1 |
% |
2 |
% V = volbet2iso(TRACER,LIMITS,DEPTH,LAT,LONG) |
3 |
% |
4 |
% This function computes the ocean volume between two iso surfaces, |
5 |
% given fixed limits eastward, westward and southward. |
6 |
% |
7 |
% TRACER = TRACER(DEPTH,LAT,LONG) : surface tracer variable in 3D |
8 |
% LIMITS = [OUTCROP1 OUTCROP2 MAX_DEPTH MAX_LAT1 MAX_LAT2 MAX_LONG1 MAX_LONG2] |
9 |
% : limit's values (MAX_DEPTH and MAX_LAT2 are used only if |
10 |
% the iso-outcrop's surfaces reach them). |
11 |
% DEPTH : vertical axis (1D), m downward, positive |
12 |
% LAT : latitude axis (1D), degrees northward |
13 |
% LONG : longitude axis (1D), degrees east |
14 |
% V : single volume value (m^3) |
15 |
% |
16 |
% 06/12/2006 |
17 |
% gmaze@mit.edu |
18 |
% |
19 |
|
20 |
|
21 |
function varargout = volbet2iso(TRACER,LIMITS,DEPTH,LAT,LONG) |
22 |
|
23 |
|
24 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
25 |
% PRE-PROCESS and ERROR CHECK % |
26 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
27 |
pv_checkpath |
28 |
|
29 |
% Check number of input: |
30 |
if nargin ~= 5 |
31 |
help volbet2iso.m |
32 |
error('volbet2iso.m : Wrong number of parameters') |
33 |
return |
34 |
end %if |
35 |
|
36 |
% Check dimensions: |
37 |
n = size(TRACER); |
38 |
if length(n)==3 |
39 |
[nz ny nx] = size(TRACER); |
40 |
if nz~=length(DEPTH) | ny~=length(LAT) | nx~=length(LONG) |
41 |
help volbet2iso.m |
42 |
error('volbet2iso.m : Axis must have same dimensions than TRACER field'); |
43 |
return |
44 |
end %if |
45 |
else |
46 |
help volbet2iso.m |
47 |
error('volbet2iso.m : TRACER must be a 3D field') |
48 |
return |
49 |
end %if |
50 |
|
51 |
% Ensure that axis are of dim: (1,N) and well sorted (increasing values): |
52 |
a=size(DEPTH); |
53 |
if a(1) ~= 1, DEPTH=DEPTH'; end |
54 |
S = sort(DEPTH); |
55 |
if S ~= DEPTH |
56 |
help volbet2iso.m |
57 |
error('volbet2iso.m : DEPTH must be increasing values') |
58 |
return |
59 |
end %if |
60 |
a=size(LAT); |
61 |
if a(1) ~= 1, LAT=LAT'; end |
62 |
S = sort(LAT); |
63 |
if S ~= LAT |
64 |
help volbet2iso.m |
65 |
error('volbet2iso.m : LAT must be increasing values') |
66 |
return |
67 |
end %if |
68 |
a=size(LONG); |
69 |
if a(1) ~= 1, LONG=LONG'; end |
70 |
S = sort(LONG); |
71 |
if S ~= LONG |
72 |
help volbet2iso.m |
73 |
error('volbet2iso.m : LONG must be increasing values') |
74 |
return |
75 |
end %if |
76 |
|
77 |
% LIMITS definition: |
78 |
if length(LIMITS) ~=7 |
79 |
help volbet2iso.m |
80 |
error('volbet2iso.m : LIMITS must contains 7 values') |
81 |
return |
82 |
end %if |
83 |
OUTCROPS = sort( LIMITS(1:2) ); |
84 |
H_MAX = LIMITS(3); |
85 |
LAT_MAX = sort( LIMITS(4:5) ); |
86 |
LONG_MAX = sort( LIMITS(6:7) ); |
87 |
|
88 |
|
89 |
|
90 |
%%%%%%%%%%%%%%%%%% |
91 |
% COMPUTE VOLUME % |
92 |
%%%%%%%%%%%%%%%%%% |
93 |
% It's computed as the difference between the northern outcrop volume |
94 |
% and the southern outcrop one. |
95 |
[V1 V1mat dV1] = subfct_getvol(TRACER,DEPTH,LAT,LONG,[OUTCROPS(1) H_MAX LAT_MAX LONG_MAX]); |
96 |
[V2 V2mat dV2] = subfct_getvol(TRACER,DEPTH,LAT,LONG,[OUTCROPS(2) H_MAX LAT_MAX LONG_MAX]); |
97 |
|
98 |
|
99 |
% Then: |
100 |
V = max(V1,V2)-min(V1,V2); |
101 |
|
102 |
|
103 |
% Last we determine the iso-0 volume limits: |
104 |
V1mat = abs(V1mat - 1); |
105 |
Vmat = (V1mat + V2mat)./2; |
106 |
Vmat(find(Vmat<1)) = 0; |
107 |
Vmat = logical(Vmat); |
108 |
|
109 |
|
110 |
|
111 |
%%%%%%%%%%% |
112 |
% OUTPUTS % |
113 |
%%%%%%%%%%% |
114 |
switch nargout |
115 |
case {0,1} |
116 |
varargout(1) = {V}; |
117 |
case 2 |
118 |
varargout(1) = {V}; |
119 |
varargout(2) = {Vmat}; |
120 |
case 3 |
121 |
varargout(1) = {V}; |
122 |
varargout(2) = {Vmat}; |
123 |
varargout(3) = {dV1}; |
124 |
end %switch nargout |
125 |
|
126 |
|
127 |
|