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1 Motivation

To objectively quantify the degree of consistency between a set of independent observations of a

system state (data) and a reconstructed estimate of that state from a model (state estimate), one

must define measures that define consistency in terms of the differences between the data and the

reconstruction. These measures may be defined with respect to the statistics of the model-data

residuals.1 Examples of statistical properties of the residuals, ε, included the expected value of

their mean and the squared deviation from the mean,

E[ε] =E [xo − xm] = µε

E[(ε− µε)2] =V ar(ε) = σ2
ε

WhereE[x] is the expected value of the random variable x, µε is the expected mean of the residuals,

and σ2
ε is the expected squared deviation of the residuals from their mean.

Defining consistency Defining consistency in terms of the statistics of model-data residuals re-

quires the specification of a function, f , that takes as inputs these expectation values and the actual

model-data residuals,

f = f
(
µε, σ

2
ε , ε
)

The evaluation of the arbitrary function f for a set of expectation values and model-data residuals

can provide an objective measure of the consistency of the state estimate. In addition to f , addi-

tional conditions may be specified for the model-data residuals, such as homoscedasticity of their

1These are typically treated as a set of uncorrelated random variables.
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variance.2

A common requirement for model-data consistency is for the model and data to have identical

means (zero expected value of the residual, µε = 0) and for the residuals to be uncorrelated with a

finite variance,

E[ε] =µε = 0

E[(ε− µε)2] =E[(ε− 0)2] = E[ε2] = σ2
ε

Specification of several residual statistics In large ocean state estimation problems one does not

typically define a single value of µε and σ2
ε over the entire domain in time and space and for all

observations independent of type or instrument. Indeed, one often defines a set of µε and σ2
ε with

each member corresponding to one or more observation types, instrument, or locations in time and

space. Because the number of measurements in each (µε, σ
2
ε ) set may be few and the number of

(µε, σ
2
ε ) sets are so large, it is impractical to simply analyze the individual distributions of model-

data residuals for each set to determine overall model-data consistency.

Instead, progress is made by scaling each model-data residuals by its corresponding (µε, σ
2
ε )

set and then combining these scaled residuals into a single, new distribution with properties that

can be more easily evaluated against a consistency criterion.

One such function used to evaluate model-data consistency of the scaled residuals is the

2For example, requiring that there is no correlation between the magnitude of simulated SST vs observed SST

residuals as a function of ocean surface temperature or salinity.
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reduced chi-squared statistic, χ2
r ,

χ2
r =

1

N − n− 1

N∑
i=1

[ε(i)− µε(i)]2

σ2
ε (i)

Where N is the number of observations, and n is the number of free parameters in the distribution

(n = 1 for a standard normal distribution with a zero-mean and unknown standard deviation).

The χ2
r statistic is proportional to the sum of the variances of the actual residuals scaled by their

expected values. Model-data consistency then amounts to evaluating the ratio of the χ2
r for the

actual residuals to the χ2
r expected if the residuals had distributions consistent with µε and σ2

ε .

Model-data consistency is achieved when this ratio evaluates to unity.

Of course, one is free to define additional or alternative functions to quantify model-data

consistency.

2 Defining model-data consistency

Determining the actual measures to define model-data consistency is a central problem in ocean

state estimation because there are many possible causes of model-data difference that must be

taken into account. The causes of model-data difference include errors associated with imperfect

measurements (data errors), a model’s inability to represent the true ocean state (representation

error), and errors associated with a model’s imperfect encoding of the physics of the real system

(model error). All of these possible causes have consequences for the model-data residuals and the

their statistical moments.
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Failure to properly define these error measures can lead to the problem of over- or under-

fitting the model to the data. In an adjoint-based state estimation methodology, failing to properly

specify these measures can lead to suboptimal iterative adjustments of the model control variables.

In practice, incorrectly defined consistency measures may cripple the optimization machinery by

causing control variable adjustments that fail to make useful improvements of the state estimate.

Here, I focus on calculating the expected second order moments of model-data residuals as-

sociated with model representation error, the inability of the model to represent the true spatial and

temporal variability of ocean fields. Even in state-of-the-art models, representation errors can be

much larger than measurement errors over much of the global ocean. Indeed, given the turbulent,

nonlinear nature of the ocean’s meso- and sub-mesoscale eddy field and the set of model control

variables used by ECCO-class adjoint ocean state estimation systems, model representation errors

will be the dominant contribution to model-data misfits for as long as we seek ocean reconstruc-

tions that faithfully reproduce the general trajectory and the statistical properties of global ocean

variability and not its exact evolution.

If the statistics of a model’s temperature and salinity distributions defined over a given vol-

ume and time approach the statistics of the true distributions as model resolution increases, one

may analyze the output of a high resolution model to estimate the variances of the true state.

The approach I take is to estimate the variances of the expected model-data difference due

to model representation errors for a relatively coarse model (llc90, ∆x = 45 km) by analyzing

the simulated temperature and salinity fields from a model with a much finer spatial resolution
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(llc2160, ∆x = 2 km). Ocean grid cell areas in the finer model are approximately 570 times

smaller than the coarser.

3 Uncertainty 1: Spatial Sampling

To compare a model state against in situ observational data, one must interpolate the model state to

the observation’s location in space. The full spatial variability of temperature and salinity fields in

the real ocean within a given volume cannot be perfectly represented in models with finite spatial

resolution. The temperature and salinity values associated with model grid cells represent the

means of those fields within the volumes defining those cells. Consequently, even if the model

perfectly reproduced the volume-averaged representation of the true field, one would expect a

nonzero variance in the residuals between the model field interpolated to the observation location

and the observation itself. Determining whether a model’s state is consistent with the observational

data therefore requires a characterization of the expected statistics of these residuals.

The true ocean field Ψ(t, x) within volume V at time t has a spatial mean Ψ(t, V ) and its

distribution has a second central moment σ2(t, V ),

Ψ(t, V ) =

∫∫∫
V

(Ψ(t, x)dV

σ2(t, V ) =

∫∫∫
V

[
Ψ(t)−Ψ(t, x)

]2
dV

The distribution of Ψ(t, x) in V is unlikely to be Gaussian but we ignore high-order moments

here.
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Given that a model state at a given time represents the volume average of the true field over

each model grid cell, one reasonable model-data consistency requirement is that the residuals of

the model-data differences in each grid cell to have a zero expected mean and a nonzero expected

variance. The expected variance of the model-data residuals should be no less than the spatial

variance of the true field within that same volume. For simplicity, I assume that the spatial variance

of the true field is stationary (time independent).

To estimate the true spatial variance of the ocean T and S fields, we analyze the spatial distri-

butions of high-resolution model fields within volumes that are defined by each coarse-resolution

model grid cell. Because at any given time the spatial distribution of the high-resolution field

within V may be an under- or over-estimate the true spatial distribution, we seek a time-invariant

estimate of σ2(x) by combining multiple estimates of σ2(t, x) from the high-resolution model from

within a time window of length τ .

The appropriate choice of τ and the method of combining these distributions to estimate the

true variance depends in part on the temporal and spatial variability of the underlying field. If

temporal changes in the spatial mean of the high-resolution T and S fields in V are small over τ ,

then one can simply analyze a sample of the high-resolution model output within V and τ . On the

other hand, if the temporal variability of the spatial mean of T and S are large over τ , one must

combine several separate variance estimates calculated over shorter time intervals within which the

T and S spatial means can be assumed constant. For example, because extratropical sea surface

temperatures undergo a large seasonal cycle, estimates of σ2(x) must be made over time periods
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that are much shorter than a seasonal cycle to avoid including temporal variability into the estimate

of spatial variability.

Here, I make separate estimates of σ2(x) by analyzing the spatial distribution of the high-

resolution model output in V over daily time intervals over a time period τ and then combine these

separate variance estimates using the method of pooled variance. I make the assumption that that

the spatial variance of the true field within V is constant over τ .

Method The method used to estimate the expected magnitude of the model-data residuals associ-

ated with spatial sampling errors associated with the model’s finite spatial resolution is as follows:

1. For each volume V that defines a llc90 grid cell, define the set of pointsXV = {x1, x2, ..., xnx}

whose nx members are the subset of the llc2160 model grid points falling within V . In most

llc90 grid cells, nx ≈ 520.

2. Define a time window τ that spans nt high-resolution model time steps over which to sample

the high resolution model field ψllc2160.

3. For every high resolution model time step t ∈ τ and llc90 grid cell volume V , extract a

subset of the high-resolution model output, ψllc2160(t,XV ).

4. For every such subset, find its mean, ψllc2160(t, V ), and make an unbiased estimate of the
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spatial variance of the true field, σ̂2
spatial(t, V ),

ψllc2160(t, V ) =
1

nx

nx∑
i=1

ψllc2160(t,XV (i))

σ̂2
spatial(t, V ) =

1

nx − 1

nx∑
i=1

[
ψllc2160(t,XV (i))− ψllc2160(t, V )

]2
5. Combine the nt separate σ̂2(t, V ) to make a time-independent spatial variance estimate,

σ̂2
spatial(V ), using the method of pooled variance,

σ̂2
spatial(V ) =

∑nt
t=1(nx − 1) σ̂2

spatial(t, V )∑nt
t=1(nx − 1)

I chose τ = 90 days and t = 1 day for each calculation of σ̂2
spatial(V ).

Also, I tried 5 different 90 day windows, with the first starting from 3/1.

4 Uncertainty 2: Unresolved Sub-seasonal Temporal Variability of the Volume-Mean Fields

Over time period τ , the volume-mean of the true field within volume V has a (temporal) mean

Ψ(τ, V ) and a distribution with a second central moment σ2(τ, V ),

Ψ(τ, V ) =

∫
τ

Ψ(t, V ) dT

σ2(τ, V ) =

∫
τ

[
Ψ(t, V )−Ψ(τ, V )

]2
dT

Over what timescales can the llc90 model reproduce temporal variations of the true volume-

mean ocean temperature and salinity? As the llc90 model is not eddy resolving, it cannot repre-

sent temporal variability of the volume-mean associated with eddy processes. Thus, a reasonable
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model-data consistency requirement is that model-data residuals have an expected mean value of

zero and an expected variance that is the same as the (temporal) variance of the volume-mean of

the true temperature and salinity fields over eddy timescales. Since the eddy temporal variability

timescale is not well-defined, I chose 90 days.

Method The method used to estimate the expected magnitude of the model-data residuals asso-

ciated with model representation errors associated with the inability of the model to reproduce

fluctuations on mesoscale eddy timescales and shorter is given by,

1. For each volume V that defines a llc90 grid cell, define the set of pointsXV = {x1, x2, ..., xnx}

whose nx members are the subset of the llc2160 model grid points falling within V . In most

llc90 grid cells, nx ≈ 520.

2. Define a time window τ that spans nt high-resolution model time steps over which to sample

the high resolution model field ψllc2160. τ should be approximately equal to the timescale of

ocean variability that we expect the model to be able to reproduce.

3. For every high resolution model time step t ∈ τ and llc90 grid cell volume V , extract a

subset of the high-resolution model output, ψllc2160(t,XV ).

4. Find the volume mean of every such subset, ψllc2160(t, V ),

ψllc2160(t, V ) =
1

nx

nx∑
i=1

ψllc2160(t,XV (i))
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5. Find the temporal mean over τ of these volume mean subsets, ψllc2160(τ, V ),

ψllc2160(τ, V ) =
1

nt

nt∑
t=1

ψllc2160(t, V )

6. Make an unbiased estimate of the temporal variance over τ of these volume means, σ̂2
eddy(τ, V ),

σ̂2
eddy(τ, V ) =

1

nt − 1

nt∑
t=1

[
ψllc2160(t, V )− ψllc2160(τ, V )

]2
7. Repeat Step 2 a total of nτ times, in each case using different start times in order to make nτ

estimates of σ2
eddy(τ, V ). Collect these separate estimates as σ2

eddy(τi, V ) τi ∈ {1, 2, . . . nτ}

8. Combine these nτ separate σ̂2
eddy(τi, V ) estimates made with different start times to make a

final, start-time independent estimate, σ̂2
eddy(V ), using the method of pooled variance,

σ̂2
te(V ) =

∑nτ
i=1(nt − 1) σ̂2

eddy(τi, V )∑nτ
i=1(nt − 1)

I chose τ = 30 days and nτ = 12 to make σ̂2
te(V ).

5 Uncertainty 3: Improper Sub-seasonal Temporal Variability of the Volume-Mean Fields

The motivating idea for Uncertainty 2 was that no model can perfectly represent the full range of

temporal variability of the true volume-averaged field and, consequently, one must account for this

source of additional expected variance in the model-data residuals. Implicit in Uncertainty 2 was

the idea that since the llc90 model is able to capture the evolution of the mean field on timescales

longer than some τ , it is sufficient to characterize the expected second order moments of model-

data residuals due to eddy fluctuations on timescales shorter than τ . Indeed, it would be sufficient
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to only characterize the expected variability of the true eddy field if the model fields exhibited little

variability on timescales shorter than τ . However, in some parts of the ocean this is not true, the

llc90 model does exhibit significant sub-seasonal variability. The timescale of this significant sub-

seasonal llc90 variability, τllc90, may be quite different than that of the true ocean since the model

cannot explicitly simulate the full range of dynamical motions. Thus, it is not reasonable to expect

that such sub-seasonal model variability reflect reality nor can one reasonably expect that all such

variability be “corrected” through the model control variables. Consequently, when comparing a

model state against in situ observational data, one must also account for the expected model-data

residuals resulting from this type of model representation error.

Over the nt llc90 model time steps within time period τllc90, the llc90 model field ψllc90(t, V )

associated with volume V has a (temporal) mean ψllc90(τllc90, V ) and a distribution with a second

central moment σ2
llc90(τllc90, V ),

ψllc90(τllc90, V ) =
1

nt

nt∑
t=1

ψllc90(t, V )

σ2
mod(τllc90, V ) =

1

nt − 1

nt∑
t=1

[
ψllc90(t, V )− ψllc90(τllc90, V )

]2
Using the same arguments as were made in Uncertainty 2, one may pick a typical eddy turnover

timescale or a timescale of eddy translation across the llc90 model grid cell for τllc90. However, as

the llc90 model follows its own (non-eddying) dynamics and it is not immediately obvious what

the best value of τllc90 should be.

Nevertheless, a reasonable model-data consistency requirement is that model-data residuals

due to the model’s incorrect variability on sub-seasonal timescales (less than τllc90) have an ex-
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pected mean value of zero and an expected variance that is the same as the (temporal) variance of

the model fields over τllc90

Method The method used to estimate the expected magnitude of the model-data residuals associ-

ated with model representation errors associated with the model’s incorrect sub-seasonal variability

is as follows,

1. Define a time window τllc90 that spans nt coarse-resolution model time steps over which

to sample the coarse resolution model field ψllc90. τllc90 should be approximately equal to

the typical timescales of model variability that are associated with the model’s incomplete

representation of sub-seasonal dynamics.

2. For every coarse-resolution model time step t ∈ τ and llc90 grid cell volume V , extract a

the coarse resolution output, ψllc90(t, V ).

3. Find the temporal mean over τ of the coarse-resolution model field, ψllc90(τ, V ),

ψllc90(τllc90, V ) =
1

nt

nt∑
t=1

ψllc90(t, V )

4. Make an unbiased estimate of the temporal variance over τ of the model field, σ̂2
mod(τllc90, V ),

σ̂2
mod(τllc90, V ) =

1

nt − 1

nt∑
t=1

[
ψllc90(t, V )− ψllc90(τllc90, V )

]2

5. Repeat Step 1 a total of nτ times, in each case using different start times in order to make nτ

estimates of σ2
mod(τllc90, V ). Collect these separate estimates as σ2

mod(τi, V ) τi ∈ {1, 2, . . . nτ}
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6. Combine these nτ separate σ̂2
mod(τi, V ) estimates made with different start times to make a

final, start-time independent estimate, σ̂2
mod(V ), using the method of pooled variance,

σ̂2
mod(V ) =

∑nτ
i=1(nt − 1) σ̂2

mod(τi, V )∑nτ
i=1(nt − 1)

6 Combining Uncertainties

If the three sources of model-data residuals are uncorrelated then the expected squared deviation

of the residuals from their (expected zero) mean is,

σ2
residuals = σ2

spatial + σ2
eddy + σ2

model
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