1 |
dimitri |
1.2 |
C $Header: /u/gcmpack/MITgcm_contrib/high_res_cube/code-mods/budget.F,v 1.1 2006/11/16 05:21:34 dimitri Exp $ |
2 |
dimitri |
1.1 |
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SEAICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
CStartOfInterface |
7 |
|
|
SUBROUTINE BUDGET(UG, TICE, HICE1, FICE1, KOPEN, bi, bj) |
8 |
|
|
C /==========================================================\ |
9 |
|
|
C | SUBROUTINE budget | |
10 |
|
|
C | o Calculate ice growth rate | |
11 |
|
|
C | see Hibler, MWR, 108, 1943-1973, 1980 | |
12 |
|
|
C |==========================================================| |
13 |
|
|
C \==========================================================/ |
14 |
|
|
IMPLICIT NONE |
15 |
|
|
|
16 |
|
|
C === Global variables === |
17 |
|
|
#include "SIZE.h" |
18 |
|
|
#include "EEPARAMS.h" |
19 |
|
|
#include "FFIELDS.h" |
20 |
|
|
#include "SEAICE_PARAMS.h" |
21 |
|
|
#include "SEAICE_FFIELDS.h" |
22 |
|
|
#ifdef SEAICE_VARIABLE_FREEZING_POINT |
23 |
|
|
#include "DYNVARS.h" |
24 |
|
|
#endif /* SEAICE_VARIABLE_FREEZING_POINT */ |
25 |
|
|
|
26 |
|
|
C Subset of variables from SEAICE.h |
27 |
|
|
_RL AREA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,3,nSx,nSy) |
28 |
|
|
_RL HEFF (1-OLx:sNx+OLx,1-OLy:sNy+OLy,3,nSx,nSy) |
29 |
|
|
_RL HSNOW (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
30 |
|
|
_RL QNETO (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
31 |
|
|
_RL QNETI (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
32 |
|
|
_RL QSWO (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
33 |
|
|
_RL QSWI (1-OLx:sNx+OLx,1-OLy:sNy+OLy, nSx,nSy) |
34 |
|
|
COMMON/SEAICE_DYNVARS_1/AREA |
35 |
|
|
COMMON/SEAICE_TRANS/HEFF,HSNOW |
36 |
|
|
COMMON/QFLUX/QNETO,QNETI,QSWO,QSWI |
37 |
|
|
|
38 |
|
|
C === Routine arguments === |
39 |
|
|
_RL UG (1-OLx:sNx+OLx, 1-OLy:sNy+OLy) |
40 |
|
|
_RL TICE (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, nSx,nSy) |
41 |
|
|
_RL HICE1 (1-OLx:sNx+OLx, 1-OLy:sNy+OLy) |
42 |
|
|
_RL FICE1 (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, nSx,nSy) |
43 |
|
|
INTEGER KOPEN |
44 |
|
|
INTEGER bi, bj |
45 |
|
|
CEndOfInterface |
46 |
|
|
|
47 |
|
|
C === Local variables === |
48 |
|
|
C i,j,k,bi,bj - Loop counters |
49 |
|
|
|
50 |
|
|
INTEGER i, j |
51 |
|
|
INTEGER ITER |
52 |
|
|
_RL QS1, C1, C2, C3, C4, C5, TB, D1, D1W, D1I, D3 |
53 |
|
|
_RL TMELT, TMELTP, XKI, XKS, HCUT, ASNOW, XIO |
54 |
|
|
|
55 |
|
|
_RL HICE (1-OLx:sNx+OLx, 1-OLy:sNy+OLy) |
56 |
|
|
_RL ALB (1-OLx:sNx+OLx, 1-OLy:sNy+OLy) |
57 |
|
|
_RL A1 (1-OLx:sNx+OLx, 1-OLy:sNy+OLy) |
58 |
|
|
_RL A2 (1-OLx:sNx+OLx, 1-OLy:sNy+OLy) |
59 |
|
|
_RL A3 (1-OLx:sNx+OLx, 1-OLy:sNy+OLy) |
60 |
|
|
_RL B (1-OLx:sNx+OLx, 1-OLy:sNy+OLy) |
61 |
|
|
|
62 |
|
|
C IF KOPEN LT 0, THEN DO OPEN WATER BUDGET |
63 |
|
|
C NOW DEFINE ASSORTED CONSTANTS |
64 |
|
|
C SATURATION VAPOR PRESSURE CONSTANT |
65 |
|
|
QS1=0.622 _d +00/1013.0 _d +00 |
66 |
|
|
C MAYKUTS CONSTANTS FOR SAT. VAP. PRESSURE TEMP. POLYNOMIAL |
67 |
|
|
C1=2.7798202 _d -06 |
68 |
|
|
C2=-2.6913393 _d -03 |
69 |
|
|
C3=0.97920849 _d +00 |
70 |
|
|
C4=-158.63779 _d +00 |
71 |
|
|
C5=9653.1925 _d +00 |
72 |
|
|
C FREEZING TEMPERATURE OF SEAWATER |
73 |
|
|
TB=271.2 _d +00 |
74 |
|
|
C SENSIBLE HEAT CONSTANT |
75 |
|
|
D1=SEAICE_sensHeat |
76 |
|
|
C WATER LATENT HEAT CONSTANT |
77 |
|
|
D1W=SEAICE_latentWater |
78 |
|
|
C ICE LATENT HEAT CONSTANT |
79 |
|
|
D1I=SEAICE_latentIce |
80 |
|
|
C STEFAN BOLTZMAN CONSTANT TIMES 0.97 EMISSIVITY |
81 |
|
|
D3=SEAICE_emissivity |
82 |
|
|
C MELTING TEMPERATURE OF ICE |
83 |
|
|
TMELT=273.16 _d +00 |
84 |
|
|
TMELTP=273.159 _d +00 |
85 |
|
|
C ICE CONDUCTIVITY |
86 |
|
|
XKI=SEAICE_iceConduct |
87 |
|
|
C SNOW CONDUCTIVITY |
88 |
|
|
XKS=SEAICE_snowConduct |
89 |
|
|
C CUTOFF SNOW THICKNESS |
90 |
|
|
HCUT=SEAICE_snowThick |
91 |
|
|
C PENETRATION SHORTWAVE RADIATION FACTOR |
92 |
|
|
XIO=SEAICE_shortwave |
93 |
|
|
|
94 |
|
|
DO J=1,sNy |
95 |
|
|
DO I=1,sNx |
96 |
|
|
TICE(I,J,bi,bj)=MIN(273.16 _d 0+MAX_TICE,TICE(I,J,bi,bj)) |
97 |
|
|
ATEMP(I,J,bi,bj)=MAX(273.16 _d 0+MIN_ATEMP,ATEMP(I,J,bi,bj)) |
98 |
|
|
LWDOWN(I,J,bi,bj)=MAX(MIN_LWDOWN,LWDOWN(I,J,bi,bj)) |
99 |
|
|
ENDDO |
100 |
|
|
ENDDO |
101 |
|
|
|
102 |
|
|
C NOW DECIDE IF OPEN WATER OR ICE |
103 |
|
|
IF(KOPEN.LE.0) THEN |
104 |
|
|
|
105 |
|
|
C NOW DETERMINE OPEN WATER HEAT BUD. ASSUMING TICE=WATER TEMP. |
106 |
|
|
C WATER ALBEDO IS ASSUMED TO BE THE CONSTANT SEAICE_waterAlbedo |
107 |
|
|
DO J=1,sNy |
108 |
|
|
DO I=1,sNx |
109 |
|
|
#ifdef SEAICE_EXTERNAL_FLUXES |
110 |
|
|
c FICE1(I,J,bi,bj)=QNET(I,J,bi,bj)+Qsw(I,J,bi,bj) |
111 |
|
|
FICE1(I,J,bi,bj)=QNET(I,J,bi,bj) |
112 |
|
|
QSWO(I,J,bi,bj)=Qsw(I,J,bi,bj) |
113 |
|
|
#else /* SEAICE_EXTERNAL_FLUXES undefined */ |
114 |
|
|
ALB(I,J)=SEAICE_waterAlbedo |
115 |
|
|
A1(I,J)=(ONE-ALB(I,J))*SWDOWN(I,J,bi,bj) |
116 |
|
|
& +LWDOWN(I,J,bi,bj)*0.97 _d 0 |
117 |
|
|
& +D1*UG(I,J)*ATEMP(I,J,bi,bj)+D1W*UG(I,J)*AQH(I,J,bi,bj) |
118 |
|
|
B(I,J)=QS1*6.11 _d +00*EXP(17.2694 _d +00 |
119 |
|
|
& *(TICE(I,J,bi,bj)-TMELT) |
120 |
|
|
& /(TICE(I,J,bi,bj)-TMELT+237.3 _d +00)) |
121 |
|
|
A2(I,J)=-D1*UG(I,J)*TICE(I,J,bi,bj)-D1W*UG(I,J)*B(I,J) |
122 |
|
|
& -D3*(TICE(I,J,bi,bj)**4) |
123 |
|
|
FICE1(I,J,bi,bj)=-A1(I,J)-A2(I,J) |
124 |
|
|
QSWO(I,J,bi,bj)=-(ONE-ALB(I,J))*SWDOWN(I,J,bi,bj) |
125 |
|
|
#endif /* SEAICE_EXTERNAL_FLUXES */ |
126 |
|
|
c QNETO(I,J,bi,bj)=FICE1(I,J,bi,bj)-QSWO(I,J,bi,bj) |
127 |
|
|
QNETO(I,J,bi,bj)=FICE1(I,J,bi,bj) |
128 |
|
|
ENDDO |
129 |
|
|
ENDDO |
130 |
|
|
|
131 |
|
|
ELSE |
132 |
|
|
|
133 |
|
|
C COME HERE IF ICE COVER |
134 |
|
|
C FIRST PUT MINIMUM ON ICE THICKNESS |
135 |
|
|
DO J=1,sNy |
136 |
|
|
DO I=1,sNx |
137 |
|
|
HICE(I,J)=MAX(HICE1(I,J),0.05 _d +00) |
138 |
|
|
HICE(I,J)=MIN(HICE(I,J),9.0 _d +00) |
139 |
|
|
ENDDO |
140 |
|
|
ENDDO |
141 |
|
|
C NOW DECIDE ON ALBEDO |
142 |
|
|
DO J=1,sNy |
143 |
|
|
DO I=1,sNx |
144 |
|
|
ALB(I,J)=SEAICE_dryIceAlb |
145 |
|
|
IF(TICE(I,J,bi,bj).GT.TMELTP) ALB(I,J)=SEAICE_wetIceAlb |
146 |
|
|
ASNOW=SEAICE_drySnowAlb |
147 |
|
|
IF(TICE(I,J,bi,bj).GT.TMELTP) ASNOW=SEAICE_wetSnowAlb |
148 |
|
|
cdm For albedo computation, actual rather than effective snow thickness |
149 |
|
|
cdm must be used. Mininimum AREA(I,J,3,bi,bj) is A22 from groatb.F |
150 |
|
|
cdm IF(HSNOW(I,J,bi,bj).GT.HCUT) THEN |
151 |
|
|
IF((HSNOW(I,J,bi,bj)/AREA(I,J,3,bi,bj)).GT.HCUT) THEN |
152 |
|
|
ALB(I,J)=ASNOW |
153 |
|
|
ELSE |
154 |
|
|
cdm ALB(I,J)=ALB(I,J)+(HSNOW(I,J,bi,bj)/HCUT)*(ASNOW-ALB(I,J)) |
155 |
|
|
ALB(I,J)=ALB(I,J)+(HSNOW(I,J,bi,bj)/AREA(I,J,3,bi,bj)/HCUT) |
156 |
|
|
& *(ASNOW-ALB(I,J)) |
157 |
|
|
IF(ALB(I,J).GT.ASNOW) ALB(I,J)=ASNOW |
158 |
|
|
END IF |
159 |
|
|
ENDDO |
160 |
|
|
ENDDO |
161 |
|
|
C NOW DETERMINE FIXED FORCING TERM IN HEAT BUDGET |
162 |
|
|
DO J=1,sNy |
163 |
|
|
DO I=1,sNx |
164 |
|
|
IF(HSNOW(I,J,bi,bj).GT.0.0) THEN |
165 |
|
|
C NO SW PENETRATION WITH SNOW |
166 |
|
|
A1(I,J)=(ONE-ALB(I,J))*SWDOWN(I,J,bi,bj) |
167 |
|
|
& +LWDOWN(I,J,bi,bj)*0.97 _d 0 |
168 |
|
|
& +D1*UG(I,J)*ATEMP(I,J,bi,bj)+D1I*UG(I,J)*AQH(I,J,bi,bj) |
169 |
|
|
ELSE |
170 |
|
|
C SW PENETRATION UNDER ICE |
171 |
|
|
A1(I,J)=(ONE-ALB(I,J))*SWDOWN(I,J,bi,bj) |
172 |
|
|
& *(ONE-XIO*EXP(-1.5 _d 0*HICE(I,J))) |
173 |
|
|
& +LWDOWN(I,J,bi,bj)*0.97 _d 0 |
174 |
|
|
& +D1*UG(I,J)*ATEMP(I,J,bi,bj)+D1I*UG(I,J)*AQH(I,J,bi,bj) |
175 |
|
|
ENDIF |
176 |
|
|
ENDDO |
177 |
|
|
ENDDO |
178 |
|
|
C NOW COMPUTE OTHER TERMS IN HEAT BUDGET |
179 |
|
|
C COME HERE AT START OF ITERATION |
180 |
|
|
|
181 |
|
|
crg check wether a2 is needed in the list of variables |
182 |
|
|
cdm Ralf, the line below causes following error message |
183 |
|
|
cdm INTERNAL ERROR: cannot find var clone to ada2 |
184 |
|
|
cdm c$taf loop = iteration TICE,A2 |
185 |
|
|
cdm iterative solver for ice growth rate |
186 |
|
|
cdm inputs: TICE ice temperature |
187 |
|
|
cdm UG forcing |
188 |
|
|
cdm HSNOW snow thickness |
189 |
|
|
cdm HICE ice thickness |
190 |
|
|
cdm outputs: A2 is needed for FICE1, which is ice growth rate |
191 |
|
|
cdm TICE |
192 |
|
|
DO ITER=1,IMAX_TICE |
193 |
|
|
|
194 |
|
|
DO J=1,sNy |
195 |
|
|
DO I=1,sNx |
196 |
|
|
B(I,J)=QS1*(C1*TICE(I,J,bi,bj)**4+C2*TICE(I,J,bi,bj)**3 |
197 |
|
|
& +C3*TICE(I,J,bi,bj)**2+C4*TICE(I,J,bi,bj)+C5) |
198 |
|
|
A2(I,J)=-D1*UG(I,J)*TICE(I,J,bi,bj)-D1I*UG(I,J)*B(I,J) |
199 |
|
|
& -D3*(TICE(I,J,bi,bj)**4) |
200 |
|
|
cdm B(I,J)=XKS/(HSNOW(I,J,bi,bj)/HICE(I,J)+XKS/XKI)/HICE(I,J) |
201 |
|
|
B(I,J)=XKS/(HSNOW(I,J,bi,bj)/AREA(I,J,3,bi,bj)/HICE(I,J) |
202 |
|
|
& +XKS/XKI)/HICE(I,J) |
203 |
|
|
A3(I,J)=4.0 _d +00*D3*(TICE(I,J,bi,bj)**3)+B(I,J)+D1*UG(I,J) |
204 |
|
|
#ifdef SEAICE_VARIABLE_FREEZING_POINT |
205 |
|
|
TB = -0.0575 _d 0*salt(I,J,1,bi,bj) + 0.0901 _d 0 |
206 |
|
|
& + 273.15 _d 0 |
207 |
|
|
#endif /* SEAICE_VARIABLE_FREEZING_POINT */ |
208 |
|
|
B(I,J)=B(I,J)*(TB-TICE(I,J,bi,bj)) |
209 |
|
|
cdm |
210 |
|
|
cdm if(TICE(I,J,bi,bj).le.206.) |
211 |
|
|
cdm & print '(A,3i4,f12.2)','### ITER,I,J,TICE', |
212 |
|
|
cdm & ITER,I,J,TICE(I,J,bi,bj) |
213 |
|
|
cdm |
214 |
|
|
ENDDO |
215 |
|
|
ENDDO |
216 |
|
|
C NOW DECIDE IF IT IS TIME TO ESTIMATE GROWTH RATES |
217 |
|
|
C NOW DETERMINE NEW ICE TEMPERATURE |
218 |
|
|
DO J=1,sNy |
219 |
|
|
DO I=1,sNx |
220 |
|
|
TICE(I,J,bi,bj)=TICE(I,J,bi,bj) |
221 |
|
|
& +(A1(I,J)+A2(I,J)+B(I,J))/A3(I,J) |
222 |
|
|
TICE(I,J,bi,bj)=MAX(273.16 _d 0+MIN_TICE,TICE(I,J,bi,bj)) |
223 |
|
|
ENDDO |
224 |
|
|
ENDDO |
225 |
|
|
C NOW SET ICE TEMP TO MIN OF TMELT/ITERATION RESULT |
226 |
|
|
DO J=1,sNy |
227 |
|
|
DO I=1,sNx |
228 |
|
|
TICE(I,J,bi,bj)=MIN(TICE(I,J,bi,bj),TMELT) |
229 |
|
|
ENDDO |
230 |
|
|
ENDDO |
231 |
|
|
|
232 |
|
|
C END OF ITERATION |
233 |
|
|
ENDDO |
234 |
|
|
|
235 |
|
|
DO J=1,sNy |
236 |
|
|
DO I=1,sNx |
237 |
|
|
FICE1(I,J,bi,bj)=-A1(I,J)-A2(I,J) |
238 |
|
|
IF(HSNOW(I,J,bi,bj).GT.0.0) THEN |
239 |
|
|
C NO SW PENETRATION WITH SNOW |
240 |
|
|
QSWI(I,J,bi,bj)=ZERO |
241 |
|
|
ELSE |
242 |
|
|
C SW PENETRATION UNDER ICE |
243 |
|
|
QSWI(I,J,bi,bj)=-(ONE-ALB(I,J))*SWDOWN(I,J,bi,bj) |
244 |
|
|
& *XIO*EXP(-1.5 _d 0*HICE(I,J)) |
245 |
|
|
ENDIF |
246 |
|
|
ENDDO |
247 |
|
|
ENDDO |
248 |
|
|
|
249 |
|
|
END IF |
250 |
|
|
|
251 |
|
|
RETURN |
252 |
|
|
END |