |
|
317 |
call sulfr(BSO4LAND,BSO4OCEAN,TNOW) |
318 |
c call sulfr_2050(BSO4LAND,BSO4OCEAN,TNOW) |
319 |
do j=1,jm |
320 |
FLAND=FDATA(1,J,2) |
321 |
BSO4TOTAL(j)=BSO4LAND(j)*FLAND+BSO4OCEAN(j)*(1.-FLAND) |
322 |
! |
323 |
c for sulfate.4x5.1986.new.dat |
324 |
c BSO4TOTAL(j)=BSO4LAND(j)+BSO4OCEAN(j) |
325 |
c if(FLAND.gt.0.0)BSO4LAND(j)=BSO4LAND(j)/FLAND |
326 |
c if(FLAND.lt.1.0)BSO4OCEAN(j)=BSO4OCEAN(j)/(1.-FLAND) |
327 |
c for sulfate.4x5.1986.new.dat |
328 |
! |
329 |
enddo |
330 |
|
331 |
CALL RCOMPT |
332 |
if(CLDFEED)then |
333 |
c 112796: |
334 |
c do 925 j=1,JM |
335 |
c do 925 k=1,3 |
336 |
c cfcld(j,k)=1.+coefcl(k)*DTSURF(J) |
337 |
c 925 continue |
338 |
DTSURFAV=0. |
339 |
do j=1,jm |
340 |
DTSURFAV=DTSURFAV+DT2MGL(J)*DXYP(j) |
341 |
end do !j |
342 |
DTSURFAV=DTSURFAV/AREAG |
343 |
do j=1,jm |
344 |
do k=1,3 |
345 |
cfcld(j,k)=1.+coefcl(k)*DTSURFAV |
346 |
end do ! k |
347 |
end do ! j |
348 |
endif |
349 |
ENDIF |
350 |
JDLAST=JDAY 5129. |
351 |
IHOUR=1.5+TOFDAY 5130. |
352 |
CB READING OF CLOUD |
353 |
if(abs(PCLOUD-3.).lt.1.5)then |
354 |
910 continue |
355 |
if(nreadcld.eq.nrcldmax)go to 900 |
356 |
read(585,END=900)TFDAYF,JDATEF,JMNTHF,CLDSSF,CLDMCF,IRAND |
357 |
nreadcld=nreadcld+1 |
358 |
if(IFIRST.eq.1)then |
359 |
print *,' radia.f PCLOUD=',PCLOUD |
360 |
if(PCLOUD.eq.2)print *,' FIXED MC and SS CLOUDS' |
361 |
if(PCLOUD.eq.4)print *,' FIXED MC CLOUDS ONLY' |
362 |
if(PCLOUD.eq.3)print *,' FIXED SS CLOUDS ONLY' |
363 |
print *,TOFDAY,JDATE,JMONTH |
364 |
print *,TFDAYF,JDATEF,JMNTHF |
365 |
print *,' DTCNDS=',DTCNDS/3600. |
366 |
print *,' DT*NRAD=',DT*NRAD/3600. |
367 |
if(.not.WRCLD)IFIRST=0 |
368 |
endif |
369 |
if(abs(TOFDAY-TFDAYF).gt.1.e-3.or.JDATE.ne.JDATEF.or. |
370 |
* JMONTH.ne.JMNTHF)then |
371 |
print *,' RADIA, disagrement in clouds' |
372 |
print *,TOFDAY,JDATE,JMONTH |
373 |
print *,TFDAYF,JDATEF,JMNTHF |
374 |
stop |
375 |
endif |
376 |
go to 920 |
377 |
900 rewind 585 |
378 |
nreadcld=0 |
379 |
print *,' END OF file 585' |
380 |
print *,JYEAR |
381 |
print *,TOFDAY,JDATE,JMONTH |
382 |
print *,' REWIND 585' |
383 |
go to 910 |
384 |
920 continue |
385 |
CALL RINIT (IRAND) |
386 |
do 930 k=1,LM |
387 |
do 930 j=1,JM |
388 |
if(PCLOUD.ne.4)CLDSS(1,j,k)=CLDSSF(j,k) |
389 |
if(PCLOUD.ne.3)CLDMC(1,j,k)=CLDMCF(j,k) |
390 |
930 continue |
391 |
endif |
392 |
CE END OF READING OF CLOUD |
393 |
if(WRCLD)then |
394 |
if(NWRCLD.eq.1)then |
395 |
CALL RFINAL(IRAND) |
396 |
if(IFIRST.eq.1)print *,' SHORT CLOUDS RECORD' |
397 |
write(81)TOFDAY,JDATE,JMONTH,CLDSS,CLDMC,IRAND |
398 |
elseif(NWRCLD.eq.2)then |
399 |
if(IFIRST.eq.1)print *,' LONG CLOUDS RECORD' |
400 |
do 1150 k=1,14 |
401 |
do 1150 j=1,JM0 |
402 |
if(k.le.2)then |
403 |
ODATA2(j,k)=ODATA(1,j,k) |
404 |
BDATA2(j,k)=BLDATA(1,j,k) |
405 |
FDATA2(j,k)=FDATA(1,j,k+1) |
406 |
endif |
407 |
if(k.le.3)RQT2(j,k)=RQT(1,j,k) |
408 |
GDATA2(j,k)=GDATA(1,j,k) |
409 |
1150 continue |
410 |
CALL RFINAL(IRAND) |
411 |
write(81)TOFDAY,JDATE,JMONTH,CLDSS,CLDMC,IRAND, |
412 |
* JDAY,JYEAR,T,Q,P, |
413 |
* ODATA2,BDATA2,FDATA2,GDATA2,RQT2 |
414 |
else |
415 |
print *,' NWRCLD=',NWRCLD |
416 |
stop |
417 |
endif |
418 |
IFIRST=0 |
419 |
endif |
420 |
if(CLDFEED)then |
421 |
if (KWRITE.eq.1)then |
422 |
print *,'cfcld' |
423 |
print 9456,cfcld |
424 |
print *,' DTSURF' |
425 |
print 9456,DT2MGL |
426 |
print *,' DTSURFAV=',DTSURFAV |
427 |
9456 format(12f6.2) |
428 |
endif |
429 |
do k=1,LM |
430 |
if(k.le.5)then |
431 |
k1=1 |
432 |
else |
433 |
k1=2 |
434 |
endif |
435 |
do j=1,JM |
436 |
CLDSS(1,j,k)=cfcld(j,k1)*CLDSS(1,j,k) |
437 |
CLDMC(1,j,k)=cfcld(j,3)*CLDMC(1,j,k) |
438 |
enddo |
439 |
enddo |
440 |
endif |
441 |
|
442 |
#if ( defined CPL_CHEM ) |
443 |
! |
444 |
! --- Chemistry Model Patch 021199 |
445 |
! retrive cloud coverages |
446 |
! for meta model and others |
447 |
! |
448 |
do kchem=1,nlev |
449 |
do jchem=1,nlat |
450 |
do ichem=1,nlon |
451 |
chem_cldss(ichem,jchem,kchem) |
452 |
& = cldss(ichem,jchem,kchem) |
453 |
chem_cldmc(ichem,jchem,kchem) |
454 |
& = cldmc(ichem,jchem,kchem) |
455 |
end do |
456 |
end do |
457 |
end do |
458 |
! |
459 |
#endif |
460 |
|
461 |
C**** 5131. |
462 |
C**** MAIN J LOOP 5132. |
463 |
C**** 5133. |
464 |
DO 600 J=1,JM 5134. |
465 |
IF ((J-1)*(JM-J).NE.0) GO TO 140 5135. |
466 |
C**** CONDITIONS AT THE POLES 5136. |
467 |
POLE=.TRUE. 5137. |
468 |
MODRJ=0 5138. |
469 |
IMAX=1 5139. |
470 |
GO TO 160 5140. |
471 |
C**** CONDITIONS AT NON-POLAR POINTS 5141. |
472 |
140 POLE=.FALSE. 5142. |
473 |
MODRJ=MOD(J+JALTER,JRA) 5143. |
474 |
IMAX=IM 5144. |
475 |
160 XFRADJ=.2+1.2*COSP(J)*COSP(J) 5145. |
476 |
#if ( defined VOL_AER ) |
477 |
c RVOL=0.012 |
478 |
JYEARAER=min(JYEAR-1849,NYVADAT) |
479 |
FVOL=cfvolaer*STAERMN(J,MNAER,JYEARAER) |
480 |
FGOLDU(1)=(RVOL+FVOL)/RVOL |
481 |
if (j.eq.124)then |
482 |
print *,'From radia' |
483 |
print *,MNAER,JYEAR,JYEAR-1849 |
484 |
print *,'RVOL=',RVOL,' FVOL=',FVOL |
485 |
endif |
486 |
#else |
487 |
FGOLDU(1)=(RVOL+FVOL)/RVOL |
488 |
#endif |
489 |
|
490 |
JLAT=J 5145.1 |
491 |
IF(MODRJ.EQ.0) CALL RCOMPJ 5146. |
492 |
SWIN(j,1)=0.0 |
493 |
SWNET(j,1)=0.0 |
494 |
SWIN(j,2)=0.0 |
495 |
SWNET(j,2)=0.0 |
496 |
C**** 5147. |
497 |
C**** MAIN I LOOP 5148. |
498 |
C**** 5149. |
499 |
IM1=IM 5150. |
500 |
DO 500 I=1,IMAX 5151. |
501 |
MODRIJ=MODRJ+MOD(I+IALTER,IRA) 5152. |
502 |
IF(POLE) MODRIJ=0 5153. |
503 |
JR=J |
504 |
C**** DETERMINE FRACTIONS FOR SURFACE TYPES AND COLUMN PRESSURE 5155. |
505 |
PLAND=FDATA(I,J,2) 5156. |
506 |
PWATER=1.-PLAND |
507 |
POICE=ODATA(I,J,2)*(1.-PLAND) 5157. |
508 |
POCEAN=(1.-PLAND)-POICE 5158. |
509 |
if(POCEAN.LE.1.E-5)then |
510 |
POCEAN=0. |
511 |
POICE=PWATER |
512 |
endif |
513 |
PLICE=FDATA(I,J,3)*PLAND 5159. |
514 |
PEARTH=PLAND-PLICE 5160. |
515 |
SP=P(I,J) 5161. |
516 |
C**** 5162. |
517 |
C**** DETERMINE CLOUDS (AND THEIR OPTICAL DEPTHS) SEEN BY RADIATION 5163. |
518 |
C**** 5164. |
519 |
X=999999. 5164.1 |
520 |
c RANDSS=RANDU(X) 5165. |
521 |
c RANDMC=RANDU(X) 5166. |
522 |
CALL RANDUU(RANDSS,X) |
523 |
CALL RANDUU(RANDMC,X) |
524 |
C |
525 |
CSS=0. 5167. |
526 |
CMC=0. 5168. |
527 |
DEPTH=0. 5169. |
528 |
LTOP=0 5169.1 |
529 |
DO 210 L=1,LM 5170. |
530 |
RTAU(L)=0. 5171. |
531 |
210 TOTCLD(L)=0. 5172. |
532 |
DO 240 L=1,LM 5173. |
533 |
IF(CLDSS(I,J,L).LT.RANDSS) GO TO 220 5174. |
534 |
RTAUSS=.013333*(PTOP-100.+SIG(L)*SP) 5175. |
535 |
IF(RTAUSS.LT.0.) RTAUSS=0. 5176. |
536 |
IF (T(I,J,L)*PK(I,J,L).LT.TCIR) RTAUSS=.3333333 5177. |
537 |
RTAU(L)=RTAUSS 5178. |
538 |
CSS=1. 5179. |
539 |
AJL(J,L,28)=AJL(J,L,28)+CSS 5180. |
540 |
TOTCLD(L)=1. 5181. |
541 |
LTOP=L 5181.1 |
542 |
220 IF(CLDMC(I,J,L).LE.RANDMC) GO TO 240 5182. |
543 |
RTAUMC=DSIG(L)*SP*.08 5183. |
544 |
IF(RTAUMC.GT.RTAU(L)) RTAU(L)=RTAUMC 5184. |
545 |
CMC=1. 5185. |
546 |
AJL(J,L,29)=AJL(J,L,29)+CMC 5186. |
547 |
TOTCLD(L)=1. 5187. |
548 |
LTOP=L 5187.1 |
549 |
DEPTH=DEPTH+SP*DSIG(L) 5188. |
550 |
240 AJL(J,L,19)=AJL(J,L,19)+TOTCLD(L) 5189. |
551 |
AJ(J,57)=AJ(J,57)+CSS*POCEAN 5190. |
552 |
BJ(J,57)=BJ(J,57)+CSS*PLAND 5191. |
553 |
CJ(J,57)=CJ(J,57)+CSS*POICE 5192. |
554 |
DJ(JR,57)=DJ(JR,57)+CSS*DXYP(J) 5193. |
555 |
AJ(J,58)=AJ(J,58)+CMC*POCEAN 5194. |
556 |
BJ(J,58)=BJ(J,58)+CMC*PLAND 5195. |
557 |
CJ(J,58)=CJ(J,58)+CMC*POICE 5196. |
558 |
DJ(JR,58)=DJ(JR,58)+CMC*DXYP(J) 5197. |
559 |
AIJ(I,J,17)=AIJ(I,J,17)+CMC 5198. |
560 |
AJ(J,80)=AJ(J,80)+DEPTH*POCEAN 5199. |
561 |
BJ(J,80)=BJ(J,80)+DEPTH*PLAND 5200. |
562 |
CJ(J,80)=CJ(J,80)+DEPTH*POICE 5201. |
563 |
DJ(JR,80)=DJ(JR,80)+DEPTH*DXYP(J) 5202. |
564 |
CLDCV=CMC+CSS-CMC*CSS 5203. |
565 |
AJ(J,59)=AJ(J,59)+CLDCV*POCEAN 5204. |
566 |
BJ(J,59)=BJ(J,59)+CLDCV*PLAND 5205. |
567 |
CJ(J,59)=CJ(J,59)+CLDCV*POICE 5206. |
568 |
DJ(JR,59)=DJ(JR,59)+CLDCV*DXYP(J) 5207. |
569 |
AIJ(I,J,19)=AIJ(I,J,19)+CLDCV 5208. |
570 |
DO 250 L=1,LLOW 5209. |
571 |
IF (TOTCLD(L).NE.1.) GO TO 250 5210. |
572 |
AIJ(I,J,41)=AIJ(I,J,41)+1. 5211. |
573 |
GO TO 255 5212. |
574 |
250 CONTINUE 5213. |
575 |
255 DO 260 L=LMID1,LMID 5214. |
576 |
IF (TOTCLD(L).NE.1.) GO TO 260 5215. |
577 |
AIJ(I,J,42)=AIJ(I,J,42)+1. 5216. |
578 |
GO TO 265 5217. |
579 |
260 CONTINUE 5218. |
580 |
265 DO 270 L=LHI1,LHI 5219. |
581 |
IF (TOTCLD(L).NE.1.) GO TO 270 5220. |
582 |
AIJ(I,J,43)=AIJ(I,J,43)+1. 5221. |
583 |
GO TO 275 5222. |
584 |
270 CONTINUE 5223. |
585 |
275 DO 280 LX=1,LM 5224. |
586 |
L=1+LM-LX 5225. |
587 |
IF (TOTCLD(L).NE.1.) GO TO 280 5226. |
588 |
AIJ(I,J,18)=AIJ(I,J,18)+SIGE(L+1)*SP+PTOP 5227. |
589 |
GO TO 285 5228. |
590 |
280 CONTINUE 5229. |
591 |
285 DO 290 KR=1,4 5230. |
592 |
IF(I.EQ.IJD6(1,KR).AND.J.EQ.IJD6(2,KR)) GO TO 292 5231. |
593 |
290 CONTINUE 5232. |
594 |
GO TO 300 5233. |
595 |
292 IH=IHOUR 5234. |
596 |
DO 294 INCH=1,INCHM 5235. |
597 |
IF(IH.GT.24) IH=IH-24 5236. |
598 |
ADAILY(IH,21,KR)=ADAILY(IH,21,KR)+TOTCLD(6) 5237. |
599 |
ADAILY(IH,22,KR)=ADAILY(IH,22,KR)+TOTCLD(5) 5238. |
600 |
ADAILY(IH,23,KR)=ADAILY(IH,23,KR)+TOTCLD(4) 5239. |
601 |
ADAILY(IH,24,KR)=ADAILY(IH,24,KR)+TOTCLD(3) 5240. |
602 |
ADAILY(IH,25,KR)=ADAILY(IH,25,KR)+TOTCLD(2) 5241. |
603 |
ADAILY(IH,26,KR)=ADAILY(IH,26,KR)+TOTCLD(1) 5242. |
604 |
ADAILY(IH,27,KR)=ADAILY(IH,27,KR)+CLDCV 5243. |
605 |
294 IH=IH+1 5244. |
606 |
C**** 5245. |
607 |
300 IF(MODRIJ.NE.0) GO TO 500 5246. |
608 |
BVSURFA=0.0 |
609 |
XVSURFA=0.0 |
610 |
BNSURFA=0.0 |
611 |
XNSURFA=0.0 |
612 |
C**** clear sky condinion |
613 |
if(CMC.le.0.and.CSS.le.0)then |
614 |
CLEAR(J)=1 |
615 |
else |
616 |
CLEAR(J)=0 |
617 |
endif |
618 |
! if(STRARFOR.or.CO2FOR.or.S0FOR.or.FORBC)then |
619 |
! CLEAR(J)=0 |
620 |
! endif |
621 |
C**** 5247. |
622 |
C**** SET UP VERTICAL ARRAYS OMITTING THE I AND J INDICES 5248. |
623 |
C**** 5249. |
624 |
C**** EVEN PRESSURES 5250. |
625 |
DO 340 L=1,LM 5251. |
626 |
PLE(L)=SIGE(L)*SP+PTOP 5252. |
627 |
C**** TEMPERATURES 5253. |
628 |
TL(L)=T(I,J,L)*PK(I,J,L) 5254. |
629 |
C**** MOISTURE VARIABLES 5255. |
630 |
QL(L)=Q(I,J,L) 5256. |
631 |
340 CONTINUE 5257. |
632 |
C**** 5258. |
633 |
C**** RADIATION, SOLAR AND THERMAL 5259. |
634 |
C**** 5260. |
635 |
DO 420 K=1,3 5261. |
636 |
420 TL(LM+K)=RQT(I,J,K) 5262. |
637 |
COSZ=COSZA(I,J) 5263. |
638 |
TGO=ODATA(I,J,1)+TF 5264. |
639 |
TGOI=GDATA(I,J,3)+TF 5265. |
640 |
TGLI=GDATA(I,J,13)+TF 5266. |
641 |
TGE=GDATA(I,J,4)+TF 5267. |
642 |
TS=BLDATA(I,J,2) 5268. |
643 |
SNOWOI=GDATA(I,J,1) 5269. |
644 |
SNOWLI=GDATA(I,J,12) 5270. |
645 |
SNOWE=GDATA(I,J,2) 5271. |
646 |
AGESN=GDATA(I,J,11) 5272. |
647 |
WEARTH=(GDATA(I,J,5)+GDATA(I,J,6))/(VDATA(I,J,9)+1.E-20) 5273. |
648 |
DO 430 K=1,8 5274. |
649 |
430 PVT(K)=VDATA(I,J,K) 5275. |
650 |
WS=BLDATA(I,J,1) 5276. |
651 |
do 439 L=1,LM+1 |
652 |
SRHR(I,J,L)=0. |
653 |
TRHR(I,J,L)=0. |
654 |
if(L.le.4)then |
655 |
SNFS(I,J,L)=0. |
656 |
TNFS(I,J,L)=0. |
657 |
if(L.le.3)then |
658 |
SRHRS(I,J,L)=0. |
659 |
TRHRS(I,J,L)=0. |
660 |
endif |
661 |
endif |
662 |
439 continue |
663 |
|
664 |
#if ( defined CPL_CHEM ) |
665 |
! |
666 |
! --- Chemistry Model Patch 020996 |
667 |
! |
668 |
do L=1,LM |
669 |
solarflux(i,j,L) = 0.0 |
670 |
enddo |
671 |
! |
672 |
#endif |
673 |
|
674 |
TRNFP0(J)=0. |
675 |
TRNFP1(J)=0. |
676 |
TRINCG(I,J)=0. |
677 |
BTMPW(I,J)=0. |
678 |
SRDAN=0. |
679 |
SRNAN=0. |
680 |
do 449 K=1,9 |
681 |
ALB(I,J,K)=0. |
682 |
ALBJ(J,K)=0. |
683 |
449 continue |
684 |
do 499 ii=1,3 |
685 |
COSZ=COSZA(I,J) |
686 |
PLAND=FDATA(I,J,2) |
687 |
PWATER=1.-PLAND |
688 |
POICE=ODATA(I,J,2)*(1.-PLAND) |
689 |
POCEAN=(1.-PLAND)-POICE |
690 |
if(POCEAN.LE.1.E-5)then |
691 |
POCEAN=0. |
692 |
POICE=PWATER |
693 |
endif |
694 |
PLICE=FDATA(I,J,3)*PLAND |
695 |
PEARTH=PLAND-PLICE |
696 |
if(ii.eq.1)then |
697 |
BSO4=BSO4OCEAN(J)/BSO4TOTAL(J) |
698 |
PTYPE=POCEAN |
699 |
POICE=0. |
700 |
POCEAN=1. |
701 |
PLAND=0. |
702 |
PEARTH=0. |
703 |
PLICE=0. |
704 |
TGAL=0. |
705 |
else if(ii.eq.3)then |
706 |
BSO4=BSO4OCEAN(J)/BSO4TOTAL(J) |
707 |
PTYPE=POICE |
708 |
POICE=1. |
709 |
POCEAN=0. |
710 |
PLAND=0. |
711 |
PEARTH=0. |
712 |
PLICE=0. |
713 |
TGAL=TGOI |
714 |
else |
715 |
BSO4=BSO4LAND(J)/BSO4TOTAL(J) |
716 |
PTYPE=PLAND |
717 |
POCEAN=0. |
718 |
POICE=0. |
719 |
PWATER=0. |
720 |
PLICE=FDATA(I,J,3) |
721 |
PEARTH=1.-PLICE |
722 |
TGAL=TGE*PEARTH+TGLI*PLICE |
723 |
PLAND=1. |
724 |
endif |
725 |
if(PTYPE.lt.1.e-10)go to 499 |
726 |
if(ii.gt.1)then |
727 |
if(TGAL.lt.263.)then |
728 |
FRSNALB=0.30 |
729 |
elseif(TGAL.lt.273.)then |
730 |
FRSNALB=0.30-0.015*(TGAL-263.) |
731 |
else |
732 |
FRSNALB=0.15 |
733 |
endif |
734 |
endif !ii |
735 |
FGOLDU(2)=XFRADJ*(1.-PLAND) |
736 |
FGOLDU(3)=XFRADJ*PLAND |
737 |
|
738 |
#if ( defined PREDICTED_AEROSOL ) |
739 |
! |
740 |
! --- Chemstry Model Patch 092295 |
741 |
! |
742 |
FAERSOL=BSO4 |
743 |
& *3.0*CFAEROSOL !111600 |
744 |
FBC=BSO4*CFBC |
745 |
|
746 |
! |
747 |
#endif |
748 |
|
749 |
ILON=I 5278.1 |
750 |
JLAT=J 5278.2 |
751 |
if(J.le.-2)then |
752 |
print *,' From Radia J=',J,' ii=',ii |
753 |
print *,' BSO4=',BSO4 |
754 |
print *,' CLEAR(J)=',CLEAR(J) |
755 |
endif |
756 |
if(J.eq.-22.or.J.eq.-33)then |
757 |
print *,' tau=',TAU,' J=',J |
758 |
print *,'ii=',ii,PTYPE |
759 |
print *,BSO4LAND(J),BSO4OCEAN(J),BSO4TOTAL(J) |
760 |
print *,'BSO4=',BSO4,' FAERSOL=',FAERSOL |
761 |
endif |
762 |
CALL RCOMPX 5279. |
763 |
if(J.eq.-22.or.J.eq.-33)then |
764 |
print *,' USW TOA=',SRUFLB(LM+4),' DSW TOA=',SRDFLB(LM+4) |
765 |
print *,' USW SRF=',SRUFLB(1),' DSW SRF=',SRDFLB(1) |
766 |
print *,' NSW TOA=',SRNFLB(LM+4),' NSW SRF=',SRNFLB(1) |
767 |
endif |
768 |
! if (IRFIRST.eq.1.and.READGHG.eq.1)then |
769 |
! CALL WRITER(12) |
770 |
! if(ii.ge.2)IRFIRST=0 |
771 |
! endif |
772 |
! IF(DMOD(TAU,365.*24.).EQ.0..and.J.eq.JM/2) then |
773 |
IF(DMOD(TAU,30.*24.).EQ.0..and.J.eq.JM/2) then |
774 |
print *,' tau=',TAU,' J=',J |
775 |
CALL WRITER (1,0) |
776 |
endif |
777 |
SRHR(I,J,1)=SRHR(I,J,1)+SRNFLB(1)*PTYPE |
778 |
TRHR(I,J,1)=TRHR(I,J,1)+(STBO*(POCEAN*TGO**4+POICE*TGOI**4 |
779 |
* +PLICE*TGLI**4+PEARTH*TGE**4)-TRNFLB(1))*PTYPE |
780 |
C ***** |
781 |
TRSURF(J,ii)=STBO*(POCEAN*TGO**4+POICE*TGOI**4 |
782 |
* +PLICE*TGLI**4+PEARTH*TGE**4)-TRNFLB(1) |
783 |
SRSURF(J,ii)=SRNFLB(1) |
784 |
DO 440 L=1,LM 5284. |
785 |
|
786 |
#if ( defined CPL_CHEM ) |
787 |
! |
788 |
! --- Chemistry Model Patch 120497 |
789 |
! get solar flux in w/m^2 |
790 |
! |
791 |
solarflux(i,j,l) = solarflux(i,j,l) |
792 |
& + srdflb(l+1)*ptype |
793 |
|
794 |
c solarflux(i,j,l) = solarflux(i,j,l) |
795 |
c & + srnflb(l+1)*ptype |
796 |
! |
797 |
#endif |
798 |
|
799 |
SRHR(I,J,L+1)=SRHR(I,J,L+1)+SRFHRL(L)*PTYPE |
800 |
440 TRHR(I,J,L+1)=TRHR(I,J,L+1)-TRFCRL(L)*PTYPE |
801 |
DO 450 LR=1,3 5287. |
802 |
SRHRS(I,J,LR)=SRHRS(I,J,LR)+SRFHRL(LM+LR)*PTYPE |
803 |
450 TRHRS(I,J,LR)=TRHRS(I,J,LR)-TRFCRL(LM+LR)*PTYPE |
804 |
DO 460 K=1,4 5290. |
805 |
SNFS(I,J,K)=SNFS(I,J,K)+SRNFLB(K+LM)*PTYPE |
806 |
460 TNFS(I,J,K)=TNFS(I,J,K)+(TRNFLB(K+LM)-TRNFLB(1))*PTYPE |
807 |
TRNFP0(J)=TRNFP0(J)+TRNFLB(4+LM)*PTYPE |
808 |
TRNFP1(J)=TRNFP1(J)+TRNFLB(1+LM)*PTYPE |
809 |
TRINCG(I,J)=TRINCG(I,J)+TRDFLB(1)*PTYPE |
810 |
BTMPW(I,J)=BTMPW(I,J)+(BTEMPW-TF)*PTYPE |
811 |
SRDAN=SRDAN+SRDFLB(1)*PTYPE |
812 |
SRNAN=SRNAN+SRNFLB(1)*PTYPE |
813 |
ALB(I,J,2)=ALB(I,J,2)+PLAVIS*PTYPE |
814 |
ALB(I,J,3)=ALB(I,J,3)+PLANIR*PTYPE |
815 |
ALB(I,J,4)=ALB(I,J,4)+ALBVIS*PTYPE |
816 |
ALB(I,J,5)=ALB(I,J,5)+ALBNIR*PTYPE |
817 |
ALB(I,J,6)=ALB(I,J,6)+SRRVIS*PTYPE |
818 |
ALB(I,J,7)=ALB(I,J,7)+SRRNIR*PTYPE |
819 |
ALB(I,J,8)=ALB(I,J,8)+SRAVIS*PTYPE |
820 |
ALB(I,J,9)=ALB(I,J,9)+SRANIR*PTYPE |
821 |
ALB1=SRNFLB(1)/(SRDFLB(1)+1.E-20) |
822 |
C ********** |
823 |
ALBJ(J,2)=PLAVIS |
824 |
ALBJ(J,3)=PLANIR |
825 |
ALBJ(J,4)=ALBVIS |
826 |
ALBJ(J,5)=ALBNIR |
827 |
ALBJ(J,6)=SRRVIS |
828 |
ALBJ(J,7)=SRRNIR |
829 |
ALBJ(J,8)=SRAVIS |
830 |
ALBJ(J,9)=SRANIR |
831 |
ALBJ(J,1)=SRNFLB(1)/(SRDFLB(1)+1.E-20) |
832 |
C ********* |
833 |
COSZ=COSZ2(I,J) |
834 |
if(ii.eq.2)then |
835 |
#if ( defined CLM ) |
836 |
C for TEM CLM |
837 |
DSWSRF(j)=SRDFLB(1) |
838 |
DLWSRF(j)=TRDFLB(1) |
839 |
DSWVIS(j)=SRDVIS |
840 |
DSWNIR(j)=SRDNIR |
841 |
C for TEM CLM |
842 |
#endif |
843 |
PLAND=PTYPE |
844 |
BJ(J,1)=BJ(J,1)+(S0*COSZ)*PLAND |
845 |
BJ(J,2)=BJ(J,2)+(SRNFLB(4+LM)*COSZ)*PLAND |
846 |
BJ(J,5)=BJ(J,5)+(SRDFLB(1)*COSZ)*PLAND |
847 |
BJ(J,6)=BJ(J,6)+(SRNFLB(1)*COSZ)*PLAND |
848 |
BJ(J,55)=BJ(J,55)+(BTEMPW-TF)*PLAND |
849 |
BJ(J,67)=BJ(J,67)+TRDFLB(1)*PLAND |
850 |
BJ(J,70)=BJ(J,70)-(TRNFLB(4+LM)-TRNFLB(1))*PLAND |
851 |
BJ(J,7)=BJ(J,7)-TRNFLB(4+LM)*PLAND |
852 |
BJ(J,8)=BJ(J,8)-TRNFLB(1+LM)*PLAND |
853 |
BJ(J,3)=BJ(J,3)+(SRNFLB(1+LM)*COSZ)*PLAND |
854 |
BJ(J,71)=BJ(J,71)-(TRNFLB(1+LM)-TRNFLB(1))*PLAND |
855 |
DO 761 K=2,9 |
856 |
BJ(J,K+70)=BJ(J,K+70)+(S0*COSZ)*ALBJ(J,K)*PLAND |
857 |
761 CONTINUE |
858 |
else if(ii.eq.1)then |
859 |
POCEAN=PTYPE |
860 |
AJ(J,1)=AJ(J,1)+(S0*COSZ)*POCEAN |
861 |
AJ(J,2)=AJ(J,2)+(SRNFLB(4+LM)*COSZ)*POCEAN |
862 |
AJ(J,5)=AJ(J,5)+(SRDFLB(1)*COSZ)*POCEAN |
863 |
AJ(J,6)=AJ(J,6)+(SRNFLB(1)*COSZ)*POCEAN |
864 |
AJ(J,55)=AJ(J,55)+(BTEMPW-TF)*POCEAN |
865 |
AJ(J,67)=AJ(J,67)+TRDFLB(1)*POCEAN |
866 |
AJ(J,70)=AJ(J,70)-(TRNFLB(4+LM)-TRNFLB(1))*POCEAN |
867 |
AJ(J,7)=AJ(J,7)-TRNFLB(4+LM)*POCEAN |
868 |
AJ(J,8)=AJ(J,8)-TRNFLB(1+LM)*POCEAN |
869 |
AJ(J,3)=AJ(J,3)+(SRNFLB(1+LM)*COSZ)*POCEAN |
870 |
AJ(J,71)=AJ(J,71)-(TRNFLB(1+LM)-TRNFLB(1))*POCEAN |
871 |
#if ( defined OCEAN_3D ) |
872 |
SWIN(j,1)=SRDFLB(1) |
873 |
SWNET(j,1)=SRNFLB(1) |
874 |
#endif |
875 |
C |
876 |
DO K=2,9 |
877 |
AJ(J,K+70)=AJ(J,K+70)+(S0*COSZ)*ALBJ(J,K)*POCEAN |
878 |
END DO |
879 |
else |
880 |
POICE=PTYPE |
881 |
CJ(J,1)=CJ(J,1)+(S0*COSZ)*POICE |
882 |
CJ(J,2)=CJ(J,2)+(SRNFLB(4+LM)*COSZ)*POICE |
883 |
CJ(J,5)=CJ(J,5)+(SRDFLB(1)*COSZ)*POICE |
884 |
CJ(J,6)=CJ(J,6)+(SRNFLB(1)*COSZ)*POICE |
885 |
CJ(J,55)=CJ(J,55)+(BTEMPW-TF)*POICE |
886 |
CJ(J,67)=CJ(J,67)+TRDFLB(1)*POICE |
887 |
CJ(J,70)=CJ(J,70)-(TRNFLB(4+LM)-TRNFLB(1))*POICE |
888 |
CJ(J,7)=CJ(J,7)-TRNFLB(4+LM)*POICE |
889 |
CJ(J,8)=CJ(J,8)-TRNFLB(1+LM)*POICE |
890 |
CJ(J,3)=CJ(J,3)+(SRNFLB(1+LM)*COSZ)*POICE |
891 |
CJ(J,71)=CJ(J,71)-(TRNFLB(1+LM)-TRNFLB(1))*POICE |
892 |
#if ( defined OCEAN_3D ) |
893 |
SWIN(j,2)=SRDFLB(1) |
894 |
SWNET(j,2)=SRNFLB(1) |
895 |
#endif |
896 |
C |
897 |
DO K=2,9 |
898 |
CJ(J,K+70)=CJ(J,K+70)+(S0*COSZ)*ALBJ(J,K)*POICE |
899 |
END DO |
900 |
endif |
901 |
499 continue |
902 |
ALB(I,J,1)=SRNAN/(SRDAN+1.E-20) |
903 |
500 IM1=I 5304. |
904 |
|
905 |
! |
906 |
! --- Radiation calculation without aerosol |
907 |
! NOTE: this section is for diagnostic |
908 |
! purpose only. It basically repeats |
909 |
! the radiation calculation without |
910 |
! aerosol in order to derive the pure |
911 |
! aerosol forcing. |
912 |
! |
913 |
! Chien Wang |
914 |
! 080100 |
915 |
! |
916 |
! |
917 |
I=1 |
918 |
do 599 ii=1,3 |
919 |
COSZ=COSZA(I,J) |
920 |
PLAND=FDATA(I,J,2) |
921 |
PWATER=1.-PLAND |
922 |
POICE=ODATA(I,J,2)*(1.-PLAND) |
923 |
POCEAN=(1.-PLAND)-POICE |
924 |
if(POCEAN.LE.1.E-5)then |
925 |
POCEAN=0. |
926 |
POICE=PWATER |
927 |
endif |
928 |
PLICE=FDATA(I,J,3)*PLAND |
929 |
PEARTH=PLAND-PLICE |
930 |
if(ii.eq.1)then |
931 |
BSO4=BSO4OCEAN(J)/BSO4TOTAL(J) |
932 |
PTYPE=POCEAN |
933 |
POICE=0. |
934 |
POCEAN=1. |
935 |
PLAND=0. |
936 |
PEARTH=0. |
937 |
PLICE=0. |
938 |
TGAL=0. |
939 |
else if(ii.eq.3)then |
940 |
BSO4=BSO4OCEAN(J)/BSO4TOTAL(J) |
941 |
PTYPE=POICE |
942 |
POICE=1. |
943 |
POCEAN=0. |
944 |
PLAND=0. |
945 |
PEARTH=0. |
946 |
PLICE=0. |
947 |
TGAL=TGOI |
948 |
else |
949 |
BSO4=BSO4LAND(J)/BSO4TOTAL(J) |
950 |
PTYPE=PLAND |
951 |
POCEAN=0. |
952 |
POICE=0. |
953 |
PWATER=0. |
954 |
PLICE=FDATA(I,J,3) |
955 |
PEARTH=1.-PLICE |
956 |
TGAL=TGE*PEARTH+TGLI*PLICE |
957 |
PLAND=1. |
958 |
endif |
959 |
if(PTYPE.lt.1.e-10)go to 599 |
960 |
if(ii.gt.1)then |
961 |
if(TGAL.lt.263.)then |
962 |
FRSNALB=0.30 |
963 |
elseif(TGAL.lt.273.)then |
964 |
FRSNALB=0.30-0.015*(TGAL-263.) |
965 |
else |
966 |
FRSNALB=0.15 |
967 |
endif |
968 |
endif !ii |
969 |
FGOLDU(2)=XFRADJ*(1.-PLAND) |
970 |
FGOLDU(3)=XFRADJ*PLAND |
971 |
#if ( defined PREDICTED_AEROSOL ) |
972 |
if(FORSULF) then |
973 |
FAERSOL = 0.0 |
974 |
else |
975 |
FAERSOL=BSO4 |
976 |
& *3.0*CFAEROSOL |
977 |
endif |
978 |
if(FORBC) then |
979 |
FBC = 0.0 |
980 |
else |
981 |
FBC=BSO4*CFBC |
982 |
endif |
983 |
if(FORVOL) then |
984 |
FGOLDU(1)=1.0 |
985 |
endif |
986 |
#endif |
987 |
|
988 |
if(J.eq.-22.or.J.eq.-33)then |
989 |
print *,'BSO4=',BSO4,' FAERSOL=',FAERSOL |
990 |
print *,'ii=',ii |
991 |
endif |
992 |
CALL RCOMPX |
993 |
if(J.eq.-22.or.J.eq.-33)then |
994 |
print *,' USW TOA=',SRUFLB(LM+4),' DSW SRF=',SRDFLB(1) |
995 |
print *,' NSW TOA=',SRNFLB(LM+4),' NSW SRF=',SRNFLB(1) |
996 |
endif |
997 |
SRHRCL(J)=SRNFLB(1) |
998 |
TRHRCL(J)=-TRNFLB(1) |
999 |
ALBCL(J)=SRNFLB(1)/(SRDFLB(1)+1.e-20) |
1000 |
SNP1CL(J)=SRNFLB(LM+1) |
1001 |
SNP0CL(J)=SRNFLB(LM+4) |
1002 |
TRINCL(J)=TRDFLB(1) |
1003 |
TRP0CL(J)=TRNFLB(LM+4) |
1004 |
TRP1CL(J)=TRNFLB(LM+1) |
1005 |
C ********* |
1006 |
COSZ=COSZ2(I,J) |
1007 |
if(ii.eq.2)then |
1008 |
PLAND=PTYPE |
1009 |
BJCLR(J,1)=BJCLR(J,1)+(S0*COSZ)*PLAND |
1010 |
BJCLR(J,2)=BJCLR(J,2)+(SNP0CL(J)*COSZ)*PLAND |
1011 |
BJCLR(J,4)=BJCLR(J,4)+(SRHRCL(J)*COSZ)*PLAND |
1012 |
BJCLR(J,5)=BJCLR(J,5)+(SRDFLB(1)*COSZ)*PLAND |
1013 |
BJCLR(J,6)=BJCLR(J,6)+TRINCL(J)*PLAND |
1014 |
BJCLR(J,8)=BJCLR(J,8)-TRP0CL(J)*PLAND |
1015 |
BJCLR(J,9)=BJCLR(J,9)-TRP1CL(J)*PLAND |
1016 |
BJCLR(J,3)=BJCLR(J,3)+(SNP1CL(J)*COSZ)*PLAND |
1017 |
BJCLR(J,7)=BJCLR(J,7)+TRHRCL(J)*PLAND |
1018 |
else if(ii.eq.1)then |
1019 |
POCEAN=PTYPE |
1020 |
AJCLR(J,1)=AJCLR(J,1)+(S0*COSZ)*POCEAN |
1021 |
AJCLR(J,2)=AJCLR(J,2)+(SNP0CL(J)*COSZ)*POCEAN |
1022 |
AJCLR(J,4)=AJCLR(J,4)+(SRHRCL(J)*COSZ)*POCEAN |
1023 |
AJCLR(J,5)=AJCLR(J,5)+(SRDFLB(1)*COSZ)*POCEAN |
1024 |
AJCLR(J,6)=AJCLR(J,6)+TRINCL(J)*POCEAN |
1025 |
AJCLR(J,8)=AJCLR(J,8)-TRP0CL(J)*POCEAN |
1026 |
AJCLR(J,9)=AJCLR(J,9)-TRP1CL(J)*POCEAN |
1027 |
AJCLR(J,3)=AJCLR(J,3)+(SNP1CL(J)*COSZ)*POCEAN |
1028 |
AJCLR(J,7)=AJCLR(J,7)+TRHRCL(J)*POCEAN |
1029 |
else |
1030 |
POICE=PTYPE |
1031 |
CJCLR(J,1)=CJCLR(J,1)+(S0*COSZ)*POICE |
1032 |
CJCLR(J,2)=CJCLR(J,2)+(SNP0CL(J)*COSZ)*POICE |
1033 |
CJCLR(J,4)=CJCLR(J,4)+(SRHRCL(J)*COSZ)*POICE |
1034 |
CJCLR(J,5)=CJCLR(J,5)+(SRDFLB(1)*COSZ)*POICE |
1035 |
CJCLR(J,6)=CJCLR(J,6)+TRINCL(J)*POICE |
1036 |
CJCLR(J,8)=CJCLR(J,8)-TRP0CL(J)*POICE |
1037 |
CJCLR(J,9)=CJCLR(J,9)-TRP1CL(J)*POICE |
1038 |
CJCLR(J,3)=CJCLR(J,3)+(SNP1CL(J)*COSZ)*POICE |
1039 |
CJCLR(J,7)=CJCLR(J,7)+TRHRCL(J)*POICE |
1040 |
endif |
1041 |
599 continue ! ii |
1042 |
! |
1043 |
! --- End calculation of radiative fluxes with out aerosol |
1044 |
! |
1045 |
if(J.eq.-22.or.J.eq.-33)then |
1046 |
AACLR=AJCLR(J,2)+CJCLR(J,2)+BJCLR(J,2) |
1047 |
AA=AJ(J,2)+CJ(J,2)+BJ(J,2) |
1048 |
BBCLR=AJCLR(J,4)+CJCLR(J,4)+BJCLR(J,4) |
1049 |
BB=AJ(J,6)+CJ(J,6)+BJ(J,6) |
1050 |
print *,' Del SW TOA=',AA-AACLR |
1051 |
print *,' Del SW SRF=',BB-BBCLR |
1052 |
c print *,' Del Srf alb=',ALBCL(J)-ALB(I,J,1) |
1053 |
endif |
1054 |
C**** 5305. |
1055 |
C**** END OF MAIN LOOP FOR I INDEX 5306. |
1056 |
C**** 5307. |
1057 |
600 CONTINUE 5345. |
1058 |
C**** 5346. |
1059 |
C**** END OF MAIN LOOP FOR J INDEX 5347. |
1060 |
C**** 5348. |
1061 |
C**** ACCUMULATE THE RADIATION DIAGNOSTICS 5394. |
1062 |
C**** 5395. |
1063 |
700 DO 780 J=1,JM 5396. |
1064 |
DXYPJ=DXYP(J) 5397. |
1065 |
IMAX=IM 5398. |
1066 |
IF(J.EQ.1.OR.J.EQ.JM) IMAX=1 5399. |
1067 |
DO 720 L=1,LM 5400. |
1068 |
ASRHR=0. 5401. |
1069 |
ATRHR=0. 5402. |
1070 |
DO 710 I=1,IMAX 5403. |
1071 |
ASRHR=ASRHR+SRHR(I,J,L+1)*COSZ2(I,J) 5404. |
1072 |
710 ATRHR=ATRHR+TRHR(I,J,L+1) 5405. |
1073 |
AJL(J,L,9)=AJL(J,L,9)+ASRHR 5406. |
1074 |
720 AJL(J,L,10)=AJL(J,L,10)+ATRHR 5407. |
1075 |
ASNFS1=0. 5408. |
1076 |
BSNFS1=0. 5409. |
1077 |
CSNFS1=0. 5410. |
1078 |
ATNFS1=0. 5411. |
1079 |
BTNFS1=0. 5412. |
1080 |
CTNFS1=0. 5413. |
1081 |
DO 770 I=1,IMAX 5414. |
1082 |
SP=P(I,J) 5415. |
1083 |
COSZ=COSZ2(I,J) 5416. |
1084 |
PLAND=FDATA(I,J,2) 5417. |
1085 |
PWATER=1.-PLAND |
1086 |
POICE=ODATA(I,J,2)*(1.-PLAND) 5418. |
1087 |
POCEAN=(1.-PLAND)-POICE 5419. |
1088 |
if(POCEAN.LE.1.E-5)then |
1089 |
POCEAN=0. |
1090 |
POICE=PWATER |
1091 |
endif |
1092 |
JR=J |
1093 |
DO 740 LR=1,3 5421. |
1094 |
ASJL(J,LR,3)=ASJL(J,LR,3)+SRHRS(I,J,LR)*COSZ 5422. |
1095 |
740 ASJL(J,LR,4)=ASJL(J,LR,4)+TRHRS(I,J,LR) 5423. |
1096 |
DO 742 KR=1,4 5424. |
1097 |
IF(I.EQ.IJD6(1,KR).AND.J.EQ.IJD6(2,KR)) GO TO 744 5425. |
1098 |
742 CONTINUE 5426. |
1099 |
GO TO 750 5427. |
1100 |
744 IH=IHOUR 5428. |
1101 |
DO 746 INCH=1,INCHM 5429. |
1102 |
IF(IH.GT.24) IH=IH-24 5430. |
1103 |
ADAILY(IH,2,KR)=ADAILY(IH,2,KR)+(1.-SNFS(I,J,4)/S0) 5431. |
1104 |
ADAILY(IH,3,KR)=ADAILY(IH,3,KR)+(1.-ALB(I,J,1)) 5432. |
1105 |
ADAILY(IH,4,KR)=ADAILY(IH,4,KR) 5433. |
1106 |
* +((SNFS(I,J,4)-SNFS(I,J,1))*COSZ-TNFS(I,J,4)+TNFS(I,J,1)) 5434. |
1107 |
746 IH=IH+1 5435. |
1108 |
750 CONTINUE 5436. |
1109 |
DJ(JR,1)=DJ(JR,1)+(S0*COSZ)*DXYPJ 5440. |
1110 |
DJ(JR,2)=DJ(JR,2)+(SNFS(I,J,4)*COSZ)*DXYPJ 5444. |
1111 |
DJ(JR,3)=DJ(JR,3)+(SNFS(I,J,1)*COSZ)*DXYPJ 5448. |
1112 |
DJ(JR,5)=DJ(JR,5)+(SRHR(I,J,1)*COSZ/(ALB(I,J,1)+1.E-20))*DXYPJ 5452. |
1113 |
DJ(JR,6)=DJ(JR,6)+(SRHR(I,J,1)*COSZ)*DXYPJ 5456. |
1114 |
DJ(JR,55)=DJ(JR,55)+BTMPW(I,J)*DXYPJ 5460. |
1115 |
DJ(JR,67)=DJ(JR,67)+TRINCG(I,J)*DXYPJ 5464. |
1116 |
DJ(JR,70)=DJ(JR,70)-TNFS(I,J,4)*DXYPJ 5468. |
1117 |
C ******* |
1118 |
NCLR(J)=NCLR(J)+1 |
1119 |
C ********* |
1120 |
DJ(JR,71)=DJ(JR,71)-TNFS(I,J,1)*DXYPJ 5472. |
1121 |
AIJ(I,J,21)=AIJ(I,J,21)-TNFS(I,J,4) 5478. |
1122 |
AIJ(I,J,24)=AIJ(I,J,24)+(SNFS(I,J,4)*COSZ) 5479. |
1123 |
AIJ(I,J,25)=AIJ(I,J,25)+(S0*COSZ) 5480. |
1124 |
AIJ(I,J,26)=AIJ(I,J,26)+(SRHR(I,J,1)*COSZ) 5481. |
1125 |
AIJ(I,J,27)=AIJ(I,J,27)+(SRHR(I,J,1)*COSZ/(ALB(I,J,1)+1.E-20)) 5482. |
1126 |
AIJ(I,J,44)=AIJ(I,J,44)+BTMPW(I,J) 5483. |
1127 |
AIJ(I,J,45)=AIJ(I,J,45)+S0*COSZ*ALB(I,J,2) 5484. |
1128 |
770 CONTINUE 5485. |
1129 |
780 CONTINUE 5492. |
1130 |
IF(JM.NE.24) GO TO 800 5493. |
1131 |
DO 790 L=1,LM 5494. |
1132 |
DO 790 I=1,IM 5495. |
1133 |
AIL(I,L,7)=AIL(I,L,7)+((SRHR(I,11,L+1)*COSZ2(I,11)+ 5496. |
1134 |
* TRHR(I,11,L+1))*DXYP(11)+(SRHR(I,12,L+1)*COSZ2(I,12)+ 5497. |
1135 |
* TRHR(I,12,L+1))*DXYP(12)+(SRHR(I,13,L+1)*COSZ2(I,13)+ 5498. |
1136 |
* TRHR(I,13,L+1))*DXYP(13)) 5499. |
1137 |
AIL(I,L,11)=AIL(I,L,11)+(SRHR(I,19,L+1)*COSZ2(I,19)+ 5500. |
1138 |
* TRHR(I,19,L+1))*DXYP(19) 5501. |
1139 |
790 AIL(I,L,15)=AIL(I,L,15)+(SRHR(I,21,L+1)*COSZ2(I,21)+ 5502. |
1140 |
* TRHR(I,21,L+1))*DXYP(21) 5503. |
1141 |
C**** 5504. |
1142 |
C**** UPDATE THE TEMPERATURES BY RADIATION 5505. |
1143 |
C**** 5506. |
1144 |
800 DO 820 J=1,JM 5507. |
1145 |
IMAX=IM 5508. |
1146 |
IF(J.EQ.1.OR.J.EQ.JM) IMAX=1 5509. |
1147 |
DO 820 LR=1,3 5510. |
1148 |
DO 820 I=1,IMAX 5511. |
1149 |
820 RQT(I,J,LR)=RQT(I,J,LR)+(SRHRS(I,J,LR)*COSZ2(I,J) 5512. |
1150 |
* +TRHRS(I,J,LR))*COE(LR+LM) 5513. |
1151 |
840 DO 860 J=1,JM 5514. |
1152 |
#if ( defined CLM ) |
1153 |
i=1 |
1154 |
dsw4clm(i,j)=DSWSRF(j)*COSZ1(1,j) |
1155 |
dlw4clm(i,j)=DLWSRF(j) |
1156 |
swinr4clm(i,j)=DSWNIR(j)*COSZ1(1,j) |
1157 |
swvis4clm(i,j)=DSWVIS(j)*COSZ1(1,j) |
1158 |
c For TEM |
1159 |
swtd4tem(j)=swtd4tem(j)+S0*COSZ1(1,j) |
1160 |
swsd4tem(j)=swsd4tem(j)+DSWSRF(j)*COSZ1(1,j) |
1161 |
nradd4tem(j)=nradd4tem(j)+1 |
1162 |
#endif |
1163 |
#if ( defined OCEAN_3D ) |
1164 |
solarinc_ocean(J)=solarinc_ocean(J)+SWIN(j,1)*COSZ1(1,j) |
1165 |
solarnet_ocean(J)=solarnet_ocean(J)+SWNET(j,1)*COSZ1(1,j) |
1166 |
solarinc_ice(J)=solarinc_ice(J)+SWIN(j,2)*COSZ1(1,j) |
1167 |
solarnet_ice(J)=solarnet_ice(J)+SWNET(j,2)*COSZ1(1,j) |
1168 |
navrado(j)=navrado(j)+1 |
1169 |
navrad(j)=navrad(j)+1 |
1170 |
#endif |
1171 |
IMAX=IM 5515. |
1172 |
IF(J.EQ.1.OR.J.EQ.JM) IMAX=1 5516. |
1173 |
DO 860 L=1,LM 5517. |
1174 |
DO 860 I=1,IMAX 5518. |
1175 |
|
1176 |
#if ( defined CPL_CHEM ) |
1177 |
! |
1178 |
coszangle(i,j) = cosz1(i,j) |
1179 |
! |
1180 |
#endif |
1181 |
|
1182 |
860 T(I,J,L)=T(I,J,L)+(SRHR(I,J,L+1)*COSZ1(I,J)+TRHR(I,J,L+1)) 5519. |
1183 |
* *COE(L)/(P(I,J)*PK(I,J,L)) 5520. |
1184 |
RETURN 5521. |
1185 |
END 5522. |