| 1 |
gmaze |
1.1 |
% |
| 2 |
|
|
% V = volbet2iso(TRACER,LIMITS,DEPTH,LAT,LONG) |
| 3 |
|
|
% |
| 4 |
gmaze |
1.2 |
% This function computes the ocean volume between two iso surfaces, |
| 5 |
gmaze |
1.1 |
% given fixed limits eastward, westward and southward. |
| 6 |
|
|
% |
| 7 |
|
|
% TRACER = TRACER(DEPTH,LAT,LONG) : surface tracer variable in 3D |
| 8 |
|
|
% LIMITS = [OUTCROP1 OUTCROP2 MAX_DEPTH MAX_LAT1 MAX_LAT2 MAX_LONG1 MAX_LONG2] |
| 9 |
|
|
% : limit's values (MAX_DEPTH and MAX_LAT2 are used only if |
| 10 |
|
|
% the iso-outcrop's surfaces reach them). |
| 11 |
|
|
% DEPTH : vertical axis (1D), m downward, positive |
| 12 |
|
|
% LAT : latitude axis (1D), degrees northward |
| 13 |
|
|
% LONG : longitude axis (1D), degrees east |
| 14 |
|
|
% V : single volume value (m^3) |
| 15 |
|
|
% |
| 16 |
|
|
% 06/12/2006 |
| 17 |
|
|
% gmaze@mit.edu |
| 18 |
|
|
% |
| 19 |
|
|
|
| 20 |
|
|
|
| 21 |
|
|
function varargout = volbet2iso(TRACER,LIMITS,DEPTH,LAT,LONG) |
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 25 |
|
|
% PRE-PROCESS and ERROR CHECK % |
| 26 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 27 |
gmaze |
1.3 |
pv_checkpath |
| 28 |
gmaze |
1.1 |
|
| 29 |
|
|
% Check number of input: |
| 30 |
|
|
if nargin ~= 5 |
| 31 |
|
|
help volbet2iso.m |
| 32 |
|
|
error('volbet2iso.m : Wrong number of parameters') |
| 33 |
|
|
return |
| 34 |
|
|
end %if |
| 35 |
|
|
|
| 36 |
|
|
% Check dimensions: |
| 37 |
|
|
n = size(TRACER); |
| 38 |
|
|
if length(n)==3 |
| 39 |
|
|
[nz ny nx] = size(TRACER); |
| 40 |
|
|
if nz~=length(DEPTH) | ny~=length(LAT) | nx~=length(LONG) |
| 41 |
|
|
help volbet2iso.m |
| 42 |
|
|
error('volbet2iso.m : Axis must have same dimensions than TRACER field'); |
| 43 |
|
|
return |
| 44 |
|
|
end %if |
| 45 |
|
|
else |
| 46 |
|
|
help volbet2iso.m |
| 47 |
|
|
error('volbet2iso.m : TRACER must be a 3D field') |
| 48 |
|
|
return |
| 49 |
|
|
end %if |
| 50 |
|
|
|
| 51 |
|
|
% Ensure that axis are of dim: (1,N) and well sorted (increasing values): |
| 52 |
|
|
a=size(DEPTH); |
| 53 |
|
|
if a(1) ~= 1, DEPTH=DEPTH'; end |
| 54 |
|
|
S = sort(DEPTH); |
| 55 |
|
|
if S ~= DEPTH |
| 56 |
|
|
help volbet2iso.m |
| 57 |
|
|
error('volbet2iso.m : DEPTH must be increasing values') |
| 58 |
|
|
return |
| 59 |
|
|
end %if |
| 60 |
|
|
a=size(LAT); |
| 61 |
|
|
if a(1) ~= 1, LAT=LAT'; end |
| 62 |
|
|
S = sort(LAT); |
| 63 |
|
|
if S ~= LAT |
| 64 |
|
|
help volbet2iso.m |
| 65 |
|
|
error('volbet2iso.m : LAT must be increasing values') |
| 66 |
|
|
return |
| 67 |
|
|
end %if |
| 68 |
|
|
a=size(LONG); |
| 69 |
|
|
if a(1) ~= 1, LONG=LONG'; end |
| 70 |
|
|
S = sort(LONG); |
| 71 |
|
|
if S ~= LONG |
| 72 |
|
|
help volbet2iso.m |
| 73 |
|
|
error('volbet2iso.m : LONG must be increasing values') |
| 74 |
|
|
return |
| 75 |
|
|
end %if |
| 76 |
|
|
|
| 77 |
|
|
% LIMITS definition: |
| 78 |
|
|
if length(LIMITS) ~=7 |
| 79 |
|
|
help volbet2iso.m |
| 80 |
|
|
error('volbet2iso.m : LIMITS must contains 7 values') |
| 81 |
|
|
return |
| 82 |
|
|
end %if |
| 83 |
|
|
OUTCROPS = sort( LIMITS(1:2) ); |
| 84 |
|
|
H_MAX = LIMITS(3); |
| 85 |
|
|
LAT_MAX = sort( LIMITS(4:5) ); |
| 86 |
|
|
LONG_MAX = sort( LIMITS(6:7) ); |
| 87 |
|
|
|
| 88 |
|
|
|
| 89 |
|
|
|
| 90 |
|
|
%%%%%%%%%%%%%%%%%% |
| 91 |
|
|
% COMPUTE VOLUME % |
| 92 |
|
|
%%%%%%%%%%%%%%%%%% |
| 93 |
|
|
% It's computed as the difference between the northern outcrop volume |
| 94 |
|
|
% and the southern outcrop one. |
| 95 |
|
|
[V1 V1mat dV1] = subfct_getvol(TRACER,DEPTH,LAT,LONG,[OUTCROPS(1) H_MAX LAT_MAX LONG_MAX]); |
| 96 |
|
|
[V2 V2mat dV2] = subfct_getvol(TRACER,DEPTH,LAT,LONG,[OUTCROPS(2) H_MAX LAT_MAX LONG_MAX]); |
| 97 |
|
|
|
| 98 |
|
|
|
| 99 |
|
|
% Then: |
| 100 |
|
|
V = max(V1,V2)-min(V1,V2); |
| 101 |
|
|
|
| 102 |
|
|
|
| 103 |
gmaze |
1.3 |
% Last we determine the iso-0 volume limits: |
| 104 |
|
|
V1mat = abs(V1mat - 1); |
| 105 |
|
|
Vmat = (V1mat + V2mat)./2; |
| 106 |
|
|
Vmat(find(Vmat<1)) = 0; |
| 107 |
|
|
Vmat = logical(Vmat); |
| 108 |
|
|
|
| 109 |
|
|
|
| 110 |
gmaze |
1.1 |
|
| 111 |
|
|
%%%%%%%%%%% |
| 112 |
|
|
% OUTPUTS % |
| 113 |
|
|
%%%%%%%%%%% |
| 114 |
|
|
switch nargout |
| 115 |
gmaze |
1.3 |
case {0,1} |
| 116 |
gmaze |
1.1 |
varargout(1) = {V}; |
| 117 |
|
|
case 2 |
| 118 |
|
|
varargout(1) = {V}; |
| 119 |
gmaze |
1.3 |
varargout(2) = {Vmat}; |
| 120 |
gmaze |
1.1 |
case 3 |
| 121 |
|
|
varargout(1) = {V}; |
| 122 |
gmaze |
1.3 |
varargout(2) = {Vmat}; |
| 123 |
gmaze |
1.1 |
varargout(3) = {dV1}; |
| 124 |
|
|
end %switch nargout |
| 125 |
|
|
|
| 126 |
|
|
|
| 127 |
|
|
|