1 |
c source 2007 sokolov users 76203 Apr 25 15:29 atmosphere.F |
2 |
|
3 |
#include "ctrparam.h" |
4 |
|
5 |
! ========================================================== |
6 |
! |
7 |
! Atmosphere.F: Former main program of the MIT Global Climate and |
8 |
! Biogeochemistry Model. |
9 |
! |
10 |
! ---------------------------------------------------------- |
11 |
! |
12 |
! Repacking Note: This version is combined with main.f of |
13 |
! several originally separated model versions such as |
14 |
! CliChem 3.0, CliChemNem, as well as MODEL24x11. |
15 |
! |
16 |
! The chemistry module, ocean CO2 module, |
17 |
! and TEM module are all controlled by cpp now. |
18 |
! |
19 |
! Chien Wang |
20 |
! MIT Joint Program for the Science and Policy |
21 |
! of Global Change |
22 |
! |
23 |
! ---------------------------------------------------------- |
24 |
! |
25 |
! Revision History: |
26 |
! |
27 |
! When Who What |
28 |
! ---- ---------- ------- |
29 |
! 073100 Chien Wang Created from CliChem3.0 and MODEL24x11 |
30 |
! 100500 Andrei Converted to subroutine. When called first |
31 |
! time does only initialization. |
32 |
! Creates monthly data for TEM |
33 |
! |
34 |
! ========================================================== |
35 |
|
36 |
|
37 |
SUBROUTINE ATMOSPHERE(DTATM,mndriver) |
38 |
C**** MD2G04 BD2G04 MD2G04 01/02/93 0.1 |
39 |
C**** OPT(3) 0.2 |
40 |
C**** 0.3 |
41 |
C**** Dynamics and physics programs for 2-D model. 0.4 |
42 |
C**** Like D2G04 but run on work station. 0.5 |
43 |
|
44 |
#include "BD2G04.COM" 1. |
45 |
#include "ODIFF.COM" |
46 |
#include "run.COM" 1. |
47 |
|
48 |
#include "chem_para" |
49 |
#include "chem_com" |
50 |
|
51 |
#if ( defined CPL_CHEM ) |
52 |
! |
53 |
#include "chem_tmp" |
54 |
integer hrcnt, cnt3hr(8) ! for ozone impact |
55 |
real sfc3hro3(nlat,8) |
56 |
creal*4 sfc3hro3(nlat,8) |
57 |
! |
58 |
#endif |
59 |
|
60 |
COMMON/INTA/COE1(01,01,01),COE2(01,01,01) 1.1 |
61 |
c DIMENSION ACO(36,01),BSI(36,01),CCO(36,01),DSI(36,01) 1.2 |
62 |
COMMON/SPEC1/ 1.3 |
63 |
* XA(IM0,JM0),XB(IM0,JM0),YA(IM0,JM0),YB(IM0,JM0),ZA(IM0,JM0) |
64 |
&,ZB(IM0,JM0) 1.4 |
65 |
COMMON/SPEC2/KM,KINC,COEK,C3LAND(IO0,JM0),C3OICE(IO0,JM0) 1.5 |
66 |
* ,C3LICE(IO0,JM0),WMGE(IO0,JM0),TSSFC(1,JM0,4) 1.6 |
67 |
COMMON/EPARA/VTH(JM0,LM0),WTH(JM0,LM0),VU(JM0,LM0),VV(JM0,LM0) |
68 |
&,DQSDT(JM0,LM0) 1.7 |
69 |
* ,DWV(JM0),PHIT(JM0,LM0),TPRIM2(JM0,LM0),WU(JM0,LM0),CKS,CKN 1.8 |
70 |
* ,WQ(JM0,LM0),VQ(JM0,LM0),MRCHT 1.9 |
71 |
COMMON U,V,T,P,Q 2. |
72 |
COMMON/WORK1/WORKX(IM0,JM0,LM0),UT(IM0,JM0,LM0),VT(IM0,JM0,LM0), 3. |
73 |
* TT(IM0,JM0,LM0),PT(IM0,JM0),QT(IM0,JM0,LM0) 4. |
74 |
COMMON/WORK2/UX(IM0,JM0,LM0),VX(IM0,JM0,LM0),TX(IM0,JM0,LM0) |
75 |
&,PX(IM0,JM0) 5. |
76 |
COMMON/OLDZO/ZMLOLD(IO0,JM0) |
77 |
C COMMON/KEYS/KEYNR(42,50) 8. |
78 |
CHARACTER C*4,CYEAR*4,CMMND*80 8.1 |
79 |
DIMENSION C(39),JC(100),RC(161) 8.2 |
80 |
EQUIVALENCE (JC(1),IM),(C(1),XLABEL(1),LABEL1),(RC(1),TAU) 8.3 |
81 |
CHARACTER*8 LABSSW,LABEL1,OFFSSW/'XXXXXXXX'/ 8.4 |
82 |
LOGICAL EVENT,wr25,HPRNT,TRANSR,LHORDIF 9. |
83 |
& ,CONTRR,OBSFOR,FIRST,NOCLM |
84 |
common/conprn/HPRNT,JPR,LPR |
85 |
common/wrcom/wr25,TRANSR,CONTRR,OBSFOR |
86 |
COMMON/CWMG/WMGEA(JM0),NWMGEA(JM0),RIGA(JM0),DTAV(JM0),DQAV(JM0), |
87 |
*Z0AV(JM0),WSAV(JM0),WS0AV(JM0),TAUAV(JM0) |
88 |
COMMON/OCN/TG3M(1,JM0,12),RTGO(1,JM0,lmo),STG3(1,JM0),DTG3(1,JM0) |
89 |
common/SURRAD/TRSURF(JM0,4),SRSURF(JM0,4) |
90 |
dimension RTGOAV(JM0,lmo) |
91 |
common/tprmtg/tprmg(JM0),ntprmg(JM0) |
92 |
common/aexpc/AEXP,ISTRT1,ISTRTCHEM,LYEAREM |
93 |
common/mixlr/Z1OAV(JM0),NZ1OAV(JM0) |
94 |
common/flxio/FLIO(JM0),NFLIO(JM0) |
95 |
common/surps/srps(JM0+3),nsrps |
96 |
c character *19 buf |
97 |
c character *8 buf1 |
98 |
character *120 file1,file2,plotfl,nwrfl,qffile,clfile |
99 |
CHARACTER*4 AMONTH(12),JMONTHPR |
100 |
common/files/file1,file2,flotfl,nwrfl,qffile,clfile |
101 |
common/PRNT1/NCOMP |
102 |
common/Dscale/DWAV0(JM0) |
103 |
COMMON/CO2TRND/ALFFOR,CO2TR |
104 |
COMMON/FRMIC/ FRMDICE(JM0) |
105 |
common/ BACKGRGHG/GHGBGR(5) |
106 |
DATA AMONTH/'JAN','FEB','MAR','APR','MAY','JUNE','JULY' |
107 |
& ,'AUG','SEP','OCT','NOV','DEC'/ |
108 |
dimension fluxnep(jm0) |
109 |
logical odifcarbon |
110 |
|
111 |
#if ( defined CLM ) |
112 |
# include "CLM.h" |
113 |
# if ( defined CPL_TEM ) |
114 |
C For TEM |
115 |
# include "TEM.h" |
116 |
# endif |
117 |
#endif |
118 |
|
119 |
#if ( defined CPL_OCEANCO2 ) |
120 |
#include "OCM.h" |
121 |
common /Garyflux/pC_atm(jm0),wind_amp,fluxco2(jm0) |
122 |
# if ( defined ML_2D ) |
123 |
common/Garyclim/tggary(jm0),wsgary(jm0),areaml(jm0),arsrf(jm0) |
124 |
common/Garydiff/depthml(jm0),edzcar(jm0),dzg(lmo),dzog(lmo-1), |
125 |
&Rco2(jm0,lmo),edohd(lmo),zg(lmo),focean(jm0) |
126 |
common /Garychem/Hg(jm0) |
127 |
common/qfl/QFLUX(JM0,0:13),ZOAV(JM0),QFLUXT(JM0) |
128 |
common /Garyvdif/iyearocm,vdfocm,acvdfc |
129 |
common /Garyvlog/odifcarbon,ocarcont |
130 |
common /Garykvct/cfkvct,edzcart(jm0) |
131 |
# endif |
132 |
#endif |
133 |
|
134 |
INTEGER dtatm, mndriver !routine arguments jrs |
135 |
|
136 |
#if ( defined OCEAN_3D || defined ML_2D ) |
137 |
#include "AGRID.h" |
138 |
Cjrs elimated COM file/moved elsewhere#include "HRD4OCN.COM" |
139 |
dimension oimeltt(jm0),dhdtav(jm0),devdtav(jm0) |
140 |
#endif |
141 |
|
142 |
C **** CLEAR SKY |
143 |
common/clrsk/CLEAR(JM0),NCLR(JM0),AJCLR(JM0,12),BJCLR(JM0,12), |
144 |
* CJCLR(JM0,12) |
145 |
! common/TSUR/TSURFC(JM0,0:13),TSURFT(JM0),TSURFD(JM0),DTSURF(JM0) |
146 |
#include "TSRF.COM" |
147 |
real TSURFW(JM0),TLANDW(JM0) |
148 |
integer CLEAR |
149 |
|
150 |
common /ATCO2/atm_co2(jm0) |
151 |
|
152 |
#if ( defined CPL_NEM ) |
153 |
C For Emission |
154 |
c === 031097 |
155 |
real ECH4COR(JM0),ECH4PY(JM0,12), ECH4OUT(JM0),EPJT(JM0) |
156 |
&,ECH4CTR(JM0) |
157 |
real EN2OCOR(JM0),EN2OPY(JM0,12), EN2OOUT(JM0),EPJTN2O(JM0) |
158 |
&,EN2OCTR(JM0) |
159 |
c ECH4CHIEN and EN2OCHIEN are used in chemistry model |
160 |
common/EMFORCHIEN/ECH4CHIEN(JM0),EN2OCHIEN(JM0) |
161 |
C For Emission |
162 |
#endif |
163 |
dimension NDAYMN(12) |
164 |
data NDAYMN /31,28,31,30,31,30,31,31,30,31,30,31/ |
165 |
INTEGER JDOFM(13) |
166 |
DATA JDOFM/0,31,59,90,120,151,181,212,243,273,304,334,365/ |
167 |
DATA FIRST/.TRUE./ |
168 |
SAVE |
169 |
|
170 |
C AJCLR |
171 |
C 1 SW INC AT P0 RD (AJ(1)) |
172 |
C 2 SW ABS BELOW P0 RD (AJ(2)) |
173 |
C 3 SW ABS BELOW P1 RD (AJ(3)) |
174 |
C 4 SW ABS AT Z0 RD (AJ(6)) |
175 |
C 5 SW INC AT Z0 RD (AJ(5)) |
176 |
C 6 LW INC AT Z0 RD (AJ(67)) |
177 |
C 7 NET LW AT Z0 SF (AJ(9)) |
178 |
C 8 NET LW AT P0 RD (AJ(7)) |
179 |
C 9 NET LW AT P1 RD (AJ(8)) |
180 |
C 10 NET RAD AT P0 DG (AJ(10)) |
181 |
C 11 NET RAD AT P1 DG (AJ(11)) |
182 |
C 12 NET RAD AT Z0 DG (AJ(12)) |
183 |
C **** CLEAR SKY |
184 |
INTFX(XTAU)=INT(XTAU*XINT+.5) 10. |
185 |
EVENT(XTAU)=MOD(ITAU,INTFX(XTAU)).LT.IDTHR 11. |
186 |
|
187 |
! |
188 |
! --- assign input and output files |
189 |
! Note: Due to historical reasons, no all files are |
190 |
! assigned here - in case you want to search |
191 |
! something use |
192 |
! grep -i "needed characters" *.F |
193 |
! |
194 |
! You have my sympathy. |
195 |
! |
196 |
! Chien 080400 |
197 |
! |
198 |
|
199 |
!#include "assign.inc" |
200 |
c |
201 |
if(FIRST) then |
202 |
c |
203 |
CALL CLOCKS (MNOW) 12. |
204 |
C CALL ERRSET (206,1,0,0,0,301) 13. |
205 |
C CALL ERRSET (208,256,-1) 14. |
206 |
MBEGIN=MNOW 14.1 |
207 |
c CALL HARMO(36,1,24,ACO,BSI,CCO,DSI,1) 14.5 |
208 |
IPFLAG=0 15. |
209 |
C CALL ENQJOB 16. |
210 |
CALL INPUT 17. |
211 |
|
212 |
#if ( defined CPL_CHEM ) |
213 |
! |
214 |
! --- Chemistry model |
215 |
! --- Set year and month index: |
216 |
! |
217 |
myyear = 1 !year from starting point |
218 |
myyear = JYEAR-1976 !year from starting point |
219 |
! myyear = JYEAR-1891 !year from starting point |
220 |
print *,'Emissioms for ',nchemyr,' year' |
221 |
myyearlast = min(LYEAREM-1976,nchemyr) !last year of emission |
222 |
! myyearlast = min(LYEAREM-1891,nchemyr) !last year of emission |
223 |
! myyear = min(myyear,nchemyr) |
224 |
myyear = min(myyear,myyearlast) |
225 |
mymonth = 1 !month |
226 |
|
227 |
ihaha = 1 |
228 |
ievenodd = 0 ! even hour 0 |
229 |
! odd hour 1 |
230 |
|
231 |
call chembudget (p) |
232 |
! |
233 |
! --- Set cfcnsf = 0.0 |
234 |
! |
235 |
do k=1,nlev |
236 |
cfcnsf(k) = 0.0 |
237 |
enddo |
238 |
print *,'First year of emissions ', myyear |
239 |
! print *,'Emission will be fixed at year ',LYEAREM |
240 |
print *,'Emission will be fixed at year ',1976+myyearlast |
241 |
! print *,'Emission will be fixed at year ',1891+myyearlast |
242 |
! |
243 |
#endif |
244 |
|
245 |
C |
246 |
KDISK0=500+KDISK |
247 |
ndaa=3 |
248 |
c LHORDIF=.false. |
249 |
LHORDIF=.true. |
250 |
if(.not.LHORDIF)print *,' NO HOR. DIFFUSION for Q' |
251 |
if(LHORDIF)print *,' HOR. DIFFUSION for Q after COND' |
252 |
print *,' RADIATION EVERY ',NRAD/NDYN,' HOURS' |
253 |
|
254 |
odifcarbon=.false. |
255 |
#if ( defined CPL_OCEANCO2 && defined ML_2D ) |
256 |
odifcarbon=.true. |
257 |
wind_amp=1. |
258 |
dtco2=3600.*24. |
259 |
c ncallgary=0 |
260 |
do j=1,jm |
261 |
areaml(j)=dxyp(j)*(1-FDATA(1,J,2)) |
262 |
focean(j)=(1-FDATA(1,J,2)) |
263 |
DEPTHML(j)=ZOAV(j) |
264 |
end do ! j |
265 |
print *,' RCO2' |
266 |
! print 5001,((Rco2(j,k),j=1,jm),k=1,LMO) |
267 |
print 5001,((Rco2(j,k)*1.e2,j=1,jm),k=1,LMO) |
268 |
dzog(1)=10./SQRT(1.7010587) |
269 |
dzg(2)=10. |
270 |
do l=2,lmo-1 |
271 |
dzog(L)=dzog(L-1)*1.7010587 |
272 |
dzg(L+1)=dzg(L)*1.7010587 |
273 |
end do |
274 |
zg(1)=50. |
275 |
dzg(1)=100. |
276 |
do l=2,lmo |
277 |
zg(l)=zg(l-1)+0.5*(dzg(l-1)+dzg(l)) |
278 |
end do |
279 |
do l=1,lmo |
280 |
c edohd(l)=2.5e4/(zg(l)/zg(1))**1.0 |
281 |
C New coefficients for horizontal diffusion 11/16/00 |
282 |
edohd(l)=1.55e4-9.231e3*(atan((zg(l)-300)/50)) |
283 |
end do |
284 |
#endif |
285 |
|
286 |
|
287 |
#if ( defined CPL_CHEM ) |
288 |
! |
289 |
! --- Initialization of chemistry model: |
290 |
! |
291 |
c call cheminit(ISTRT1,T,q) |
292 |
c 11/30/2000 ISTRTCHEM for restart of chemistry model |
293 |
call cheminit(ISTRTCHEM,T,q) |
294 |
c print *,'H2SO4 after cheminit ',h2so4(1,33,1) |
295 |
|
296 |
|
297 |
! |
298 |
! --- tmp output |
299 |
! |
300 |
copen(124,file='OUTPUT/hro3',form='unformatted', |
301 |
c & status='unknown') |
302 |
hrcnt = 1 |
303 |
cnt3hr(:) = 0 |
304 |
sfc3hro3(:,:) = 0.0 |
305 |
! |
306 |
#endif |
307 |
|
308 |
print *,' IRAND=',IRAND |
309 |
print *,' NCNDS=',NCNDS |
310 |
print *,' after INPUT MRCHT=',MRCHT |
311 |
JDAY00=JDAY-1 |
312 |
AEXP4=AEXP |
313 |
TAU4=TAU |
314 |
print *,' ISTRT1=',ISTRT1 |
315 |
if(ISTART.eq.2.or.ISTRT1.eq.0)then |
316 |
nwr=1 |
317 |
WRITE (546) AEXP4,TAU4,XLABEL |
318 |
write(547)AEXP,nwr |
319 |
elseif(ISTART.eq.10)then |
320 |
read(547)AEXPX,nwr |
321 |
print *,' NWR=',nwr |
322 |
if(abs(AEXPX-AEXP).gt.0.05)then |
323 |
print *,' DISAGREEMENT BETWEEN AEXPX AND AEXP FILE 47' |
324 |
print *,' AEXPX=',AEXPX,' AEXP=',AEXP |
325 |
stop |
326 |
endif |
327 |
READ (546) AEXP4 |
328 |
if(abs(AEXP4-AEXP).gt.0.05)then |
329 |
print *,' DISAGREEMENT BETWEEN AEXP4 AND AEXP FILE 46' |
330 |
print *,' AEXP4=',AEXP4,' AEXP=',AEXP |
331 |
stop |
332 |
endif |
333 |
C*** |
334 |
do 245 nr=1,nwr-1 |
335 |
READ (546) |
336 |
245 continue |
337 |
endif |
338 |
WRITE(503) OFFSSW 17.1 |
339 |
REWIND 503 17.2 |
340 |
c CALL FRTR0(IO) 18. |
341 |
KBGN=KINC+1 18.5 |
342 |
KM2=KM*2-1 18.51 |
343 |
KM3=KM2 18.52 |
344 |
KB1=3 18.53 |
345 |
KB2=5 18.54 |
346 |
KB3=5 18.55 |
347 |
IS=IM 18.56 |
348 |
IF(KM.EQ.1) IS=1 18.57 |
349 |
FIO=IO 18.58 |
350 |
JMM2=JM-2 18.59 |
351 |
HR24=24. 18.6 |
352 |
HR12=12. 18.61 |
353 |
MSTART=MNOW+MDYN+MCNDS+MRAD+MSURF+MDIAG+MELSE 19. |
354 |
LMT3P1=LM*3+1 20. |
355 |
C**** INITIALIZE TIME PARAMETERS 21. |
356 |
DTHR=DT/3600. 22. |
357 |
IDTHR=INTFX(DTHR) 23. |
358 |
DTFS=DT*2./3. 24. |
359 |
DTLF=2.*DT 25. |
360 |
NDYNO=MOD(NDYN,2) 26. |
361 |
I24=INTFX(24.) 27. |
362 |
NSTEP0=.5+TAUI/DTHR 28. |
363 |
NSTEP=INT(.5+TAU/DTHR)-NSTEP0 29. |
364 |
NSTEP1=NSTEP 29.5 |
365 |
NSTEP2=NSTEP 29.6 |
366 |
MRCHT=0. 29.7 |
367 |
ITAU=(NSTEP+NSTEP0)*IDTHR 30. |
368 |
TAU=FLOAT(ITAU)/XINT 31. |
369 |
IDAY=1+ITAU/I24 32. |
370 |
TOFDAY=(ITAU-(IDAY-1)*I24)/XINT 33. |
371 |
! if(ISTART.eq.2.or.ISTRT1.eq.0.and..not.CONTRR)then |
372 |
! do 458 j=1,JM |
373 |
! TSURFD(j)=0. |
374 |
! TSURFT(j)=0. |
375 |
! 458 continue |
376 |
! endif |
377 |
if(JDATE.eq.100)then |
378 |
print *,JDATE,JMONTH,JYEAR |
379 |
print *,' main before daily0' |
380 |
print *,' T1 ocean' |
381 |
print 5001,(ODATA(1,j,1),j=1,JM0) |
382 |
print *,' T2 ocean' |
383 |
print 5001,(ODATA(1,j,4),j=1,JM0) |
384 |
print *,' T3 ocean' |
385 |
print 5001,(ODATA(1,j,5),j=1,JM0) |
386 |
print *,' sea ice' |
387 |
print 5002,(ODATA(1,j,2),j=1,JM0) |
388 |
endif |
389 |
CALL DAILY_NEW0 34. |
390 |
print *,' Main after DAILYNEW0 JYEAR=',JYEAR |
391 |
print *,"DT2MGL" |
392 |
print *,DT2MGL |
393 |
print *,"DT2MLD" |
394 |
print *,DT2MLD |
395 |
#if( !defined OCEAN_3D&& !defined ML_2D ) |
396 |
CALL DAILY_OCEAN |
397 |
print *,' AFTER DAILY_OCEAN IDAY=',IDAY,' IYEAR=',IYEAR |
398 |
print *,' JYEAR=',JYEAR,' JDAY=',JDAY |
399 |
print *,' JDATE=',JDATE,' JMONTH=',JMONTH |
400 |
#endif |
401 |
if(JDATE.eq.100)then |
402 |
print *,JDATE,JMONTH,JYEAR |
403 |
print *,' main after daily0' |
404 |
print *,' T1 ocean' |
405 |
print 5001,(ODATA(1,j,1),j=1,JM0) |
406 |
print *,' T2 ocean' |
407 |
print 5001,(ODATA(1,j,4),j=1,JM0) |
408 |
print *,' T3 ocean' |
409 |
print 5001,(ODATA(1,j,5),j=1,JM0) |
410 |
print *,' sea ice' |
411 |
print 5002,(ODATA(1,j,2),j=1,JM0) |
412 |
endif |
413 |
c print *,' Z12O' |
414 |
c print *,(Z12O(1,j),j=1,JM0) |
415 |
c99 CONTINUE 34.993 |
416 |
CALL CLOCKS (MLAST) 35. |
417 |
MINC=MNOW-MLAST 36. |
418 |
MELSE=MELSE+MINC 37. |
419 |
PERCNT=100.*MELSE/(MSTART-MLAST+1.E-5) 38. |
420 |
c WRITE (6,901) IDAY,TOFDAY,JDATE,JMONTH,MINC,MELSE,PERCNT,TAU 39. |
421 |
DOPK=1. 40. |
422 |
MODD5K=1000 41. |
423 |
IF(TAU.GE.TAUE) GO TO 820 42. |
424 |
HPRNT=.TRUE. |
425 |
HPRNT=.FALSE. |
426 |
JPR=7 |
427 |
JPR=1 |
428 |
JPR=14 |
429 |
LPR=1 |
430 |
print *,' MAIN MRCHT=',MRCHT |
431 |
c |
432 |
c print *,' TAUE=',TAUE |
433 |
TAUEM=TAUE |
434 |
FIRST=.FALSE. |
435 |
C |
436 |
c TAU for coupler |
437 |
c |
438 |
TAUATM=TAU |
439 |
MONTHATM=JMONTH |
440 |
JDATEATM=JDATE |
441 |
JYEARATM=JYEAR |
442 |
C |
443 |
#if ( defined CPL_OCEANCO2 ) |
444 |
do j=1,jm |
445 |
fluxco2(j)=0.0 |
446 |
enddo |
447 |
#endif |
448 |
#if ( defined CPL_CHEM) && ( defined CPL_TEM ) |
449 |
C For TEM |
450 |
if(ISTRT1.eq.0) then |
451 |
c New run |
452 |
c Reading from flin_nep |
453 |
read(537)adupt,temco2 |
454 |
else |
455 |
c Restart of the run |
456 |
c Reading from last_nep |
457 |
read(367)adupt,temco2 |
458 |
! & ,temch4,temn2o |
459 |
rewind 367 |
460 |
endif |
461 |
! |
462 |
! adupt= 1.459814341652516 |
463 |
! adupt= 0.9078891180588442 |
464 |
! adupt= 0.25 |
465 |
! adupt= -0.1123070421398009 |
466 |
! |
467 |
! adupt= adupt+0.9 ! for vs23 |
468 |
|
469 |
aduptd=adupt/(365.*JM) |
470 |
temnepgl=0.0 |
471 |
do j=1,jm |
472 |
temnepgl=temnepgl+temco2(j) |
473 |
enddo |
474 |
print *,'ADNEP=',adupt |
475 |
print *,'Initial NEP=',adupt+temnepgl*1.e-3 |
476 |
temup0=0.0 |
477 |
#endif |
478 |
#if (!defined OCEAN_3D && !defined ML_2D) |
479 |
if(TRANSR)then |
480 |
if(LMO.eq.11) then |
481 |
call ODIFS |
482 |
elseif(LMO.eq.12) then |
483 |
call ODIFS12 |
484 |
else |
485 |
Print *,' Wrong LMO',LMO |
486 |
stop |
487 |
endif |
488 |
endif |
489 |
#endif |
490 |
!#if (defined PREDICTED_GASES) |
491 |
#if (defined CPL_TEM || defined CPL_OCEANCO2 ) |
492 |
if(OBSFOR) then |
493 |
call obsco2(iyear,imontha) |
494 |
mnobco2=imonth |
495 |
endif |
496 |
#endif |
497 |
!#endif |
498 |
CJRS removed below from ocean_3d |
499 |
#ifdef ML_2D |
500 |
do j=1,jm |
501 |
do i=1,io |
502 |
CLAND4OCEAN(i,j)= C3LAND(I,J) |
503 |
enddo |
504 |
enddo |
505 |
IDAYM=IDAY |
506 |
JDAYM=JDAY |
507 |
JDATEM=JDATE |
508 |
JMONTHM=JMONTH |
509 |
JYEARM=JYEAR |
510 |
TAUML=TAU |
511 |
TOFDAYML=TOFDAY |
512 |
KOCEANM=KOCEAN |
513 |
#endif |
514 |
#if (defined OCEAN_3D || defined ML_2D) |
515 |
do l=1,lm |
516 |
sigfl(l)=sig(l) |
517 |
enddo |
518 |
print *,'SIGFL' |
519 |
print *,sigfl |
520 |
#endif |
521 |
#if ( defined CPL_CHEM ) |
522 |
do j=1,jm |
523 |
atm_co2(j)=zco2(1,j,1) |
524 |
& *28.97296245/44.0*1.e-9 |
525 |
!ppb(m) to kg per volume base |
526 |
& *1.e6 |
527 |
enddo |
528 |
#else |
529 |
if(.not.OBSFOR) then |
530 |
CFF=1. |
531 |
if (CO2.gt.0.0)CFF=CO2 |
532 |
do j=1,jm |
533 |
atm_co2(j)=CFF*GHGBGR(1) |
534 |
enddo |
535 |
endif |
536 |
#endif |
537 |
#if (defined CPL_TEM || defined CPL_OCEANCO2 ) |
538 |
print *,'ATM_CO2' |
539 |
print *,atm_co2 |
540 |
#endif |
541 |
JDAYLAST=-1 |
542 |
ncallclm=0 |
543 |
NOCLM=.true. |
544 |
#if ( defined CLM ) |
545 |
NOCLM=.false. |
546 |
#endif |
547 |
print *,' atmosphere DTATM=',DTATM |
548 |
print *,' It is running' |
549 |
print *,'End of atmospheric model initialization' |
550 |
print *,' ' |
551 |
print *,' ' |
552 |
print *,' JMONTHM= ',JMONTHM |
553 |
print *,' TOFDAYML= ',TOFDAYML |
554 |
print *,' ' |
555 |
return |
556 |
endif ! first |
557 |
C**** 43. |
558 |
C**** MAIN LOOP 44. |
559 |
C**** 45. |
560 |
C |
561 |
cprint *,' atmosphere TAU=',tau |
562 |
TAUE=TAU+DTATM |
563 |
c HPRNT=TAU.ge.17520.0.and.TAU.lt.17545.0 |
564 |
c print *,' TAUE=',TAUE |
565 |
#if ( defined OCEAN_3D || defined ML_2D) |
566 |
do j=1,jm0 |
567 |
tauu(j)=0. |
568 |
tauv(j)=0. |
569 |
precip(j)=0. |
570 |
evao(j)=0. |
571 |
evai(j)=0. |
572 |
hfluxo(j)=0. |
573 |
hfluxi(j)=0. |
574 |
dhfodtg(j)=0. |
575 |
devodtg(j)=0. |
576 |
dhfidtg(j)=0. |
577 |
devidtg(j)=0. |
578 |
dhfodtgeq(j)=0. |
579 |
devodtgeq(j)=0. |
580 |
dhfidtgeq(j)=0. |
581 |
devidtgeq(j)=0. |
582 |
tempr(j)=0. |
583 |
cjrs change var name to arunoff |
584 |
arunoff(j)=0. |
585 |
solarinc_ice(j)=0. |
586 |
solarnet_ice(j)=0. |
587 |
solarinc_ocean(j)=0. |
588 |
solarnet_ocean(j)=0. |
589 |
Cjrs not used anymore (?) surfpr(j)=0. |
590 |
naveo(j)=0. |
591 |
navei(j)=0. |
592 |
navrad(j)=0. |
593 |
navrado(j)=0. |
594 |
c |
595 |
ps4ocean(j)=0. |
596 |
do l=1,lm |
597 |
qyz4ocean(j,l)=0. |
598 |
tyz4ocean(j,l)=0. |
599 |
enddo |
600 |
c |
601 |
enddo |
602 |
#endif |
603 |
#ifdef OCEAN_3D |
604 |
C get data from atm-ocean common block |
605 |
do j=1,jm0 |
606 |
ODATA(1,j,1)=mmsst(j) |
607 |
ODATA(1,j,2)=mmfice(j) |
608 |
GDATA(1,j,3)=mmtice(j) |
609 |
GDATA(1,j,1)=mmsnowm(j) |
610 |
ODATA(1,j,3)=mmicem(j) |
611 |
GDATA(1,j,7)=0.5*(mmtice2(j)+mmtice1(j)) |
612 |
# ifdef CPL_OCEANCO2 |
613 |
fluxco2(j)=fluxco2(j) + dtatm*3600.*mmco2flux(j) |
614 |
# endif |
615 |
enddo |
616 |
#endif |
617 |
WLMMAX=0.0 |
618 |
C |
619 |
100 IF(.NOT.EVENT(TAUT)) GO TO 200 46. |
620 |
c HPRNT=TAU.ge.17520.00 |
621 |
NSTEP1=NSTEP 46.5 |
622 |
C**** WRITE RESTART INFORMATION ONTO DISK 47. |
623 |
120 CALL RFINAL (IRAND) 48. |
624 |
IF(NSTEP.EQ.NSTEP2) GO TO 116 48.3 |
625 |
DO 115 K=1,22 48.5 |
626 |
DO 115 J=1,JM 48.6 |
627 |
DO 115 I=2,IO 48.7 |
628 |
115 GDATA(I,J,K)=GDATA(1,J,K) 48.9 |
629 |
116 CONTINUE 48.91 |
630 |
if(wr25.and.ISTART.eq.2)then |
631 |
print *,' main write' |
632 |
print *,' T1 ocean' |
633 |
print 5001,(ODATA(1,j,1),j=1,JM0) |
634 |
print *,' T2 ocean' |
635 |
print 5001,(ODATA(1,j,4),j=1,JM0) |
636 |
print *,' T3 ocean' |
637 |
print 5001,(ODATA(1,j,5),j=1,JM0) |
638 |
REWIND KDISK0 49. |
639 |
if(TRANSR)then |
640 |
WRITE(KDISK0) AEXP,TAU,JC,C,RC,KEYNR,U,V,T,P,Q,ODATA,GDATA,BLDATA, 50. |
641 |
* RQT,SRHR,TRHR,(AJ(K,1),K=1,KACC),TAU,TSSFC,CKS,CKN,WMGE,TPRIM2 51. |
642 |
* ,MRCHT,TRSURF,SRSURF,TLANDW,TSURFW,DWAV0 |
643 |
* ,TG3M,RTGO,STG3,DTG3 |
644 |
print *,' STG3' |
645 |
print 5001,(STG3(1,j),j=1,JM0) |
646 |
print *,' DTG3/356' |
647 |
print 5001,(DTG3(1,j)/365.,j=1,JM0) |
648 |
print *,' RTGO' |
649 |
print 5001,((RTGO(1,j,k),j=1,JM0),k=1,lmo) |
650 |
5001 format(23f6.1) |
651 |
5002 format(23f6.3) |
652 |
else |
653 |
WRITE(KDISK0) AEXP,TAU,JC,C,RC,KEYNR,U,V,T,P,Q,ODATA,GDATA,BLDATA, 50. |
654 |
* RQT,SRHR,TRHR,(AJ(K,1),K=1,KACC),TAU,TSSFC,CKS,CKN,WMGE,TPRIM2 51. |
655 |
* ,MRCHT,TRSURF,SRSURF,TLANDW,TSURFW,DWAV0 |
656 |
endif |
657 |
REWIND KDISK0 52. |
658 |
end if ! ISTART.eq.2 |
659 |
CALL CLOCKS (MNOW) 53. |
660 |
MINC=MLAST-MNOW 54. |
661 |
MELSE=MELSE+MINC 55. |
662 |
PERCNT=100.*MELSE/(MSTART-MNOW+1.E-5) 56. |
663 |
MLAST=MNOW 59. |
664 |
C**** TEST FOR TERMINATION OF RUN 60. |
665 |
200 READ (503,END=210) LABSSW 61. |
666 |
c HPRNT=TAU.gt.45.0.and.TAU.lt.60.0 |
667 |
c HPRNT=TAU.gt.470.0.and.TAU.lt.550.0 |
668 |
NCOMP=0 |
669 |
210 REWIND 503 61.1 |
670 |
IF(LABSSW.EQ.LABEL1) KSS6=1 61.2 |
671 |
IF(KSS6.EQ.1) GO TO 800 62. |
672 |
IF(TAU+.06125.GE.TAUE) GO TO 820 63. |
673 |
JDAY00=JDAY |
674 |
C**** IF TIME TO ZERO OUT DIAGNOSTIC ACCUMULATING ARRAYS, DO SO 64. |
675 |
C**** (NORMALLY DONE AT THE BEGINNING OF A MONTH) 65. |
676 |
IF (TAU.EQ.TAUI) GO TO 260 66. |
677 |
IF(.NOT.EVENT(24.)) GO TO 290 67. |
678 |
DO 250 K=1,13 68. |
679 |
IF(JDAY.EQ.NDZERO(K)) GO TO 260 69. |
680 |
250 CONTINUE 70. |
681 |
GO TO 290 71. |
682 |
260 CONTINUE |
683 |
TAU0=TAU 72. |
684 |
IDAY0=IDAY 73. |
685 |
TOFDY0=TOFDAY 74. |
686 |
JDATE0=JDATE 75. |
687 |
JMNTH0=JMONTH 76. |
688 |
JYEAR0=JYEAR 77. |
689 |
DO 270 I=1,12 78. |
690 |
270 IDACC(I)=0 79. |
691 |
NODIFS=0 |
692 |
nsrps=0. |
693 |
DO 280 K=1,KACC 80. |
694 |
280 AJ(K,1)=0. 81. |
695 |
do 5280 j=1,JM |
696 |
tprmg(j)=0. |
697 |
ntprmg(j)=0. |
698 |
Z1OAV(j)=0. |
699 |
NZ1OAV(j)=0 |
700 |
NFLIO(J)=0 |
701 |
FLIO(J)=0. |
702 |
NCLR(J)=0 |
703 |
do 5282 k=1,lmo |
704 |
RTGOAV(j,k)=0. |
705 |
5282 continue |
706 |
do 5281 n=1,12 |
707 |
AJCLR(J,n)=0. |
708 |
BJCLR(J,n)=0. |
709 |
CJCLR(J,n)=0. |
710 |
5281 continue |
711 |
5280 continue |
712 |
do 5286 j=1,jm+3 |
713 |
srps(j)=0. |
714 |
5286 continue |
715 |
|
716 |
c#if ( defined CPL_OCEANCO2 && defined ML_2D ) |
717 |
c call zerogary(ncallgary) |
718 |
c call zerogary |
719 |
c#endif |
720 |
|
721 |
CALL DIAG9A (1) 82. |
722 |
|
723 |
#if ( defined CPL_NEM ) |
724 |
C For Emission |
725 |
c === 031097 |
726 |
DO 5655 MONTH=1,12 |
727 |
IF(JDAY.LE.JDOFM(MONTH+1)) GO TO 5656 |
728 |
5655 CONTINUE |
729 |
5656 MNHTEM=MONTH-1 |
730 |
if(MNHTEM.eq.0)MNHTEM=12 |
731 |
do J=1,JM |
732 |
c ECH4CHIEN(J)=temch4(J)/NDAYMN(MNHTEM)/1000. |
733 |
c EN2OCHIEN(J)=temn2o(J)/NDAYMN(MNHTEM)/1000. |
734 |
|
735 |
ECH4CHIEN(J)=temch4(J)/NDAYMN(MNHTEM) |
736 |
EN2OCHIEN(J)=temn2o(J)/NDAYMN(MNHTEM) |
737 |
|
738 |
enddo |
739 |
|
740 |
C For Emission |
741 |
#endif |
742 |
|
743 |
290 CONTINUE 83. |
744 |
C**** 84. |
745 |
C**** INTEGRATE DYNAMIC TERMS 85. |
746 |
if(HPRNT)then |
747 |
print *,' main before comp1 1',' TAU=',TAU,JDATE,JMONTH |
748 |
#include "PRNT.COM" |
749 |
print *,' GDATA(1,7,5)=',GDATA(1,7,5),' GDATA(1,7,6)=' |
750 |
* ,GDATA(1,7,6) |
751 |
endif |
752 |
C**** 86. |
753 |
MODD5D=MOD(NSTEP,NDA5D) 87. |
754 |
IF(MODD5D.EQ.0) CALL DIAG5A (2,0) 88. |
755 |
c IF(NDYNO.EQ.1) then |
756 |
c print *,NDYNO |
757 |
c print *,jm,im,LMT3P1 |
758 |
c endif |
759 |
DO 310 J=1,JM 89. |
760 |
DO 300 L=1,LMT3P1 90. |
761 |
DO 300 I=1,IM 91. |
762 |
UX(I,J,L)=U(I,J,L) 92. |
763 |
300 UT(I,J,L)=U(I,J,L) 93. |
764 |
DO 310 L=1,LM 94. |
765 |
DO 310 I=1,IM 95. |
766 |
310 QT(I,J,L)=Q(I,J,L) 96. |
767 |
if(HPRNT)then |
768 |
print *,' main before comp1 2',' TAU=',TAU |
769 |
#include "PRNT.COM" |
770 |
print *,' GDATA(1,7,5)=',GDATA(1,7,5),' GDATA(1,7,6)=' |
771 |
* ,GDATA(1,7,6) |
772 |
endif |
773 |
C**** INITIAL FORWARD STEP, QX = Q + .667*DT*F(Q) 97. |
774 |
NS=0 98. |
775 |
MRCH=0 99. |
776 |
CALL COMP1 (UX,VX,TX,PX,Q,U,V,T,P,Q,DTFS,NS) 100. |
777 |
if(HPRNT)then |
778 |
print *,' main after comp1',' TAU=',TAU,' MRCH=',MRCH |
779 |
#include "PRNT.COM" |
780 |
endif |
781 |
C |
782 |
IF(NDYNO.EQ.1) GO TO 320 101. |
783 |
C**** INITIAL BACKWARD STEP IS ODD, QT = QT + DT*F(QX) 102. |
784 |
MRCH=-1 103. |
785 |
CALL COMP1 (UT,VT,TT,PT,QT,UX,VX,TX,PX,Q,DT,NS) 104. |
786 |
if(HPRNT)then |
787 |
print *,' main after comp1',' TAU=',TAU,' MRCH=',MRCH |
788 |
#include "PRNT.COM" |
789 |
endif |
790 |
C |
791 |
GO TO 360 105. |
792 |
C**** INITIAL BACKWARD STEP IS EVEN, Q = Q + DT*F(QX) 106. |
793 |
320 NS=1 107. |
794 |
MODD5K=MOD(NSTEP+NS-NDYN+NDA5K,NDA5K) 108. |
795 |
MRCH=1 109. |
796 |
CALL COMP1 (U,V,T,P,Q,UX,VX,TX,PX,QT,DT,NS) 110. |
797 |
if(HPRNT)then |
798 |
print *,' main after comp1',' TAU=',TAU,' MRCH=',MRCH |
799 |
#include "PRNT.COM" |
800 |
endif |
801 |
C |
802 |
CD DIAGA SHOULD BE CALLED HERE BUT THEN ARRAYS MUST BE CHANGED 111. |
803 |
c |
804 |
c |
805 |
C**** ODD LEAP FROG STEP, QT = QT + 2*DT*F(Q) 112. |
806 |
340 MRCH=-2 113. |
807 |
CALL COMP1 (UT,VT,TT,PT,QT,U,V,T,P,Q,DTLF,NS) 114. |
808 |
if(HPRNT)then |
809 |
print *,' main after comp1',' TAU=',TAU,' MRCH=',MRCH |
810 |
#include "PRNT.COM" |
811 |
endif |
812 |
C |
813 |
C**** EVEN LEAP FROG STEP, Q = Q + 2*DT*F(QT) 115. |
814 |
360 NS=NS+2 116. |
815 |
MODD5K=MOD(NSTEP+NS-NDYN+NDA5K,NDA5K) 117. |
816 |
MRCH=2 118. |
817 |
CALL COMP1 (U,V,T,P,Q,UT,VT,TT,PT,QT,DTLF,NS) 119. |
818 |
if(HPRNT)then |
819 |
print *,' main after comp1',' TAU=',TAU,' MRCH=',MRCH |
820 |
#include "PRNT.COM" |
821 |
endif |
822 |
C |
823 |
IF(NS.LT.NDYN) GO TO 340 122. |
824 |
c IF(MOD(NSTEP+NS-NDYN+NDAA,NDAA).LT.MRCH) THEN 120. |
825 |
CALL DIAGA (UT,VT,TT,PT,QT,NOCLM) 121. |
826 |
if(HPRNT)then |
827 |
print *,' main after DIAGA',' TAU=',TAU,' MRCH=',MRCH |
828 |
#include "PRNT.COM" |
829 |
endif |
830 |
c ENDIF |
831 |
c IF(NS.LT.NDYN) GO TO 340 122. |
832 |
DOPK=1. 123. |
833 |
CALL CLOCKS (MNOW) 124. |
834 |
MINC=MLAST-MNOW 125. |
835 |
MDYN=MDYN+MINC 126. |
836 |
MLAST=MNOW 127. |
837 |
PERCNT=100.*MDYN/(MSTART-MNOW+1.E-5) 128. |
838 |
C 130. |
839 |
CALL DIAG9A (2) 131. |
840 |
C**** 133. |
841 |
C**** INTEGRATE SOURCE TERMS 134. |
842 |
C**** 135. |
843 |
#if (!defined PREDICTED_GASES) |
844 |
#if (defined CPL_TEM || defined CPL_OCEANCO2 ) |
845 |
if(OBSFOR) then |
846 |
if(JMONTH.ne.AMONTH(mnobco2)) then |
847 |
mnobco2=mnobco2+1 |
848 |
if(mnobco2.eq.13)mnobco2=1 |
849 |
call obsco2(jyear,mnobco2) |
850 |
endif |
851 |
endif |
852 |
#endif |
853 |
#endif |
854 |
C |
855 |
C |
856 |
MODRD=MOD(NSTEP,NRAD) 136. |
857 |
MODD5S=MOD(NSTEP,NDA5S) 137. |
858 |
IF(MODD5S.EQ.0) IDACC(8)=IDACC(8)+1 138. |
859 |
C 139. |
860 |
C**** CONDENSTATION, SUPER SATURATION AND MOIST CONVECTION 140. |
861 |
if(HPRNT)then |
862 |
print *,' main before conds',' TAU=',TAU |
863 |
#include "PRNT.COM" |
864 |
endif |
865 |
|
866 |
|
867 |
#if ( defined CPL_CHEM ) |
868 |
! |
869 |
! ===== Calculate airmass at grid point |
870 |
! ===== Chien Wang, 092395 |
871 |
! |
872 |
|
873 |
call chemairmass(p4chem0) |
874 |
|
875 |
! |
876 |
! === Calculating total mass of tracers |
877 |
! === with long residence times: |
878 |
! |
879 |
call chemmass1(cfc11, cfc11mass) |
880 |
call chemmass1(cfc12, cfc12mass) |
881 |
call chemmass1(xn2o, xn2omass) |
882 |
call chemmass1(zco2, zco2mass) |
883 |
call chemmass1(ch4, ch4mass) |
884 |
|
885 |
! === if hfc, pfc, and sf6 are included: |
886 |
#ifdef INC_3GASES |
887 |
! === 032698 |
888 |
call chemmass1(hfc134a, hfc134amass) |
889 |
call chemmass1(pfc, pfcmass) |
890 |
call chemmass1(sf6, sf6mass) |
891 |
! === |
892 |
#endif |
893 |
|
894 |
! |
895 |
! === Calculating advection and eddy diffusion: |
896 |
! |
897 |
call chemadv0 (dt) |
898 |
|
899 |
! |
900 |
! === Calculate total n-s transport amount |
901 |
! === of cfc11 - temperary: |
902 |
! |
903 |
dth = 3600.0 ! for relexible setting of dt dt * 3.0 |
904 |
! call chemtmp1 (dth,airmass0,p,pvv,cfc11) |
905 |
|
906 |
! === Readjust mass of tracers, 1: |
907 |
! |
908 |
! ----------------------------- |
909 |
! Use tropospheric life time (yr) to calculate mass |
910 |
! loss of tracers and at the same time compensate |
911 |
! all the numerical loss back to tracer's mass |
912 |
! which equavalent to use adjcoe = 1.0 for |
913 |
! chemmass2.f |
914 |
! |
915 |
! Chien Wang, September 12,1995 |
916 |
! ------------------------------ |
917 |
|
918 |
! === 092595 update p |
919 |
|
920 |
call chemairmass(p4chem1) |
921 |
|
922 |
call chemmass6(46.0, 1.0, cfc11,cfc11mass) |
923 |
call chemmass6(120.0,1.0, cfc12,cfc12mass) |
924 |
|
925 |
! === 102596 |
926 |
! === close tau type of ocean uptake of co2: |
927 |
|
928 |
call chemmass66(1.0, 1.0,zco2,zco2mass) |
929 |
|
930 |
call chemmass6(150.0,1.0,xn2o,xn2omass) |
931 |
call chemmass2(1.0,ch4, ch4mass ) |
932 |
|
933 |
! === if hfc, pfc, and sf6 are included: |
934 |
#ifdef INC_3GASES |
935 |
! === 032698 |
936 |
! call chemmass6(14.6, 1.0,hfc134a, hfc134amass) |
937 |
call chemmass2(1.0, hfc134a, hfc134amass) |
938 |
call chemmass6(10000.0,1.0,pfc,pfcmass) |
939 |
call chemmass6(3200.0, 1.0,sf6,sf6mass) |
940 |
! === |
941 |
#endif |
942 |
|
943 |
! |
944 |
! === Calculate tropospheric gaseous reactions |
945 |
! === every nhr_for_chem hours: |
946 |
! |
947 |
dt_chem_h = dth*float(nhr_for_chem) |
948 |
if(ievenodd.eq.0) then |
949 |
call chemtrop0(0, T, q, dt_chem_h, 1) |
950 |
|
951 |
c print *,'H2SO4 after chemtrop0 ',h2so4(1,33,1) |
952 |
c print *,'SVIOD after chemtrop0 ',SVIOD(1,33,1) |
953 |
|
954 |
! |
955 |
! --- tmp output |
956 |
! |
957 |
cnt3hr(hrcnt) = cnt3hr(hrcnt) + 1 |
958 |
sfc3hro3(1:nlat,hrcnt) = sfc3hro3(1:nlat,hrcnt) |
959 |
& + (o3(1,1:nlat,1))*29.0/48.0 |
960 |
|
961 |
hrcnt = hrcnt + 1 |
962 |
if (hrcnt .gt. 8 ) hrcnt = 1 |
963 |
end if |
964 |
|
965 |
ievenodd = ievenodd + 1 |
966 |
if(ievenodd.ge.nhr_for_chem) ievenodd = 0 |
967 |
|
968 |
! |
969 |
! === Calculating stratospheric processes: |
970 |
! === 092595 |
971 |
! === adjust startospheric loss to whole global: |
972 |
! |
973 |
call chemmass1(cfc11, cfc11mass) |
974 |
call chemmass1(cfc12, cfc12mass) |
975 |
call chemmass1(xn2o, xn2omass) |
976 |
|
977 |
call chemstrat (dt) |
978 |
|
979 |
call chemmass2(1.0,cfc11,cfc11mass) |
980 |
call chemmass2(1.0,cfc12,cfc12mass) |
981 |
call chemmass2(1.0,xn2o, xn2omass) |
982 |
|
983 |
! |
984 |
! === Get total mass of chemically active species: |
985 |
! |
986 |
! call chemairmass(p) |
987 |
! write(6,*)"P before 2nd", p |
988 |
c print *,'H2SO4 after chemairmass ',h2so4(1,33,1) |
989 |
|
990 |
call chemmass1(cfc11, cfc11mass) |
991 |
call chemmass1(cfc12, cfc12mass) |
992 |
call chemmass1(xn2o, xn2omass) |
993 |
call chemmass1(zco2, zco2mass) |
994 |
call chemmass1(ch4, ch4mass) |
995 |
|
996 |
! === if hfc, pfc, and sf6 are included: |
997 |
#ifdef INC_3GASES |
998 |
! === 032698 |
999 |
call chemmass1(hfc134a, hfc134amass) |
1000 |
call chemmass1(pfc, pfcmass) |
1001 |
call chemmass1(sf6, sf6mass) |
1002 |
! === |
1003 |
#endif |
1004 |
|
1005 |
#endif |
1006 |
|
1007 |
c print *,'H2SO4 before CONDSE ',h2so4(1,33,1) |
1008 |
CALL CONDSE(mndriver) 141. |
1009 |
c print *,'H2SO4 after CONDSE ',h2so4(1,33,1) |
1010 |
|
1011 |
#if ( defined CPL_CHEM ) |
1012 |
! |
1013 |
! === Calculate emission once per hour: |
1014 |
! |
1015 |
! timeinhr=1./(365.*24.) !hourly emission |
1016 |
! call chememission(timeinhr) |
1017 |
! |
1018 |
! |
1019 |
! === Print hourly |
1020 |
! |
1021 |
! call chemprt |
1022 |
! |
1023 |
! ============================================== |
1024 |
#endif |
1025 |
|
1026 |
if(HPRNT)then |
1027 |
print *,' main after conds',' TAU=',TAU |
1028 |
#include "PRNT.COM" |
1029 |
endif |
1030 |
#if ( !defined CLM ) |
1031 |
CALL PRECIP_LAND(mndriver) 142. |
1032 |
if(HPRNT)then |
1033 |
print *,' main after preci',' TAU=',TAU |
1034 |
#include "PRNT.COM" |
1035 |
endif |
1036 |
#endif |
1037 |
CALL CLOCKS (MNOW) 143. |
1038 |
MINC=MLAST-MNOW 144. |
1039 |
MCNDS=MCNDS+MLAST-MNOW 145. |
1040 |
MLAST=MNOW 146. |
1041 |
C 147. |
1042 |
CALL DIAG9A (3) 148. |
1043 |
C**** RADIATION, SOLAR AND THERMAL 149. |
1044 |
if(HPRNT)then |
1045 |
print *,' main before radia',' TAU=',TAU |
1046 |
#include "PRNT.COM" |
1047 |
print *,' IRAND=',IRAND |
1048 |
endif |
1049 |
#if ( defined PREDICTED_GASES || defined PREDICTED_AEROSOL ) |
1050 |
call radia_chem |
1051 |
#else |
1052 |
if(OBSFOR) then |
1053 |
CALL RADIAGSO |
1054 |
else |
1055 |
CALL RADIA |
1056 |
endif |
1057 |
#endif |
1058 |
if(HPRNT)then |
1059 |
print *,' main after radia',' TAU=',TAU |
1060 |
#include "PRNT.COM" |
1061 |
endif |
1062 |
CALL CLOCKS (MNOW) 151. |
1063 |
MINC=MINC+MLAST-MNOW 152. |
1064 |
MRAD=MRAD+MLAST-MNOW 153. |
1065 |
MLAST=MNOW 154. |
1066 |
if(HPRNT)then |
1067 |
print *,' main before diag9a',' TAU=',TAU |
1068 |
#include "PRNT.COM" |
1069 |
endif |
1070 |
C 155. |
1071 |
CALL DIAG9A (4) 156. |
1072 |
if(HPRNT)then |
1073 |
print *,' main after diag9a',' TAU=',TAU |
1074 |
#include "PRNT.COM" |
1075 |
endif |
1076 |
C**** SURFACE INTERACTION AND GROUND CALCULATION 157. |
1077 |
|
1078 |
#if ( defined CLM ) |
1079 |
if(HPRNT)then |
1080 |
print *,' main before surf4clm',' TAU=',TAU |
1081 |
#include "PRNT.COM" |
1082 |
endif |
1083 |
CALL SUR4CLM |
1084 |
if(HPRNT)then |
1085 |
print *,' main after surf4clm',' TAU=',TAU |
1086 |
#include "PRNT.COM" |
1087 |
endif |
1088 |
i=1 |
1089 |
do j=1,jm |
1090 |
pcpl4clm(i,j)=pcpl4clm(i,j)*prlnd2total(j,mndriver) |
1091 |
pcpc4clm(i,j)=pcpc4clm(i,j)*prlnd2total(j,mndriver) |
1092 |
enddo |
1093 |
! print *,' main after surf4clm',' TAU=',TAU |
1094 |
! print ('2(12f7.2,/,11f7.2,/)'),ps4clm,pcpl4clm, |
1095 |
! & pcpc4clm,tpr4clm, |
1096 |
! & tsl4clm, |
1097 |
! & qs4clm,ws4clm |
1098 |
! & ,us4clm,vs4clm, |
1099 |
! & dsw4clm, |
1100 |
! & dlw4clm,pco24clm |
1101 |
! & ,swinr4clm,swvis4clm |
1102 |
#if ( defined DATA4TEM ) |
1103 |
c if(JYEAR.gt.20)then |
1104 |
write (935),ps4clm,pcpl4clm, |
1105 |
& pcpc4clm,tpr4clm, |
1106 |
& tsl4clm, |
1107 |
& qs4clm,ws4clm |
1108 |
& ,us4clm,vs4clm, |
1109 |
& dsw4clm, |
1110 |
& dlw4clm,pco24clm |
1111 |
& ,swinr4clm,swvis4clm |
1112 |
c endif |
1113 |
#endif |
1114 |
|
1115 |
ncallclm=ncallclm+1 |
1116 |
c print *,'before clm4mit2d ncallclm=',ncallclm |
1117 |
if(HPRNT)then |
1118 |
print *,' main before clm4mit2d',' TAU=',TAU |
1119 |
#include "PRNT.COM" |
1120 |
endif |
1121 |
call clm4mit2d |
1122 |
if(HPRNT)then |
1123 |
print *,' main after clm4mit2d',' TAU=',TAU |
1124 |
#include "PRNT.COM" |
1125 |
endif |
1126 |
|
1127 |
c if(JYEAR.gt.20)then |
1128 |
! write (934),tau,tsoiclm,snwdclm,snwcclm, |
1129 |
! & lwuclm,tref2mclm,tflxclm,tgndclm, |
1130 |
! & lhfclm,shfclm,tauxclm,tauyclm, |
1131 |
! & asdirclm,aldirclm,asdifclm,aldifclm, |
1132 |
! & sroclm,ssrclm,glrclm |
1133 |
! &,h2olclm,h2oiclm |
1134 |
c endif |
1135 |
! print *,' main after clm4mit2d',' TAU=',TAU |
1136 |
! print ('2(12f7.2,/,11f7.2,/)'),tsoiclm,snwdclm,snwcclm, |
1137 |
! & lwuclm,tref2mclm,tflxclm,tgndclm, |
1138 |
! & lhfclm,shfclm,tauxclm,tauyclm, |
1139 |
! & asdirclm,aldirclm,asdifclm,aldifclm |
1140 |
|
1141 |
CALL SURF_CLM |
1142 |
CALL SURF_OCEAN |
1143 |
CALL GR_CLM |
1144 |
if(HPRNT)then |
1145 |
print *,' main after surfc',' TAU=',TAU |
1146 |
#include "PRNT.COM" |
1147 |
endif |
1148 |
#else |
1149 |
! CALL SURF_LAND |
1150 |
! CALL SURF_OCEAN |
1151 |
CALL SURFCE ! 07/14/2006 |
1152 |
if(HPRNT)then |
1153 |
print *,' main after surfc',' TAU=',TAU |
1154 |
#include "PRNT.COM" |
1155 |
endif |
1156 |
CALL GRLAND 159. |
1157 |
#endif |
1158 |
|
1159 |
#if ( defined OCEAN_3D || defined ML_2D) |
1160 |
CALL GRFOROCEAN |
1161 |
#else |
1162 |
CALL GROCEAN(mndriver) 159. |
1163 |
#endif |
1164 |
c |
1165 |
if(HPRNT)then |
1166 |
print *,' main after groun',' TAU=',TAU |
1167 |
#include "PRNT.COM" |
1168 |
endif |
1169 |
c print *,'H2SO4 before DRYCNV ',h2so4(1,33,1) |
1170 |
CALL DRYCNV 160. |
1171 |
c print *,'H2SO4 after DRYCNV ',h2so4(1,33,1) |
1172 |
if(HPRNT)then |
1173 |
print *,' main after drycn',' TAU=',TAU |
1174 |
#include "PRNT.COM" |
1175 |
endif |
1176 |
CALL CLOCKS (MNOW) 161. |
1177 |
MINC=MINC+MLAST-MNOW 162. |
1178 |
MSURF=MSURF+MLAST-MNOW 163. |
1179 |
MLAST=MNOW 164. |
1180 |
CALL DIAG9A (5) 165. |
1181 |
C**** STRATOSPHERIC MOMENTUM DRAG 166. |
1182 |
CALL SDRAG(WLMMAX,JWLMMAX) 167. |
1183 |
if(HPRNT)then |
1184 |
print *,' main after sdrag',' TAU=',TAU |
1185 |
#include "PRNT.COM" |
1186 |
endif |
1187 |
CALL CLOCKS (MNOW) 168. |
1188 |
MINC=MINC+MLAST-MNOW 169. |
1189 |
MSURF=MSURF+MLAST-MNOW 170. |
1190 |
MLAST=MNOW 171. |
1191 |
C 172. |
1192 |
CALL DIAG9A (6) 173. |
1193 |
MSRCE=MCNDS+MRAD+MSURF 174. |
1194 |
PERCNT=100.*MSRCE/(MSTART-MNOW+1.E-5) 175. |
1195 |
C**** SEA LEVEL PRESSURE FILTER 177. |
1196 |
NFILTR= NDYN 177.5 |
1197 |
IF(MFILTR.LE.0.OR.MOD(NSTEP,NFILTR).NE.0) GO TO 500 178. |
1198 |
IDACC(10)=IDACC(10)+1 179. |
1199 |
if(HPRNT)then |
1200 |
print *,' main before filtr',' TAU=',TAU |
1201 |
#include "PRNT.COM" |
1202 |
endif |
1203 |
C |
1204 |
C 180. |
1205 |
C **************** |
1206 |
if(LHORDIF)then |
1207 |
DTDIF=3600. |
1208 |
if(JM.eq.24)then |
1209 |
CALL HORDIFF(DTDIF) |
1210 |
else if(JM.eq.46)then |
1211 |
CALL HORDIFFALL(DTDIF) |
1212 |
else |
1213 |
print *,' Wromg JM=',JM |
1214 |
stop |
1215 |
endif |
1216 |
end if |
1217 |
C **************** |
1218 |
c CALL FILTER 181. |
1219 |
C |
1220 |
#if ( defined CPL_CHEM ) |
1221 |
! |
1222 |
! === Readjust total mass of tracers: |
1223 |
! |
1224 |
call chemairmass(p) |
1225 |
|
1226 |
call chemmass2(1.00,cfc11,cfc11mass) |
1227 |
call chemmass2(1.00,cfc12,cfc12mass) |
1228 |
call chemmass2(1.00,xn2o ,xn2omass ) |
1229 |
call chemmass2(1.00,zco2,zco2mass) |
1230 |
call chemmass2(1.00,ch4, ch4mass ) |
1231 |
|
1232 |
! === if hfc, pfc, and sf6 are included: |
1233 |
#ifdef INC_3GASES |
1234 |
! === 032698 |
1235 |
call chemmass2(1.0,hfc134a, hfc134amass) |
1236 |
call chemmass2(1.0,pfc, pfcmass) |
1237 |
call chemmass2(1.0,sf6, sf6mass) |
1238 |
! === |
1239 |
#endif |
1240 |
|
1241 |
! |
1242 |
! === Accumulative calculation prepared for |
1243 |
! === carrying out monthly average: |
1244 |
! |
1245 |
call chemmonth1 |
1246 |
! |
1247 |
#endif |
1248 |
|
1249 |
CALL CLOCKS (MNOW) 182. |
1250 |
MDYN=MDYN+MLAST-MNOW 183. |
1251 |
MLAST=MNOW 184. |
1252 |
C 185. |
1253 |
CALL DIAG9A (7) 186. |
1254 |
C**** 187. |
1255 |
C**** UPDATE MODEL TIME AND CALL DAILY IF REQUIRED 188. |
1256 |
C**** 189. |
1257 |
500 NSTEP=NSTEP+NDYN 190. |
1258 |
ITAU=(NSTEP+NSTEP0)*IDTHR 191. |
1259 |
TAU=FLOAT(ITAU)/XINT 192. |
1260 |
IDAY=1+ITAU/I24 193. |
1261 |
TOFDAYPR=TOFDAY+1.00 |
1262 |
TOFDAY=(ITAU-(IDAY-1)*I24)/XINT 194. |
1263 |
IF(.NOT.EVENT(24.)) GO TO 550 195. |
1264 |
C 196. |
1265 |
do J=1,JM0 |
1266 |
TSURFW(J)=TSURFD(J) |
1267 |
TLANDW(J)=TLANDD(J) |
1268 |
enddo |
1269 |
|
1270 |
JDATECLM=JDATE |
1271 |
JDATEPR=JDATE |
1272 |
JMONTHPR=JMONTH |
1273 |
JYEARPR=JYEAR |
1274 |
CALL DAILY_NEW 197. |
1275 |
c print *,' AFTER DAILY_NEW IDAY=',IDAY,' IYEAR=',IYEAR |
1276 |
c print *,' JYEAR=',JYEAR,' JDAY=',JDAY |
1277 |
#if( !defined OCEAN_3D && !defined ML_2D ) |
1278 |
CALL DAILY_OCEAN |
1279 |
c print *,' AFTER DAILY_OCEAN IDAY=',IDAY,' IYEAR=',IYEAR |
1280 |
c print *,' JYEAR=',JYEAR,' JDAY=',JDAY |
1281 |
c print *,' JDATE=',JDATE,' JMONTH=',JMONTH |
1282 |
#endif |
1283 |
if(JDATE.eq.100)then |
1284 |
print *,JDATE,JMONTH,JYEAR |
1285 |
print *,' main after daily' |
1286 |
print *,' T1 ocean' |
1287 |
print 5001,(ODATA(1,j,1),j=1,JM0) |
1288 |
print *,' T2 ocean' |
1289 |
print 5001,(ODATA(1,j,4),j=1,JM0) |
1290 |
print *,' T3 ocean' |
1291 |
print 5001,(ODATA(1,j,5),j=1,JM0) |
1292 |
print *,' sea ice' |
1293 |
print 5002,(ODATA(1,j,2),j=1,JM0) |
1294 |
endif |
1295 |
CALL CLOCKS (MNOW) 198. |
1296 |
MELSE=MELSE+(MLAST-MNOW) 199. |
1297 |
MLAST=MNOW 200. |
1298 |
NDAILY=SDAY/DT 201. |
1299 |
|
1300 |
#if ( defined CPL_CHEM ) |
1301 |
! |
1302 |
! === Calculate air mass, second step: |
1303 |
! |
1304 |
i=1 |
1305 |
call chemairmass(p) |
1306 |
|
1307 |
! |
1308 |
! === Calculate emission once per day: |
1309 |
! |
1310 |
c zxy=0. |
1311 |
c do j=1,jm |
1312 |
c zxy=zxy+zco2(1,j,1) |
1313 |
c & *28.97296245/44.0*1.e-3 |
1314 |
c enddo |
1315 |
c print *,' CO2 before emission ',zxy/jm |
1316 |
|
1317 |
timeinday=1./(365.) !daily emission |
1318 |
call chememission(timeinday) |
1319 |
|
1320 |
c zxy=0. |
1321 |
c do j=1,jm |
1322 |
c zxy=zxy+zco2(1,j,1) |
1323 |
c & *28.97296245/44.0*1.e-3 |
1324 |
c enddo |
1325 |
c print *,' CO2 after emission ',zxy/jm |
1326 |
! |
1327 |
#endif |
1328 |
|
1329 |
C 202. |
1330 |
CALL DIAG9A (8) 203. |
1331 |
#if ( !defined OCEAN_3D && !defined ML_2D ) |
1332 |
IF(KOCEAN.EQ.1) THEN |
1333 |
DO 540 J=1,JM 203.11 |
1334 |
DO 540 I=1,IM 203.12 |
1335 |
AIJ(I,J,59)=AIJ(I,J,59)+ODATA(I,J,4) 203.13 |
1336 |
540 AIJ(I,J,60)=AIJ(I,J,60)+ODATA(I,J,5) 203.14 |
1337 |
if(TRANSR)then |
1338 |
if(LMO.eq.11) then |
1339 |
CALL ODIFS |
1340 |
elseif(LMO.eq.12) then |
1341 |
CALL ODIFS12 |
1342 |
else |
1343 |
Print *,' Wromng LMO',LMO |
1344 |
stop |
1345 |
endif |
1346 |
NODIFS=NODIFS+1 |
1347 |
do 5283 j=1,JM0 |
1348 |
do 5283 k=1,lmo |
1349 |
RTGOAV(j,k)=RTGOAV(j,k)+RTGO(1,j,k) |
1350 |
5283 continue |
1351 |
endif |
1352 |
C**** RESTRUCTURE THE OCEAN LAYERS AND ELIMINATE SMALL ICE BERGS 203.15 |
1353 |
CALL OSTRUC 203.16 |
1354 |
if(JDATE.eq.41)then |
1355 |
print *,JDATE,JMONTH,JYEAR |
1356 |
print *,' main after ostruc' |
1357 |
print *,'Z1O' |
1358 |
print 5001,(Z1O(1,j),j=1,JM0) |
1359 |
print *,' T1 ocean' |
1360 |
print 5001,(ODATA(1,j,1),j=1,JM0) |
1361 |
print *,' T2 top ocean' |
1362 |
print 5001,((2.*ODATA(1,j,4)-ODATA(1,j,5)),j=1,JM0) |
1363 |
print *,' T2 ocean' |
1364 |
print 5001,(ODATA(1,j,4),j=1,JM0) |
1365 |
print *,' T3 ocean' |
1366 |
print 5001,(ODATA(1,j,5),j=1,JM0) |
1367 |
endif |
1368 |
ENDIF ! KOCEAN |
1369 |
#endif |
1370 |
#if ( defined ML_2D ) |
1371 |
if(TRANSR)then |
1372 |
NODIFS=NODIFS+1 |
1373 |
do 5283 j=1,JM0 |
1374 |
do 5283 k=1,lmo |
1375 |
RTGOAV(j,k)=RTGOAV(j,k)+RTGO(1,j,k) |
1376 |
5283 continue |
1377 |
endif |
1378 |
#endif |
1379 |
|
1380 |
#if ( defined CPL_OCEANCO2 ) |
1381 |
|
1382 |
C For OCM or 3D ocean model with carbon cycle |
1383 |
#ifdef PREDICTED_GASES |
1384 |
c ------- |
1385 |
c 102596 |
1386 |
c air co2 mixing ratio goes to ocean carbon model: |
1387 |
c |
1388 |
do j=1,jm |
1389 |
pC_atm(j)=zco2(1,j,1) |
1390 |
& *28.97296245/44.0*1.e-9 |
1391 |
!ppb(m) to kg per volume base |
1392 |
|
1393 |
atm_co2(j)=pC_atm(j)*1.e6 |
1394 |
|
1395 |
enddo ! j |
1396 |
c |
1397 |
c ------- |
1398 |
#else |
1399 |
|
1400 |
do j=1,jm |
1401 |
pC_atm(j)=atm_co2(j)*1.e-6 |
1402 |
enddo ! j |
1403 |
|
1404 |
#endif |
1405 |
|
1406 |
#if ( defined ML_2D ) |
1407 |
CB Gary CO2 uptake by the ocean |
1408 |
|
1409 |
do j=1,jm |
1410 |
if(NWMGEA(J).gt.0)then |
1411 |
WSAV(J)=WSAV(J)/NWMGEA(J) |
1412 |
NWMGEA(J)=0. |
1413 |
else |
1414 |
WSAV(J)=0. |
1415 |
end if |
1416 |
end do ! j |
1417 |
|
1418 |
do j=1,jm |
1419 |
tggary(j)=ODATA(1,j,1)+273.16 |
1420 |
wsgary(j)=WSAV(J) |
1421 |
WSAV(j)=0. |
1422 |
arsrf(j)=areaml(j)*(1.-ODATA(1,j,2)) |
1423 |
DEPTHML(j)=ZOAV(J) |
1424 |
co24ocnan(j)=co24ocnan(j)+pC_atm(j)*1.e6 |
1425 |
enddo ! j |
1426 |
c print *,'CO2 for 2D ocean' |
1427 |
c print *,JYEAR,JMONTH |
1428 |
c print *,'co2=',pC_atm(27)*1.e6,' ws=',wsgary(27) |
1429 |
c print *,'tem=',tggary(27) |
1430 |
c print '12f7.1,/,2(11f7.1,/,),12f7.1',(pC_atm(j)*1.e6,j=1,jm) |
1431 |
c print '12f7.1,/,2(11f7.1,/,),12f7.1',(rco2(j,1),j=1,jm) |
1432 |
c ncallgary=ncallgary+1 |
1433 |
! 10/28/06 |
1434 |
! call carb_mxdlyr_chem(focean) |
1435 |
! call carb_airsea_flx |
1436 |
! |
1437 |
! 3D ocean chemistry |
1438 |
call carb_chem_ocmip(focean) |
1439 |
call carb_airsea_flx(dtco2) |
1440 |
! 3D ocean chemistry |
1441 |
! 10/28/06 |
1442 |
c print *,'FCO2 ncallgary=',ncallgary |
1443 |
c print '12f7.1,/,2(11f7.1,/,),12f7.1', |
1444 |
c & (fluxco2(j)*12.e-15*365.,j=1,jm) |
1445 |
#endif |
1446 |
|
1447 |
C For ocean carbon model |
1448 |
c Annual oceanic CO2 uptake |
1449 |
do j=1,jm |
1450 |
OCUPT=OCUPT+fluxco2(j) |
1451 |
enddo |
1452 |
! print *,' OCUPT=',OCUPT*12.e-15 |
1453 |
|
1454 |
#if ( defined CPL_CHEM ) |
1455 |
! |
1456 |
! === Calculate ocean uptake of CO2 |
1457 |
! === once per day: |
1458 |
! |
1459 |
i=1 |
1460 |
call chemairmass(p) !update airmass |
1461 |
|
1462 |
call chemoceanco2(fluxco2) |
1463 |
! |
1464 |
#endif |
1465 |
|
1466 |
do j=1,jm |
1467 |
fluxco2(j)=0.0 |
1468 |
enddo |
1469 |
#endif |
1470 |
|
1471 |
#if ( defined CPL_TEM ) |
1472 |
!#if ( defined CLM ) |
1473 |
c print *,'JDATE for TEM=',JDATECLM |
1474 |
do j=1,jm |
1475 |
if(npred4tem(j).gt.0)then |
1476 |
c pred4tem(j)=pred4tem(j)/npred4tem(j) |
1477 |
ewvd4tem(j)=ewvd4tem(j)/npred4tem(j) |
1478 |
pre4tem(J)=pre4tem(J)+pred4tem(j) |
1479 |
endif |
1480 |
c |
1481 |
if(nt2md4tem(j).gt.0)then |
1482 |
t2md4tem(j)=t2md4tem(j)/nt2md4tem(j) |
1483 |
endif |
1484 |
temp4tem(j)=temp4tem(j)+t2md4tem(j) |
1485 |
dtem4tem(JDATECLM,j)=t2md4tem(j) |
1486 |
c |
1487 |
if(nradd4tem(j).gt.0)then |
1488 |
cldd4tem(j)=cldd4tem(j)/ncldd4tem(j) |
1489 |
swtd4tem(j)=swtd4tem(j)/nradd4tem(j) |
1490 |
swsd4tem(j)=swsd4tem(j)/nradd4tem(j) |
1491 |
endif |
1492 |
sws4tem(j)=sws4tem(j)+swsd4tem(j) |
1493 |
c |
1494 |
enddo |
1495 |
c |
1496 |
do j=1,jm |
1497 |
pred4tem(j)=0.0 |
1498 |
ewvd4tem(j)=0.0 |
1499 |
t2md4tem(j)=0.0 |
1500 |
cldd4tem(j)=0.0 |
1501 |
swtd4tem(j)=0.0 |
1502 |
swsd4tem(j)=0.0 |
1503 |
npred4tem(j)=0 |
1504 |
ncldd4tem(j)=0 |
1505 |
nradd4tem(j)=0 |
1506 |
nt2md4tem(j)=0. |
1507 |
enddo |
1508 |
#endif |
1509 |
|
1510 |
#if ( defined CPL_OCEANCO2 && defined ML_2D ) |
1511 |
C For OCM |
1512 |
|
1513 |
! dtco2=3600.*24. |
1514 |
! cfkvct=1.0 |
1515 |
! if (JYEAR.ge.1991) then begin |
1516 |
! if (JYEAR.le.2100) then begin |
1517 |
! cfkvct=(1.0*(2100-JYEAR)+0.25*(JYEAR-1990))/110. |
1518 |
! esle |
1519 |
! cfkvct=0.25 |
1520 |
! endif |
1521 |
! endif |
1522 |
! do j=1,jm |
1523 |
! edzcatr(j)=cfkvct*edzcar(j) |
1524 |
! enddo |
1525 |
call diffusco2(lmo,jm,dtco2,0.5,edzcart,depthml,focean, |
1526 |
& dzg,dzog,rco2) |
1527 |
call hdocean(rco2,focean,dxv,dyv,DXYP,depthml,edohd,dtco2) |
1528 |
call avegary |
1529 |
CB Gary CO2 uptake by the ocean |
1530 |
#endif |
1531 |
|
1532 |
#if ( defined CPL_CHEM) && ( defined CPL_TEM ) |
1533 |
C take into accout land uptake form TEM for previous month |
1534 |
do j=1,jm |
1535 |
fluxnep(j)=aduptd+1.e-3*temco2(j)/NDAYMN(mndriver) |
1536 |
c Annual TEM CO2 uptake |
1537 |
TEMUPTANN=TEMUPTANN+fluxnep(j) |
1538 |
enddo |
1539 |
if(jdate.eq.1)then |
1540 |
print *,'Monthly TEM uptake' |
1541 |
c print *,mndriver,adupt,temuptann-temup0 |
1542 |
temup0=temuptann |
1543 |
endif |
1544 |
C |
1545 |
c |
1546 |
i=1 |
1547 |
call chemairmass(p) !update airmass |
1548 |
|
1549 |
call chemtemco2(fluxnep) |
1550 |
C |
1551 |
c |
1552 |
! |
1553 |
#endif |
1554 |
|
1555 |
c End of month |
1556 |
if(JDATE.eq.1)then |
1557 |
|
1558 |
#if ( defined CPL_CHEM ) |
1559 |
! |
1560 |
! === Calculating monthly averaged mixing ratios: |
1561 |
! |
1562 |
call chemmonth2 |
1563 |
c print *,'Atmosphere after chemmonth2' |
1564 |
|
1565 |
! === Calculate and print monthly n-s transport |
1566 |
! === of cfc11: |
1567 |
! |
1568 |
! call chemtmp2 |
1569 |
! |
1570 |
do nhr = 1,8 |
1571 |
sfc3hro3(1:nlat,nhr) = sfc3hro3(1:nlat,nhr) |
1572 |
& /float(cnt3hr(nhr)) |
1573 |
#if ( defined CPL_TEM ) |
1574 |
o34tem(nhr,1:nlat)=sfc3hro3(1:nlat,nhr) |
1575 |
#endif |
1576 |
end do |
1577 |
cwrite(124)sfc3hro3 |
1578 |
cnt3hr(1:8) = 0 |
1579 |
sfc3hro3(1:nlat,1:8) = 0.0 |
1580 |
|
1581 |
! === Writing rawdata every month: |
1582 |
! |
1583 |
! call chemprt !closed 032697 |
1584 |
|
1585 |
call chembudget (p) |
1586 |
print *,' Atmosphre after chembudget mymonth=',mymonth |
1587 |
! === 09/26/94 |
1588 |
! === Reset year and month index: |
1589 |
! |
1590 |
mymonth = mymonth + 1 |
1591 |
if(mymonth.gt.12)then |
1592 |
myyear = myyear +1 |
1593 |
! myyear = min(myyear,nchemyr) |
1594 |
myyear = min(myyear,myyearlast) |
1595 |
mymonth = 1 |
1596 |
! endif ! 27/8/2005 |
1597 |
|
1598 |
! === 092295 |
1599 |
! === write rawdata for possible renew run |
1600 |
! === at end of each month: |
1601 |
! === at end of each year: 27/8/2005 |
1602 |
! |
1603 |
rewind 178 |
1604 |
print *,'For chem restart ',myyear,mymonth |
1605 |
write(178)myyear,mymonth,airmass, |
1606 |
& cfc11,cfc110, |
1607 |
& cfc11m, |
1608 |
& cfc11sd, |
1609 |
& cfc12,cfc12m, |
1610 |
& cfc12sd, |
1611 |
& xn2o ,xn2om , |
1612 |
& xn2osd, |
1613 |
& hfc134a,hfc134am, |
1614 |
& pfc ,pfcm, |
1615 |
& sf6 ,sf6m, |
1616 |
& bcarbon,bcm, |
1617 |
& ocarbon,ocm, |
1618 |
& atomo , |
1619 |
& o1d , |
1620 |
& o3 ,o3m , |
1621 |
& co ,com , |
1622 |
& zco2 ,zco2m, |
1623 |
& atomh , |
1624 |
& ho , |
1625 |
& ho2 ,hoxm , |
1626 |
& h2o2 , |
1627 |
& xno , |
1628 |
& xno2 ,xnoxm, |
1629 |
& xno3 , |
1630 |
& xn2o5 ,xnoym, |
1631 |
& hno3 , |
1632 |
& ch4 ,ch4m , |
1633 |
& ch3 , |
1634 |
& cho , |
1635 |
& ch2o , |
1636 |
& ch3o , |
1637 |
& ch3o2 , |
1638 |
& ch3o2h, |
1639 |
& so2 ,so2m , |
1640 |
& hoso2 , |
1641 |
& so3 , |
1642 |
& h2so4 ,h2so4m, |
1643 |
& sviod ,sviodm |
1644 |
rewind 178 |
1645 |
|
1646 |
endif |
1647 |
#endif |
1648 |
|
1649 |
#if ( defined CPL_TEM ) |
1650 |
!#if ( defined CLM ) |
1651 |
do J=1,JM |
1652 |
c |
1653 |
#ifdef PREDICTED_GASES |
1654 |
co24tem(j)=zco2(1,j,1) |
1655 |
& *28.97296245/44.0*1.e-3 |
1656 |
!ppm(m) to kg per volume base |
1657 |
#else |
1658 |
co24tem(j)=atm_co2(j) |
1659 |
|
1660 |
#endif |
1661 |
c |
1662 |
enddo |
1663 |
#endif |
1664 |
|
1665 |
endif ! end of month |
1666 |
550 continue |
1667 |
C END of DAilY |
1668 |
|
1669 |
|
1670 |
C CALL CHECKT (11) 203.17 |
1671 |
CALL CLOCKS (MNOW) 203.18 |
1672 |
MSURF=MSURF+(MLAST-MNOW) 203.19 |
1673 |
MLAST=MNOW 203.2 |
1674 |
C**** 204. |
1675 |
C**** WRITE INFORMATION ONTO A TAPE EVERY USET HOURS 205. |
1676 |
C**** 206. |
1677 |
IF(USET.LE.0.) GO TO 600 207. |
1678 |
IF(.NOT.EVENT(USET)) GO TO 600 208. |
1679 |
C COMPUTATIONS FOR XXXXXX 209. |
1680 |
WRITE (520) TAU,XXXXXX 210. |
1681 |
CALL CLOCKS (MNOW) 211. |
1682 |
MINC=MLAST-MNOW 212. |
1683 |
MELSE=MELSE+MINC 213. |
1684 |
PERCNT=100.*MELSE/(MSTART-MNOW+1.E-5) 214. |
1685 |
c WRITE (6,910) MINC,MELSE,PERCNT,TAU 215. |
1686 |
C**** 216. |
1687 |
C**** CALL DIAGNOSTIC ROUTINES 217. |
1688 |
C**** 218. |
1689 |
600 IF(MOD(NSTEP-NDYN,NDA4).EQ.0) CALL DIAG4A 219. |
1690 |
C 220. |
1691 |
IF(NDPRNT(1).GE.0) GO TO 610 221. |
1692 |
C**** PRINT CURRENT DIAGNOSTICS (INCLUDING THE INITIAL CONDITIONS) 222. |
1693 |
IF(KDIAG(1).LT.9) CALL DIAG1(NOCLM) 223. |
1694 |
IF(KDIAG(2).LT.9) CALL DIAG2 224. |
1695 |
IF(KDIAG(7).LT.9) CALL DIAG7P 225. |
1696 |
IF(KDIAG(3).LT.9) CALL DIAG3 226. |
1697 |
C 227. |
1698 |
C 228. |
1699 |
IF(KDIAG(4).LT.9) CALL DIAG4 229. |
1700 |
IF(TAU.LE.TAUI+DTHR*(NDYN+.5)) CALL DIAGKN 230. |
1701 |
NDPRNT(1)=NDPRNT(1)+1 231. |
1702 |
C 690 changed to 691 02/21/2003 |
1703 |
610 IF(.NOT.EVENT(24.)) GO TO 691 232. |
1704 |
C**** PRINT DIAGNOSTIC TIME AVERAGED QUANTITIES ON NDPRNT-TH DAY OF RUN 233. |
1705 |
DO 620 K=1,13 234. |
1706 |
IF (JDAY.EQ.NDPRNT(K)) GO TO 630 235. |
1707 |
620 CONTINUE 236. |
1708 |
GO TO 640 237. |
1709 |
c 630 WRITE (6,920) 238. |
1710 |
630 continue |
1711 |
IF(KDIAG(1).LT.9) CALL DIAG1(NOCLM) 239. |
1712 |
IF(KDIAG(2).LT.9) CALL DIAG2 240. |
1713 |
IF(KDIAG(7).LT.9) CALL DIAG7P 241. |
1714 |
IF(KDIAG(3).LT.9) CALL DIAG3 242. |
1715 |
C 243. |
1716 |
C 244. |
1717 |
C IF(KDIAG(6).LT.9) CALL DIAG6 245. |
1718 |
IF(KDIAG(4).LT.9) CALL DIAG4 246. |
1719 |
IF(KDIAG(8).LT.9) CALL DIAG8 (IPFLAG) 247. |
1720 |
C**** THINGS TO DO BEFORE ZEROING OUT THE ACCUMULATING ARRAYS 248. |
1721 |
C**** (NORMALLY DONE AT THE END OF A MONTH) 249. |
1722 |
640 DO 650 K=1,13 250. |
1723 |
IF(JDAY.EQ.NDZERO(K)) GO TO 660 251. |
1724 |
650 CONTINUE 252. |
1725 |
GO TO 690 253. |
1726 |
C**** PRINT THE KEY DIAGNOSTICS 254. |
1727 |
660 CONTINUE 255. |
1728 |
CALL DIAGKN 255. |
1729 |
C**** PRINT AND ZERO OUT THE TIMING NUMBERS 256. |
1730 |
CALL CLOCKS (MNOW) 257. |
1731 |
MDIAG=MDIAG+(MLAST-MNOW) 258. |
1732 |
MLAST=MNOW 259. |
1733 |
TOTALT=.01*(MSTART-MNOW) 260. |
1734 |
PDYN=MDYN/TOTALT 261. |
1735 |
PCDNS=MCNDS/TOTALT 262. |
1736 |
PRAD=MRAD/TOTALT 263. |
1737 |
PSURF=MSURF/TOTALT 264. |
1738 |
PDIAG=MDIAG/TOTALT 265. |
1739 |
PELSE=MELSE/TOTALT 266. |
1740 |
DTIME=24.*TOTALT/(60.*(TAU-TAU0)) 267. |
1741 |
c WRITE (6,909) DTIME,PDYN,PCDNS,PRAD,PSURF,PDIAG,PELSE 268. |
1742 |
MDYN=0 269. |
1743 |
MCNDS=0 270. |
1744 |
MRAD=0 271. |
1745 |
MSURF=0 272. |
1746 |
MDIAG=0 273. |
1747 |
MELSE=0 274. |
1748 |
MSTART=MNOW 275. |
1749 |
if(TRANSR)then |
1750 |
do 5284 j=1,JM0 |
1751 |
do 5284 k=1,lmo |
1752 |
RTGOAV(j,k)=RTGOAV(j,k)/NODIFS |
1753 |
5284 continue |
1754 |
c print *,'ATM RTGOAV monthly' |
1755 |
c print *,(RTGOAV(J,1),j=1,jm) |
1756 |
endif ! TRANSR |
1757 |
SPGAV=srps(jm+3)/nsrps+PTOP |
1758 |
do 5285 j=1,JM+3 |
1759 |
GBUDG(j,38,1)=(srps(j)/nsrps+PTOP)*1013./SPGAV |
1760 |
5285 continue |
1761 |
c do 5287 j=1,JM+3 |
1762 |
c GBUDG(j,38,1)=GBUDG(j,37,1)*1013./GBUDG(jm+3,37,1) |
1763 |
c5287 continue |
1764 |
! print *,'FRMDICE' |
1765 |
! print '6(1PE12.4)',FRMDICE |
1766 |
ENKE=0.0 |
1767 |
ENPT=0.0 |
1768 |
do ii=1,4 |
1769 |
ENKE=ENKE+SPECA(1,19,ii) |
1770 |
ENPT=ENPT+SPECA(1,20,ii) |
1771 |
enddo |
1772 |
c print *,'ENKE=',ENKE,' ENTP=',ENPT,' ENTT=',ENKE+ENPT |
1773 |
print *,'ENKE=',QTABLE(JMP3,19,10),' ENTP=',QTABLE(JMP3,20,10), |
1774 |
& ' ENTT=',QTABLE(JMP3,19,10)+QTABLE(JMP3,20,10) |
1775 |
print *,'WLMMAX=',WLMMAX,' JWLMMAX=',JWLMMAX |
1776 |
c print *,'AJ(*,37)' |
1777 |
c print *,(AJ(J,37),j=1,jm) |
1778 |
c print *,'AJ(*,28)' |
1779 |
c print *,(AJ(J,28),j=1,jm) |
1780 |
c IF(USEP.LE.0.) GO TO 680 276. |
1781 |
C**** WRITE SELECTED DIAGNOSTICS ONTO A DISK DATA SET FOR PLOTTING 277. |
1782 |
c IF(TAU.LE.TAUI+1080.) GO TO 675 278. |
1783 |
c 670 READ (16) TAUX 279. |
1784 |
c IF(TAU.GT.TAUX+1080.) GO TO 670 280. |
1785 |
675 WRITE (546) AEXP4,JDATE,JMONTH,JYEAR,JDATE0,JMNTH0,JYEAR0, 281. |
1786 |
* GBUDG,QMAPS,QTABLE,INQTAB,J1QT,INQMAP,RTGOAV |
1787 |
print *,'From atm write(546) ',JMNTH0,JYEAR0,' ',JMONTH,JYEAR |
1788 |
c print *,0.1*GBUDG(1,26,2),0.1*GBUDG(1,35,2) |
1789 |
nwr=nwr+1 |
1790 |
690 continue |
1791 |
if(JDAY.eq.1)then |
1792 |
rewind 547 |
1793 |
write(547)AEXP,nwr |
1794 |
rewind 547 |
1795 |
print *,'From atm write(547) ',AEXP,nwr |
1796 |
endif |
1797 |
if(wr25.and.JDAY.eq.1)then |
1798 |
c Write a restart file once a year |
1799 |
print *,'Write a restart file once a year.' |
1800 |
|
1801 |
#if ( defined CPL_OCEANCO2 && defined ML_2D ) |
1802 |
C Data for possible restart for OCM |
1803 |
write(369)jyear-1,vdfocm |
1804 |
write(369)Hg |
1805 |
write(369)Rco2 |
1806 |
rewind 369 |
1807 |
#endif |
1808 |
|
1809 |
print *,' KDISK0=',KDISK0 |
1810 |
CALL RFINAL (IRAND) |
1811 |
REWIND KDISK0 |
1812 |
if(TRANSR)then |
1813 |
WRITE(KDISK0) AEXP,TAU,JC,C,RC,KEYNR,U,V,T,P,Q,ODATA,GDATA, |
1814 |
* BLDATA, |
1815 |
* RQT,SRHR,TRHR,(AJ(K,1),K=1,KACC),TAU,TSSFC,CKS,CKN,WMGE,TPRIM2 |
1816 |
* ,MRCHT,TRSURF,SRSURF,TLANDW,TSURFW,DWAV0 |
1817 |
* ,TG3M,RTGO,STG3,DTG3 |
1818 |
else |
1819 |
WRITE(KDISK0) AEXP,TAU,JC,C,RC,KEYNR,U,V,T,P,Q,ODATA,GDATA, |
1820 |
* BLDATA, |
1821 |
* RQT,SRHR,TRHR,(AJ(K,1),K=1,KACC),TAU,TSSFC,CKS,CKN,WMGE,TPRIM2 |
1822 |
* ,MRCHT,TRSURF,SRSURF,TLANDW,TSURFW,DWAV0 |
1823 |
c print *,' TSURFT' |
1824 |
c print 5001,TSURFT |
1825 |
c print *,' TSURFW' |
1826 |
c print 5001,TSURFW |
1827 |
endif |
1828 |
REWIND KDISK0 |
1829 |
KDISK=3-KDISK |
1830 |
KDISK0=500+KDISK |
1831 |
end if |
1832 |
C 690 changed to 691 02/21/2003 |
1833 |
680 IF(KCOPY.LE.0) GO TO 691 284. |
1834 |
C**** WRITE A COPY OF THE FINAL RESTART DATA SET ONTO DISK 285. |
1835 |
CALL RFINAL (IRAND) 285.5 |
1836 |
print *,' after 680' |
1837 |
print *,' TAU=',TAU,' IRAND=',IRAND |
1838 |
IF(KCOPY.GT.99) GO TO 687 286. |
1839 |
683 READ (KCOPY) TAUX 286.5 |
1840 |
IF(TAU.GT.TAUX+3240.) GO TO 683 287. |
1841 |
685 WRITE (KCOPY) TAU,JC,C,RC,KEYNR,U,V,T,P,Q,ODATA,GDATA,BLDATA, 287.5 |
1842 |
* RQT,SRHR,TRHR,(AJ(K,1),K=1,KACC),TAU,TSSFC,CKS,CKN 288. |
1843 |
* ,WMGE,TPRIM2,MRCHT,TRSURF,SRSURF,TLANDW,TSURFW,DWAV0 |
1844 |
* ,TG3M,RTGO,STG3,DTG3 |
1845 |
REWIND KCOPY 288.5 |
1846 |
C 690 changed to 691 02/21/2003 |
1847 |
GO TO 691 289. |
1848 |
687 KCOPY=KCOPY-100 289.5 |
1849 |
GO TO 685 289.6 |
1850 |
C**** TIME FOR CALLING DIAGNOSTICS 290. |
1851 |
C 690 changed to 691 02/21/2003 |
1852 |
691 CALL CLOCKS (MNOW) 291. |
1853 |
MDIAG=MDIAG+(MLAST-MNOW) 292. |
1854 |
MLAST=MNOW 293. |
1855 |
780 IF(TAU.LE.TAUI+DTHR*(NDYN+.5)) GO TO 120 294. |
1856 |
GO TO 100 295. |
1857 |
C**** 296. |
1858 |
C**** END OF MAIN LOOP 297. |
1859 |
C**** 298. |
1860 |
C**** RUN TERMINATED BECAUSE SENSE SWITCH 6 WAS TURNED ON 299. |
1861 |
800 WRITE (6,904) 300. |
1862 |
IF(EVENT(TAUT)) GO TO 820 301. |
1863 |
CALL RFINAL (IRAND) 302. |
1864 |
print *,' after 800' |
1865 |
print *,' TAU=',TAU,' IRAND=',IRAND |
1866 |
if(wr25) then |
1867 |
REWIND KDISK0 303. |
1868 |
WRITE(KDISK0) AEXP,TAU,JC,C,RC,KEYNR,U,V,T,P,Q,ODATA,GDATA,BLDATA, 304. |
1869 |
* RQT,SRHR,TRHR,(AJ(K,1),K=1,KACC),TAU,TSSFC,CKS,CKN,WMGE,TPRIM2 305. |
1870 |
* ,MRCHT,TRSURF,SRSURF,TLANDW,TSURFW,DWAV0 |
1871 |
end if |
1872 |
C WRITE (6,908) 306. |
1873 |
C**** RUN TERMINATED BECAUSE IT REACHED TAUE (OR SS6 WAS TURNED ON) 307. |
1874 |
c 820 WRITE (6,905) TAU,IDAY,TOFDAY 308. |
1875 |
820 continue |
1876 |
|
1877 |
#if ( defined OCEAN_3D || defined ML_2D ) |
1878 |
C DTATM time step of atm model in hours |
1879 |
C precip and evap in mm/day or kg/m**2/day |
1880 |
do j=1,jm0 |
1881 |
#if ( defined OCEAN_3D && defined CPL_OCEANCO2 ) |
1882 |
ncallatm=ncallatm+1 |
1883 |
! 020107 |
1884 |
! co24ocean(j)=pC_atm(j)*1.e6 |
1885 |
co24ocean(j)=atm_co2(j) |
1886 |
! 020107 |
1887 |
co24ocnan(j)=co24ocnan(j)+co24ocean(j) |
1888 |
#endif |
1889 |
#ifdef ML_2D |
1890 |
cjrs block only MD_2D |
1891 |
rseaice(j)=ODATA(1,J,2) |
1892 |
#endif |
1893 |
tauu(j)=tauu(j)/(NSURF*DTATM) |
1894 |
tauv(j)=tauv(j)/(NSURF*DTATM) |
1895 |
tempr(j)=tempr(j)/DTATM |
1896 |
precip(j)=precip(j)/(DTATM/24.) |
1897 |
fland=FDATA(1,J,2) |
1898 |
if (fland.lt.1.0)then |
1899 |
precip(j)=precip(j)*(1.-fland*prlnd2total(j,mndriver)) |
1900 |
& /(1.-fland) |
1901 |
endif |
1902 |
Cjrs surfpr(j)=surfpr(j)/(DTATM/24.) |
1903 |
c |
1904 |
if(naveo(j).gt.0)then |
1905 |
hfluxo(j)=NSURF*hfluxo(j)/(NDYN*DT*naveo(j)) |
1906 |
dhfodtg(j)=dhfodtg(j)/naveo(j) |
1907 |
dhfodtgeq(j)=dhfodtgeq(j)/naveo(j) |
1908 |
evao(j)=NSURF*evao(j)/(NDYN*DT*naveo(j)) |
1909 |
devodtg(j)=devodtg(j)/naveo(j) |
1910 |
devodtgeq(j)=devodtgeq(j)/naveo(j) |
1911 |
C From mm/sec to mm/day |
1912 |
evao(j)=24.*3600.*evao(j) |
1913 |
devodtg(j)=24.*3600.*devodtg(j) |
1914 |
devodtgeq(j)=24.*3600.*devodtgeq(j) |
1915 |
endif |
1916 |
C |
1917 |
if(navei(j).gt.0)then |
1918 |
hfluxi(j)=NSURF*hfluxi(j)/(NDYN*DT*navei(j)) |
1919 |
dhfidtg(j)=dhfidtg(j)/navei(j) |
1920 |
dhfidtgeq(j)=dhfidtgeq(j)/navei(j) |
1921 |
evai(j)=NSURF*evai(j)/(NDYN*DT*navei(j)) |
1922 |
devidtg(j)=devidtg(j)/navei(j) |
1923 |
devidtgeq(j)=devidtgeq(j)/navei(j) |
1924 |
C From mm/sec to mm/day |
1925 |
evai(j)=24.*3600.*evai(j) |
1926 |
devidtg(j)=24.*3600.*devidtg(j) |
1927 |
devidtgeq(j)=24.*3600.*devidtgeq(j) |
1928 |
endif |
1929 |
C |
1930 |
if(navrad(j).gt.0)then |
1931 |
solarinc_ice(j)=solarinc_ice(j)/navrad(j) |
1932 |
solarnet_ice(j)=solarnet_ice(j)/navrad(j) |
1933 |
endif |
1934 |
if(navrado(j).gt.0)then |
1935 |
solarinc_ocean(j)=solarinc_ocean(j)/navrado(j) |
1936 |
solarnet_ocean(j)=solarnet_ocean(j)/navrado(j) |
1937 |
endif |
1938 |
c Runoff is a flux of water from land in mm/day |
1939 |
c not for m**2 |
1940 |
cjrs change runoff to new name arunoff |
1941 |
arunoff(j)=arunoff(j)/(DTATM/24.)*FDATA(1,j,2) |
1942 |
& *DXYP(J) |
1943 |
if(NWMGEA(J).gt.0)then |
1944 |
wsocean(J)=WSAV(J)/NWMGEA(J) |
1945 |
NWMGEA(J)=0. |
1946 |
else |
1947 |
wsocean(J)=0. |
1948 |
end if |
1949 |
WSAV(J)=0. |
1950 |
c dhdtav(j)=dhdtav(j)+dhfdtg(j) |
1951 |
c devdtav(j)=devdtav(j)+devdtg(j) |
1952 |
c |
1953 |
c |
1954 |
ps4ocean(j)=ps4ocean(j)/DTATM |
1955 |
do l=1,lm |
1956 |
qyz4ocean(j,l)=qyz4ocean(j,l)/DTATM |
1957 |
tyz4ocean(j,l)=tyz4ocean(j,l)/DTATM |
1958 |
enddo |
1959 |
c |
1960 |
c |
1961 |
end do ! j |
1962 |
rungl=0.0 |
1963 |
runn=0.0 |
1964 |
runt=0.0 |
1965 |
runs=0.0 |
1966 |
SLAND=0.0 |
1967 |
CLAT=20.*TWOPI/360. |
1968 |
do j=1,jm |
1969 |
SLAND=SLAND+FDATA(1,j,2)*DXYP(J) |
1970 |
c jrs runoff->arunoff |
1971 |
rungl=rungl+arunoff(j) |
1972 |
if(LAT(J).lt.-CLAT)then |
1973 |
runs=runs+arunoff(j) |
1974 |
else if(LAT(J).lt.CLAT)then |
1975 |
runt=runt+arunoff(j) |
1976 |
else |
1977 |
runn=runn+arunoff(j) |
1978 |
endif |
1979 |
enddo |
1980 |
c print *,'RUNOFF TOFDAY=',TOFDAY |
1981 |
c print *,rungl/SLAND,rungl,runs,runt,runn |
1982 |
c nmonth=JMNTH0 |
1983 |
#ifdef ML_2D |
1984 |
c jrs only ML_2D |
1985 |
nmonth=AMONTH(mndriver) |
1986 |
#endif |
1987 |
jdatefl=jdate-1 |
1988 |
c if(JMONTH.ne.JMNTH0)jdatefl=NDAYMN(mndriver) |
1989 |
c if(JMONTH.ne.JMNTH0)then |
1990 |
c print *,'OCEAN FLUXS' |
1991 |
c print *,JMONTH,JMNTH0,JDATE |
1992 |
c print *,'Month=',AMONTH(mndriver),' day=',jdatefl |
1993 |
c print *,' TAIR_OCEAN' |
1994 |
c print *,(tairo(j),j=1,jm0) |
1995 |
c print *,' TAIR_ICE' |
1996 |
c print *,(tairi(j),j=1,jm0) |
1997 |
c print *,' TAUU' |
1998 |
c print *,(tauu(j),j=1,jm0) |
1999 |
c print *,' TAUV' |
2000 |
c print *,(tauv(j),j=1,jm0) |
2001 |
c print *,' EVA-E OCEAN' |
2002 |
c print *,(evao(j),j=1,jm0) |
2003 |
c print *,' EVA-I OCEAN' |
2004 |
c print *,(evai(j),j=1,jm0) |
2005 |
c print *,' P-E ICE' |
2006 |
c print *,(pmei(j),j=1,jm0) |
2007 |
c print *,' HEAT FLUX OCEAN' |
2008 |
c print *,(hfluxo(j),j=1,jm0) |
2009 |
c print *,' DHEATFLUX_OCEAN/DTG' |
2010 |
c print *,(dhfodtg(j),j=1,jm0) |
2011 |
c print *,' EVA_OCEAN/DTG' |
2012 |
c print *,(devodtg(j),j=1,jm0) |
2013 |
c print *,' EVA_ICE/DTG' |
2014 |
c print *,(devidtg(j),j=1,jm0) |
2015 |
c print *,' HEAT FLUX ICE' |
2016 |
c print *,(hfluxi(j),j=1,jm0) |
2017 |
c print *,' DHEATFLUX_ICE/DTG' |
2018 |
c print *,(dhfidtg(j),j=1,jm0) |
2019 |
c print *,' DLH_OCEAN/DTG' |
2020 |
c print *,(devidtg(j),j=1,jm0) |
2021 |
c print *,'PS4OCEAN' |
2022 |
c print *,(ps4ocean(j),j=1,jm0) |
2023 |
c print *,'QYZ4OCEAN' |
2024 |
c do l=1,lm |
2025 |
c print *,(qyz4ocean(j,l),j=1,jm0) |
2026 |
c enddo |
2027 |
c endif |
2028 |
c go to 587 |
2029 |
c write(893),nmonth,jdatefl,tempr,tauu,tauv,precip,evao, |
2030 |
c & evai,hfluxo,dhfodtg,devodtg,hfluxi,dhfidtg,devidtg, |
2031 |
c & solarinc_ice,solarnet_ice,rseaice |
2032 |
#ifdef ML_2D |
2033 |
c jrs only ML_2D |
2034 |
do j=1,jm |
2035 |
osst(j)=ODATA(1,j,1) |
2036 |
aoice(j)=ODATA(1,j,3) |
2037 |
foice(j)=ODATA(1,j,2) |
2038 |
snowice(j)=GDATA(1,j,1) |
2039 |
tice1(j)=GDATA(1,j,3) |
2040 |
tice2(j)=GDATA(1,j,7) |
2041 |
enddo |
2042 |
#endif |
2043 |
c write (894),nmonth,jdatefl,osst,aoice,foice,snowice,tice1,tice2 |
2044 |
587 continue |
2045 |
#endif |
2046 |
|
2047 |
C |
2048 |
c TAU for coupler |
2049 |
c |
2050 |
TAUATM=TAU |
2051 |
MONTHATM=JMONTH |
2052 |
JDATEATM=JDATE |
2053 |
JYEARATM=JYEAR |
2054 |
C |
2055 |
#ifdef ML_2D |
2056 |
Cjrs change this block to only ML_2D |
2057 |
IDAYM=IDAY |
2058 |
JDAYM=JDAY |
2059 |
JDATEM=JDATE |
2060 |
JMONTHM=JMONTH |
2061 |
JYEARM=JYEAR |
2062 |
TAUML=TAU |
2063 |
TOFDAYML=TOFDAY |
2064 |
#endif |
2065 |
C |
2066 |
if(JDAY.ne.JDAYLAST)then |
2067 |
c print *,'co24ocean=',co24ocean(jm/2) |
2068 |
if(JDATEPR.ne.0)then |
2069 |
c WRITE (6,905) TOFDAY,JDATE,JMONTH,JYEAR |
2070 |
WRITE (6,905) TOFDAYPR,JDATEPR,JMONTHPR,JYEARPR |
2071 |
endif |
2072 |
cjrs print *,'ncallclm=',ncallclm |
2073 |
JDAYLAST=JDAY |
2074 |
c if(ncallclm.gt.6) stop |
2075 |
c stop |
2076 |
endif |
2077 |
return |
2078 |
C CALL ENQJOB 309. |
2079 |
C CALL ENQJOB 310. |
2080 |
IF(KSS6.EQ.1) STOP 12 310.1 |
2081 |
IF(IPFLAG.EQ.0) STOP 13 311. |
2082 |
STOP 1 312. |
2083 |
C**** 313. |
2084 |
901 FORMAT ('0CLIMATE MODEL STARTED UP',14X,'DAY',I5,', HR',F6.2,I6, 314. |
2085 |
* A5,I27,I7,F7.1,' TAU',F9.2) 315. |
2086 |
902 FORMAT (' DYNAMIC TERMS INTEGRATED, MRCH=',I1,4X,'DAY',I5, 316. |
2087 |
* ', HR',F6.2,I6,A5,2I7,F7.1,23X,'TAU',F9.2) 317. |
2088 |
903 FORMAT (' SOURCE TERMS INTEGRATED',64X,2I7,F7.1) 318. |
2089 |
904 FORMAT ('0SENSE SWITCH 6 HAS BEEN TURNED ON.') 319. |
2090 |
905 FORMAT (/1(1X,33('****')/)/ 320. |
2091 |
c * ' PROGRAM HAS TERMINATED NORMALLY. TAU,IDAY,TOFDAY=',F9.2, 321. |
2092 |
* ' ATM HAS TERMINATED NORMALLY. AT ',F9.2,I3,A5,i5, |
2093 |
* /1(1X,33('****')/)) 322. |
2094 |
906 FORMAT (' OUTPUT RECORD WRITTEN ON UNIT',I3,55X,2I7,F7.1, 323. |
2095 |
* ' TAU',F9.2,' ON ',A4) 324. |
2096 |
908 FORMAT (' OUTPUT RECORD WRITTEN ON UNIT',I3,79X,'TAU',F9.2, 325. |
2097 |
* ' ON ',A4) 326. |
2098 |
909 FORMAT (/'0TIME',F7.2,'(MINUTES) DYNAMICS',F5.1, 327. |
2099 |
* ' CONDENSATION',F5.1,' RADIATION',F5.1,' SURFACE', 328. |
2100 |
* F5.1,' DIAGNOSTICS',F5.1,' OTHER',F5.1//) 329. |
2101 |
910 FORMAT (' INFORMATION WRITTEN ON UNIT 20',57X,2I7,F7.1, 330. |
2102 |
* ' TAU',F9.2,' ON TAPE') 331. |
2103 |
920 FORMAT ('1'/64(1X/)) 332. |
2104 |
END 333. |