/[MITgcm]/MITgcm_contrib/jscott/igsm/src/daily_new.F
ViewVC logotype

Contents of /MITgcm_contrib/jscott/igsm/src/daily_new.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (show annotations) (download)
Tue Sep 1 22:03:56 2009 UTC (15 years, 10 months ago) by jscott
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +5 -1 lines
add changes for stochastic precip

1 C $Header$
2 C $Name$
3
4 #include "ctrparam.h"
5
6 ! ==========================================================
7 !
8 ! MD2G04.F: Lots of utility functions.
9 !
10 ! ----------------------------------------------------------
11 !
12 ! Revision History:
13 !
14 ! When Who What
15 ! ---- ---------- -------
16 ! 073100 Chien Wang repack based on CliChem3 & M24x11,
17 ! and add cpp.
18 !
19 ! ==========================================================
20
21
22 SUBROUTINE DAILY_NEW 1001.
23 C**** 1002.
24 C**** THIS SUBROUTINE PERFORMS THOSE FUNCTIONS OF THE PROGRAM WHICH 1003.
25 C**** TAKE PLACE AT THE BEGINNING OF A NEW DAY. 1004.
26 C**** 1005.
27
28 #include "BD2G04.COM" 1006.
29
30 COMMON/SPEC2/KM,KINC,COEK,C3LAND(IO0,JM0),C3OICE(IO0,JM0) 1006.1
31 * ,C3LICE(IO0,JM0),WMGE(IO0,JM0),TSSFC(IM0,JM0,4) 1006.2
32 COMMON U,V,T,P,Q 1007.
33 COMMON/WORK2/Z1OOLD(IO0,JM0),XO(IO0,JM0,3),XZO(IO0,JM0) 1008.
34 COMMON/OLDZO/ZMLOLD(IO0,JM0)
35 DIMENSION AMONTH(12),JDOFM(13) 1009.
36 CHARACTER*4 AMONTH 1009.1
37 DIMENSION XA(1,JM0),XB(1,JM0),OI(IO0,JM0),XOI(IO0,JM0) 1009.5
38 dimension sst1(JM0,3),sst2(JM0,3),dsst(JM0,3),intem(3),
39 & sstmin(12,2)
40 & ,miceo(JM0)
41 common/qfl/QFLUX(JM0,0:13),ZOAV(JM0),QFLUXT(JM0)
42 ! common/TSUR/TSURFC(JM0,0:13),TSURFT(JM0),TSURFD(JM0),DTSURF(JM0)
43 #include "TSRF.COM"
44 common/fixcld/cldssm(JM0,LM0,0:13),cldmcm(JM0,LM0,0:13),
45 & CLDSST(JM0,LM0),
46 & CLDMCT(JM0,LM0)
47 common/surps/srps(JM0+3),nsrps
48 #if ( defined OCEAN_3D || defined ML_2D)
49 #include "AGRID.h"
50 #endif
51 #if ( defined CLM )
52 #include "CLM.h"
53 #endif
54 LOGICAL HPRNT
55 common/conprn/HPRNT,JPR,LPR
56 data ifirst /1/
57 data intem /1,4,5/
58 data sstmin /-1.56,-1.56,-0.75,6*0.0,2*-0.75,-1.56,
59 * 3*0.0,2*-0.75,3*-1.56,-0.75,3*0.0/
60 DATA AMONTH/'JAN','FEB','MAR','APR','MAY','JUNE','JULY','AUG', 1010.
61 * 'SEP','OCT','NOV','DEC'/ 1011.
62 DATA JDOFM/0,31,59,90,120,151,181,212,243,273,304,334,365/ 1012.
63 DATA JDPERY/365/,JMPERY/12/,EDPERY/365./,Z1I/.1/,RHOI/916.6/ 1013.
64 C**** ORBITAL PARAMETERS FOR EARTH FOR YEAR 2000 A.D. 1014.
65 DATA SOLS/173./,APHEL/186./,OBLIQ/23.44/,ECCN/.0167/ 1015.
66 DATA OMEGT/282.9/
67 C**** 1016.
68 C**** THE GLOBAL MEAN PRESSURE IS KEPT CONSTANT AT PSF MILLIBARS 1017.
69 C**** 1018.
70 C**** CALCULATE THE CURRENT GLOBAL MEAN PRESSURE 1019.
71 100 SMASS=0. 1020.
72 c print *,' from Daily KOCEAN=',KOCEAN
73 nsrps=nsrps+1
74 DO 120 J=1,JM 1021.
75 SPRESS=0. 1022.
76 DO 110 I=1,IM 1023.
77 110 SPRESS=SPRESS+P(I,J) 1024.
78 srps(J)=srps(J)+P(1,J)
79 SMASS=SMASS+SPRESS*DXYP(J) 1025.
80 if(J.EQ.JM/2)PBARSH=SMASS
81 120 continue
82 PBAR=SMASS/AREAG+PTOP 1026.
83 PBARNH=2.*(SMASS-PBARSH)/AREAG
84 PBARSH=2.*PBARSH/AREAG
85 srps(JM+1)=srps(JM+1)+PBARSH
86 srps(JM+2)=srps(JM+2)+PBARNH
87 srps(JM+3)=srps(JM+3)+PBAR-PTOP
88 #if ( defined OCEAN_3D)
89 Cjrs do j=1,jm
90 Cjrs surfpr(j)=surfpr(j)+P(1,J)
91 Cjrs enddo
92 #endif
93 C**** CORRECT PRESSURE FIELD FOR ANY LOSS OF MASS BY TRUNCATION ERROR 1027.
94 130 DELTAP=PSF-PBAR 1028.
95 if(DELTAP.gt.1.)then
96 print *,' from Daily DELTAP=',DELTAP
97 print *,' PBAR=',PBAR,' PBARNH=',PBARNH,' PBARSH=',PBARSH
98 endif
99 c GO TO 1140
100 DO 140 J=1,JM 1029.
101 DO 140 I=1,IM 1030.
102 140 P(I,J)=P(I,J)+DELTAP 1031.
103 DOPK=1. 1032.
104 1140 continue
105 C WRITE (6,901) DELTAP 1033.
106 C**** 1034.
107 C**** CALCULATE THE DAILY CALENDAR 1035.
108 C**** 1036.
109 200 JYEAR=IYEAR+(IDAY-1)/JDPERY 1037.
110 JDAY=IDAY-(JYEAR-IYEAR)*JDPERY 1038.
111 DO 210 MONTH=1,JMPERY 1039.
112 IF(JDAY.LE.JDOFM(MONTH+1)) GO TO 220 1040.
113 210 CONTINUE 1041.
114 220 JDATE=JDAY-JDOFM(MONTH) 1042.
115 JMONTH=AMONTH(MONTH) 1043.
116 C**** CALCULATE SOLAR ANGLES AND ORBIT POSITION 1044.
117 if(ifirst.eq.1.or.HPRNT)then
118 print *,' DAILY_ATM IDAY=',IDAY,' IYEAR=',IYEAR
119 print *,' JYEAR=',JYEAR,' JDAY=',JDAY
120 print *,' JDATE=',JDATE,' JMONTH=',JMONTH
121 print *,'OBLIQ=',OBLIQ
122 ifirst=0
123 endif
124 JDSAVE=JDAY 1044.5
125 JDATES=JDATE 1044.51
126 MONSAV=MONTH 1044.52
127 c JDAY=197 1044.53
128 c JDATE=16 1044.54
129 c MONTH=7 1044.55
130 ! RSDIST=(1.+ECCN*COS(TWOPI*(JDAY-APHEL)/EDPERY))**2 1045.
131 ! DEC=COS(TWOPI*(JDAY-SOLS)/EDPERY)*OBLIQ*TWOPI/360. 1046.
132 ! SIND=SIN(DEC) 1047.
133 ! COSD=COS(DEC) 1048.
134 ! 03/03/06
135 ! Fixed calculation of incoming solar radiation
136 CALL ORBIT (OBLIQ,ECCN,OMEGT,JDAY-0.5,RSDIST,SIND,COSD,LAMBDA)
137 if(JDATE.le.16)then
138 do 7231 j=1,JM
139 do 7231 L=1,LM
140 CLDSST(j,L)=((16-JDATE)*cldssm(j,L,MONTH-1)+
141 * (JDATE+15)*cldssm(j,L,MONTH))/31.
142 CLDMCT(j,L)=((16-JDATE)*cldmcm(j,L,MONTH-1)+
143 * (JDATE+15)*cldmcm(j,L,MONTH))/31.
144 7231 continue
145 else
146 do 7241 j=1,JM
147 do 7241 L=1,LM
148 CLDSST(j,L)=((JDATE-16)*cldssm(j,L,MONTH+1)+
149 * (31-JDATE+16)*cldssm(j,L,MONTH))/31.
150 CLDMCT(j,L)=((JDATE-16)*cldmcm(j,L,MONTH+1)+
151 * (31-JDATE+16)*cldmcm(j,L,MONTH))/31.
152 7241 continue
153 endif
154 #if (defined OCEAN_3D || defined ML_2D)
155 if(JDATE.le.16)then
156 do 723 j=1,JM
157 TSURFT(j)=((16-JDATE)*TSURFC(j,MONTH-1)+
158 * (JDATE+15)*TSURFC(j,MONTH))/31.
159 TLANDT(j)=((16-JDATE)*TLANDC(j,MONTH-1)+
160 * (JDATE+15)*TLANDC(j,MONTH))/31.
161 723 continue
162 else
163 do 724 j=1,JM
164 TSURFT(j)=((JDATE-16)*TSURFC(j,MONTH+1)+
165 * (31-JDATE+16)*TSURFC(j,MONTH))/31.
166 TLANDT(j)=((JDATE-16)*TLANDC(j,MONTH+1)+
167 * (31-JDATE+16)*TLANDC(j,MONTH))/31.
168 724 continue
169 endif
170 ! print *,'From daily_new TSURFD'
171 ! print *,TSURFD
172 ! print *,'TSURFT'
173 ! print *,TSURFT
174 ! print *,'From daily_new TLANDD'
175 ! print *,TLANDD
176 ! print *,'TLANDT'
177 ! print *,TLANDT
178 do 725 j=1,JM
179 DT2MGL(j)=TSURFD(j)-TSURFT(j)
180 DT2MLD(j)=TLANDD(j)-TLANDT(j)
181 TSURFD(j)=0.
182 TLANDD(j)=0.
183 725 continue
184 #if ( defined CLM )
185 DT2MLAND=0.
186 if(PRTREND) then
187 AREAL=0.
188 do j=1,jm
189 DT2MLAND=DT2MLAND+DT2MLD(J)*DXYP(j)*FDATA(1,j,2)
190 AREAL=AREAL+DXYP(j)*FDATA(1,j,2)
191 end do !j
192 DT2MLAND=DT2MLAND/AREAL
193 ! print *,'DT2MLD'
194 ! print *,DT2MLD
195 if(JDATE.eq.1)then
196 print *,'JDATE=',JDATE,' DT2MLAND=',DT2MLAND
197 endif
198 endif
199 ! print *,'AREAL=',AREAL
200 #endif
201
202 #endif
203
204 RETURN 1108.5
205 C**** 1109.
206 ENTRY DAILY_NEW0 1110.
207 c IF(TAU.GT.TAUI+DT/7200.) GO TO 200 1111.
208 c GO TO 100 1112.
209 go to 200
210 C***** 1113.
211 901 FORMAT ('0PRESSURE ADDED IN GMP IS',F10.6/) 1114.
212 902 FORMAT ('0MEAN SURFACE PRESSURE OF THE ATMOSPHERE IS',F10.4) 1115.
213 910 FORMAT('1',33A4/) 1116.
214 915 FORMAT (47X,'DAY',I5,', HR',I3,' (',I2,A5,I5,')',F8.1) 1117.
215 920 FORMAT('1') 1118.
216 END 1119.
217 SUBROUTINE ORBIT (OBLIQ,ECCN,OMEGT,DAY,SDIST,SIND,COSD,LAMBDA) 8201.
218 C**** 8202.
219 C**** ORBIT receives the orbital parameters and time of year, and 8203.
220 C**** returns the distance from the sun and its declination angle. 8204.
221 C**** The reference for the following caculations is: V.M.Blanco 8205.
222 C**** and S.W.McCuskey, 1961, "Basic Physics of the Solar System", 8206.
223 C**** pages 135 - 151. 8207.
224 C**** 8208.
225 C**** Program authors: Gary L. Russell and Robert J. Suozzo, 12/13/85 8209.
226 C**** 8210.
227 C**** All computations are in double-precision; 8211.
228 C**** but the arguments are single-precision. 8212.
229 C**** Input: OBLIQ = latitude of tropics in degrees 8213.
230 C**** ECCEN = eccentricity of the orbital ellipse 8214.
231 C**** OMEGT = angle from vernal equinox to perihelion in degrees 8215.
232 C**** DAY = day of the year in days; 0 = Jan 1, hour 0 8216.
233 C**** 8217.
234 C**** Constants: EDAYPY = Earth days per year = 365 8218.
235 C**** VERQNX = occurence of vernal equinox = day 79 = Mar 21 8219.
236 C**** 8220.
237 C**** Intermediate quantities: 8221.
238 C**** PERIHE = perihelion during the year in temporal radians 8222.
239 C**** MA = mean anomaly in temporal radians = 2J DAY/365 - PERIHE8223.
240 C**** EA = eccentric anomaly in radians 8224.
241 C**** TA = true anomaly in radians 8225.
242 C**** BSEMI = semi minor axis in units of the semi major axis 8226.
243 C**** GREENW = longitude of Greenwich in the Earth's reference frame 8227.
244 C**** 8228.
245 C**** Output: DIST = distance to the sun in units of the semi major axis8229.
246 C**** SDIST = square of DIST 8229.5
247 C**** SIND = sine of the declination angle 8230.
248 C**** COSD = cosine of the declination angle 8231.
249 C**** LAMBDA = sun longitude in Earth's rotating reference frame 8232.
250 C**** 8233.
251 IMPLICIT REAL*8 (A-H,O-Z) 8234.
252 REAL*8 MA 8235.
253 C REAL*4 SIND,COSD,SDIST,LAMBDA,OBLIQ,ECCN,OMEGT,DAY 8236.
254 C**** 8237.
255 PI = 3.14159265358979D0 8238.
256 EDAYPY = 365. 8239.
257 VERQNX = 79. 8240.
258 OMEGA=OMEGT*(PI/180.D0) 8241.
259 DOBLIQ=OBLIQ*(PI/180.D0) 8242.
260 ECCEN=ECCN 8243.
261 C**** 8244.
262 C**** Determine time of perihelion using Kepler's equation: 8245.
263 C**** PERIHE-VERQNX = OMEGA - ECCEN sin(OMEGA) 8246.
264 C**** 8247.
265 PERIHE = OMEGA-ECCEN*SIN(OMEGA)+VERQNX*2.*PI/365. 8248.
266 C PERIHE = DMOD(PERIHE,2.*PI) 8249.
267 MA = 2.*PI*DAY/365.-PERIHE 8250.
268 MA = DMOD(MA,2.*PI) 8251.
269 C**** 8252.
270 C**** Numerically solve Kepler's equation: MA = EA - ECCEN sin(EA) 8253.
271 C**** 8254.
272 EA = MA+ECCEN*(SIN(MA)+ECCEN*SIN(2.*MA)/2.) 8255.
273 110 DEA = (MA-EA+ECCEN*SIN(MA))/(1.-ECCEN*COS(EA)) 8256.
274 EA = EA+DEA 8257.
275 IF (DABS(DEA).GT.1.D-8) GO TO 110 8258.
276 C**** 8259.
277 C**** Calculate the distance to the sun and the true anomaly 8260.
278 C**** 8261.
279 BSEMI = DSQRT(1.-ECCEN*ECCEN) 8262.
280 COSEA = COS(EA) 8263.
281 SINEA = SIN(EA) 8264.
282 SDIST = (1.-ECCEN*COSEA)*(1.-ECCEN*COSEA) 8265.
283 TA = DATAN2(SINEA*BSEMI,COSEA-ECCEN) 8266.
284 C**** 8267.
285 C**** Change the reference frame to be the Earth's equatorial plane 8268.
286 C**** with the Earth at the center and the positive x axis parallel to 8269.
287 C**** the ray from the sun to the Earth were it at vernal equinox. 8270.
288 C**** The distance from the current Earth to that ray (or x axis) is: 8271.
289 C**** DIST sin(TA+OMEGA). The sun is located at: 8272.
290 C**** 8273.
291 C**** SUN = (-DIST cos(TA+OMEGA), 8274.
292 C**** -DIST sin(TA+OMEGA) cos(OBLIQ), 8275.
293 C**** DIST sin(TA+OMEGA) sin(OBLIQ)) 8276.
294 C**** SIND = sin(TA+OMEGA) sin(OBLIQ) 8277.
295 C**** COSD = sqrt(1-SIND**2) 8278.
296 C**** LAMBDA = atan[tan(TA+OMEGA) cos(OBLIQ)] - GREENW 8279.
297 C**** GREENW = 2*3.14159 DAY (EDAYPY-1)/EDAYPY 8280.
298 C**** 8281.
299 SINDD = SIN(TA+OMEGA)*SIN(DOBLIQ) 8282.
300 COSD = DSQRT(1.-SINDD*SINDD) 8283.
301 SIND = SINDD 8284.
302 C GREENW = 2.*PI*(DAY-VERQNX)*(EDAYPY+1.)/EDAYPY 8285.
303 C SUNX = -COS(TA+OMEGA) 8286.
304 C SUNY = -SIN(TA+OMEGA)*COS(DOBLIQ) 8287.
305 C LAMBDA = DATAN2(SUNY,SUNX)-GREENW 8288.
306 C LAMBDA = DMOD(LAMBDA,2.*PI) 8289.
307 C**** 8290.
308 RETURN 8291.
309 END 8292.

  ViewVC Help
Powered by ViewVC 1.1.22