/[MITgcm]/MITgcm_contrib/high_res_cube/matlab-grid-generator/dist.m
ViewVC logotype

Contents of /MITgcm_contrib/high_res_cube/matlab-grid-generator/dist.m

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download)
Sat Feb 26 00:34:18 2005 UTC (20 years, 4 months ago) by dimitri
Branch: MAIN
CVS Tags: HEAD
added high_res_cube/matlab-grid-generator/dist.m, readbin.m, and writebin.m

1 function [range,A12,A21]=dist(lat,long,argu1,argu2);
2 % DIST Computes distance and bearing between points on the earth
3 % using various reference spheroids.
4 %
5 % [RANGE,AF,AR]=DIST(LAT,LONG) computes the ranges RANGE between
6 % points specified in the LAT and LONG vectors (decimal degrees with
7 % positive indicating north/east). Forward and reverse bearings
8 % (degrees) are returned in AF, AR.
9 %
10 % [RANGE,GLAT,GLONG]=DIST(LAT,LONG,N) computes N-point geodesics
11 % between successive points. Each successive geodesic occupies
12 % it's own row (N>=2)
13 %
14 % [..]=DIST(...,'ellipsoid') uses the specified ellipsoid
15 % to get distances and bearing. Available ellipsoids are:
16 %
17 % 'clarke66' Clarke 1866
18 % 'iau73' IAU 1973
19 % 'wgs84' WGS 1984
20 % 'sphere' Sphere of radius 6371.0 km
21 %
22 % The default is 'wgs84'.
23 %
24 % Ellipsoid formulas are recommended for distance d<2000 km,
25 % but can be used for longer distances.
26
27 %Notes: RP (WHOI) 3/Dec/91
28 % Mostly copied from BDC "dist.f" routine (copied from ....?), but
29 % then wildly modified to bring it in line with Matlab vectorization.
30 %
31 % RP (WHOI) 6/Dec/91
32 % Feeping Creaturism! - added geodesic computations. This turned
33 % out to be pretty hairy since there were a lot of branch problems
34 % with asin, atan when computing geodesics subtending > 90 degrees
35 % that were ignored in the original code!
36 % RP (WHOI) 15/Jan/91
37 % Fixed some bothersome special cases, like when computing geodesics
38 % and N=2, or LAT=0...
39
40 %C GIVEN THE LATITUDES AND LONGITUDES (IN DEG.) IT ASSUMES THE IAU SPHERO
41 %C DEFINED IN THE NOTES ON PAGE 523 OF THE EXPLANATORY SUPPLEMENT TO THE
42 %C AMERICAN EPHEMERIS.
43 %C
44 %C THIS PROGRAM COMPUTES THE DISTANCE ALONG THE NORMAL
45 %C SECTION (IN M.) OF A SPECIFIED REFERENCE SPHEROID GIVEN
46 %C THE GEODETIC LATITUDES AND LONGITUDES OF THE END POINTS
47 %C *** IN DECIMAL DEGREES ***
48 %C
49 %C IT USES ROBBIN'S FORMULA, AS GIVEN BY BOMFORD, GEODESY,
50 %C FOURTH EDITION, P. 122. CORRECT TO ONE PART IN 10**8
51 %C AT 1600 KM. ERRORS OF 20 M AT 5000 KM.
52 %C
53 %C CHECK: SMITHSONIAN METEOROLOGICAL TABLES, PP. 483 AND 484,
54 %C GIVES LENGTHS OF ONE DEGREE OF LATITUDE AND LONGITUDE
55 %C AS A FUNCTION OF LATITUDE. (SO DOES THE EPHEMERIS ABOVE)
56 %C
57 %C PETER WORCESTER, AS TOLD TO BRUCE CORNUELLE...1983 MAY 27
58 %C
59
60 spheroid='wgs84';
61 geodes=0;
62 if (nargin >= 3),
63 if (isstr(argu1)),
64 spheroid=argu1;
65 else
66 geodes=1;
67 Ngeodes=argu1;
68 if (Ngeodes <2), error('Must have at least 2 points in a goedesic!');end;
69 if (nargin==4), spheroid=argu2; end;
70 end;
71 end;
72
73 if (spheroid(1:3)=='sph'),
74 A = 6371000.0;
75 B = A;
76 E = sqrt(A*A-B*B)/A;
77 EPS= E*E/(1-E*E);
78 elseif (spheroid(1:3)=='cla'),
79 A = 6378206.4E0;
80 B = 6356583.8E0;
81 E= sqrt(A*A-B*B)/A;
82 EPS = E*E/(1.-E*E);
83 elseif(spheroid(1:3)=='iau'),
84 A = 6378160.e0;
85 B = 6356774.516E0;
86 E = sqrt(A*A-B*B)/A;
87 EPS = E*E/(1.-E*E);
88 elseif(spheroid(1:3)=='wgs'),
89
90 %c on 9/11/88, Peter Worcester gave me the constants for the
91 %c WGS84 spheroid, and he gave A (semi-major axis), F = (A-B)/A
92 %c (flattening) (where B is the semi-minor axis), and E is the
93 %c eccentricity, E = ( (A**2 - B**2)**.5 )/ A
94 %c the numbers from peter are: A=6378137.; 1/F = 298.257223563
95 %c E = 0.081819191
96 A = 6378137.;
97 E = 0.081819191;
98 EPS= E*E/(1.-E*E);
99
100 B = sqrt(A^2-(E*A)^2); % added by D Menemenlis, 4 nov 97
101
102 else
103 error('dist: Unknown spheroid specified!');
104 end;
105
106
107 NN=max(size(lat));
108 if (NN ~= max(size(long))),
109 error('dist: Lat, Long vectors of different sizes!');
110 end
111
112 if (NN==size(lat)), rowvec=0; % It is easier if things are column vectors,
113 else rowvec=1; end; % but we have to fix things before returning!
114
115 lat=lat(:)*pi/180; % convert to radians
116 long=long(:)*pi/180;
117
118 lat(lat==0)=eps*ones(sum(lat==0),1); % Fixes some nasty 0/0 cases in the
119 % geodesics stuff
120
121 PHI1=lat(1:NN-1); % endpoints of each segment
122 XLAM1=long(1:NN-1);
123 PHI2=lat(2:NN);
124 XLAM2=long(2:NN);
125
126 % wiggle lines of constant lat to prevent numerical probs.
127 if (any(PHI1==PHI2)),
128 for ii=1:NN-1,
129 if (PHI1(ii)==PHI2(ii)), PHI2(ii)=PHI2(ii)+ 1e-14; end;
130 end;
131 end;
132 % wiggle lines of constant long to prevent numerical probs.
133 if (any(XLAM1==XLAM2)),
134 for ii=1:NN-1,
135 if (XLAM1(ii)==XLAM2(ii)), XLAM2(ii)=XLAM2(ii)+ 1e-14; end;
136 end;
137 end;
138
139
140
141 %C COMPUTE THE RADIUS OF CURVATURE IN THE PRIME VERTICAL FOR
142 %C EACH POINT
143
144 xnu=A./sqrt(1.0-(E*sin(lat)).^2);
145 xnu1=xnu(1:NN-1);
146 xnu2=xnu(2:NN);
147
148 %C*** COMPUTE THE AZIMUTHS. A12 (A21) IS THE AZIMUTH AT POINT 1 (2)
149 %C OF THE NORMAL SECTION CONTAINING THE POINT 2 (1)
150
151 TPSI2=(1.-E*E)*tan(PHI2) + E*E*xnu1.*sin(PHI1)./(xnu2.*cos(PHI2));
152 PSI2=atan(TPSI2);
153
154 %C*** SOME FORM OF ANGLE DIFFERENCE COMPUTED HERE??
155
156 DPHI2=PHI2-PSI2;
157 DLAM=XLAM2-XLAM1;
158 CTA12=(cos(PHI1).*TPSI2 - sin(PHI1).*cos(DLAM))./sin(DLAM);
159 A12=atan((1.)./CTA12);
160 CTA21P=(sin(PSI2).*cos(DLAM) - cos(PSI2).*tan(PHI1))./sin(DLAM);
161 A21P=atan((1.)./CTA21P);
162
163 %C GET THE QUADRANT RIGHT
164 DLAM2=(abs(DLAM)<pi).*DLAM + (DLAM>=pi).*(-2*pi+DLAM) + ...
165 (DLAM<=-pi).*(2*pi+DLAM);
166 A12=A12+(A12<-pi)*2*pi-(A12>=pi)*2*pi;
167 A12=A12+pi*sign(-A12).*( sign(A12) ~= sign(DLAM2) );
168 A21P=A21P+(A21P<-pi)*2*pi-(A21P>=pi)*2*pi;
169 A21P=A21P+pi*sign(-A21P).*( sign(A21P) ~= sign(-DLAM2) );
170 %%A12*180/pi
171 %%A21P*180/pi
172
173
174 SSIG=sin(DLAM).*cos(PSI2)./sin(A12);
175 % At this point we are OK if the angle < 90...but otherwise
176 % we get the wrong branch of asin!
177 % This fudge will correct every case on a sphere, and *almost*
178 % every case on an ellipsoid (wrong hnadling will be when
179 % angle is almost exactly 90 degrees)
180 dd2=[cos(long).*cos(lat) sin(long).*cos(lat) sin(lat)];
181 dd2=sum((diff(dd2).*diff(dd2))')';
182 if ( any(abs(dd2-2) < 2*((B-A)/A))^2 ),
183 disp('dist: Warning...point(s) too close to 90 degrees apart');
184 end;
185 bigbrnch=dd2>2;
186
187 SIG=asin(SSIG).*(bigbrnch==0) + (pi-asin(SSIG)).*bigbrnch;
188
189 SSIGC=-sin(DLAM).*cos(PHI1)./sin(A21P);
190 SIGC=asin(SSIGC);
191 A21 = A21P - DPHI2.*sin(A21P).*tan(SIG/2.0);
192
193 %C COMPUTE RANGE
194
195 G2=EPS*(sin(PHI1)).^2;
196 G=sqrt(G2);
197 H2=EPS*(cos(PHI1).*cos(A12)).^2;
198 H=sqrt(H2);
199 TERM1=-SIG.*SIG.*H2.*(1.0-H2)/6.0;
200 TERM2=(SIG.^3).*G.*H.*(1.0-2.0*H2)/8.0;
201 TERM3=(SIG.^4).*(H2.*(4.0-7.0*H2)-3.0*G2.*(1.0-7.0*H2))/120.0;
202 TERM4=-(SIG.^5).*G.*H/48.0;
203
204 range=xnu1.*SIG.*(1.0+TERM1+TERM2+TERM3+TERM4);
205
206
207 if (geodes),
208
209 %c now calculate the locations along the ray path. (for extra accuracy, could
210 %c do it from start to halfway, then from end for the rest, switching from A12
211 %c to A21...
212 %c started to use Rudoe's formula, page 117 in Bomford...(1980, fourth edition)
213 %c but then went to Clarke's best formula (pg 118)
214
215 %RP I am doing this twice because this formula doesn't work when we go
216 %past 90 degrees!
217 Ngd1=round(Ngeodes/2);
218
219 % First time...away from point 1
220 if (Ngd1>1),
221 wns=ones(1,Ngd1);
222 CP1CA12 = (cos(PHI1).*cos(A12)).^2;
223 R2PRM = -EPS.*CP1CA12;
224 R3PRM = 3.0*EPS.*(1.0-R2PRM).*cos(PHI1).*sin(PHI1).*cos(A12);
225 C1 = R2PRM.*(1.0+R2PRM)/6.0*wns;
226 C2 = R3PRM.*(1.0+3.0*R2PRM)/24.0*wns;
227 R2PRM=R2PRM*wns;
228 R3PRM=R3PRM*wns;
229
230 %c now have to loop over positions
231 RLRAT = (range./xnu1)*([0:Ngd1-1]/(Ngeodes-1));
232
233 THETA = RLRAT.*(1 - (RLRAT.^2).*(C1 - C2.*RLRAT));
234 C3 = 1.0 - (R2PRM.*(THETA.^2))/2.0 - (R3PRM.*(THETA.^3))/6.0;
235 DSINPSI =(sin(PHI1)*wns).*cos(THETA) + ...
236 ((cos(PHI1).*cos(A12))*wns).*sin(THETA);
237 %try to identify the branch...got to other branch if range> 1/4 circle
238 PSI = asin(DSINPSI);
239
240 DCOSPSI = cos(PSI);
241 DSINDLA = (sin(A12)*wns).*sin(THETA)./DCOSPSI;
242 DTANPHI=(1.0+EPS)*(1.0 - (E^2)*C3.*(sin(PHI1)*wns)./DSINPSI).*tan(PSI);
243 %C compute output latitude (phi) and long (xla) in radians
244 %c I believe these are absolute, and don't need source coords added
245 PHI = atan(DTANPHI);
246 % fix branch cut stuff -
247 otherbrcnh= sign(DLAM2*wns) ~= sign([sign(DLAM2) diff(DSINDLA')'] );
248 XLA = XLAM1*wns + asin(DSINDLA).*(otherbrcnh==0) + ...
249 (pi-asin(DSINDLA)).*(otherbrcnh);
250 else
251 PHI=PHI1;
252 XLA=XLAM1;
253 end;
254
255 % Now we do the same thing, but in the reverse direction from the receiver!
256 if (Ngeodes-Ngd1>1),
257 wns=ones(1,Ngeodes-Ngd1);
258 CP2CA21 = (cos(PHI2).*cos(A21)).^2;
259 R2PRM = -EPS.*CP2CA21;
260 R3PRM = 3.0*EPS.*(1.0-R2PRM).*cos(PHI2).*sin(PHI2).*cos(A21);
261 C1 = R2PRM.*(1.0+R2PRM)/6.0*wns;
262 C2 = R3PRM.*(1.0+3.0*R2PRM)/24.0*wns;
263 R2PRM=R2PRM*wns;
264 R3PRM=R3PRM*wns;
265
266 %c now have to loop over positions
267 RLRAT = (range./xnu2)*([0:Ngeodes-Ngd1-1]/(Ngeodes-1));
268
269 THETA = RLRAT.*(1 - (RLRAT.^2).*(C1 - C2.*RLRAT));
270 C3 = 1.0 - (R2PRM.*(THETA.^2))/2.0 - (R3PRM.*(THETA.^3))/6.0;
271 DSINPSI =(sin(PHI2)*wns).*cos(THETA) + ...
272 ((cos(PHI2).*cos(A21))*wns).*sin(THETA);
273 %try to identify the branch...got to other branch if range> 1/4 circle
274 PSI = asin(DSINPSI);
275
276 DCOSPSI = cos(PSI);
277 DSINDLA = (sin(A21)*wns).*sin(THETA)./DCOSPSI;
278 DTANPHI=(1.0+EPS)*(1.0 - (E^2)*C3.*(sin(PHI2)*wns)./DSINPSI).*tan(PSI);
279 %C compute output latitude (phi) and long (xla) in radians
280 %c I believe these are absolute, and don't need source coords added
281 PHI = [PHI fliplr(atan(DTANPHI))];
282 % fix branch cut stuff
283 otherbrcnh= sign(-DLAM2*wns) ~= sign( [sign(-DLAM2) diff(DSINDLA')'] );
284 XLA = [XLA fliplr(XLAM2*wns + asin(DSINDLA).*(otherbrcnh==0) + ...
285 (pi-asin(DSINDLA)).*(otherbrcnh))];
286 else
287 PHI = [PHI PHI2];
288 XLA = [XLA XLAM2];
289 end;
290
291 %c convert to degrees
292 A12 = PHI*180/pi;
293 A21 = XLA*180/pi;
294 range=range*([0:Ngeodes-1]/(Ngeodes-1));
295
296
297 else
298
299 %C*** CONVERT TO DECIMAL DEGREES
300 A12=A12*180/pi;
301 A21=A21*180/pi;
302 if (rowvec),
303 range=range';
304 A12=A12';
305 A21=A21';
306 end;
307 end;
308
309
310
311

  ViewVC Help
Powered by ViewVC 1.1.22