1 |
% |
2 |
% THIS IS NOT A FUNCTION ! |
3 |
% |
4 |
% Plot time series of all variables in different ways |
5 |
% Outputs recording possible |
6 |
% |
7 |
|
8 |
clear |
9 |
global sla netcdf_domain |
10 |
pv_checkpath |
11 |
|
12 |
% Path and extension to find files: |
13 |
pathname = strcat('netcdf-files',sla); |
14 |
%pathname = strcat('netcdf-files-twice-daily',sla); |
15 |
%pathname = strcat('netcdf-files-daily',sla); |
16 |
ext = 'nc'; |
17 |
netcdf_domain = 'western_north_atlantic'; |
18 |
|
19 |
% Date series: |
20 |
ID = datenum(2000,12,31,12,0,0); % Start date |
21 |
ID = datenum(2000,12,31,0,0,0); % Start date |
22 |
ID = datenum(2001,1,1,12,0,0); % Start date |
23 |
ID = datenum(2001,4,1,0,0,0); % Start date |
24 |
%IDend = datenum(2001,2,26,12,0,0); % End date |
25 |
IDend = datenum(2001,7,4,0,0,0); % End date |
26 |
|
27 |
dt = datenum(0,0,1,0,0,0); % Time step between input: 1 day |
28 |
%dt = datenum(0,0,2,0,0,0); % Time step between input: 2 days |
29 |
%dt = datenum(0,0,7,0,0,0); % Time step between input: 1 week |
30 |
%dt = datenum(0,0,0,12,0,0); % Time step between input: 12 hours |
31 |
IDend = ID + 1*dt; % |
32 |
nt = (IDend-ID)/dt; |
33 |
|
34 |
% Create TIME table: |
35 |
for it = 1 : nt |
36 |
ID = ID + dt; |
37 |
snapshot = datestr(ID,'yyyymmddHHMM'); % For twice-daily data |
38 |
% snapshot = datestr(ID,'yyyymmdd'); % For daily data |
39 |
TIME(it,:) = snapshot; |
40 |
end %for it |
41 |
|
42 |
|
43 |
% Some settings |
44 |
iso = 25.25; % Which sigma-theta surface ? |
45 |
getiso = 0; % We do not compute the isoST by default |
46 |
outimg = 'img_tmp'; % Output directory |
47 |
%outimg = 'img_tmp2'; % Output directory |
48 |
%outimg = 'img_tmp3'; % Output directory |
49 |
prtimg = 0; % Do we record figures as jpg files ? |
50 |
|
51 |
% Plot modules available: |
52 |
sub = get_plotlist('eg_view_Timeserie','.'); |
53 |
disp('Available plots:') |
54 |
sub = get_plotlistdef('eg_view_Timeserie','.'); |
55 |
disp('Set the variable <pl> in view_Timeserie.m with wanted plots') |
56 |
|
57 |
% Selected plots list: |
58 |
pl = [7]; %getiso=1; |
59 |
|
60 |
% Verif plots: |
61 |
disp(char(2));disp('You have choosed to plot:') |
62 |
for i = 1 : length(pl) |
63 |
disp(strcat(num2str(pl(i)),' -> ', sub(pl(i)).description ) ) |
64 |
end |
65 |
s = input(' Are you sure ([y]/n) ?','s'); |
66 |
if ~isempty(s) & s == 'n' |
67 |
return |
68 |
end |
69 |
|
70 |
% To find a specific date |
71 |
%find(str2num(TIME)==200103300000),break |
72 |
|
73 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
74 |
% Video loop: |
75 |
for it = 1 : nt |
76 |
snapshot = TIME(it,:); |
77 |
%titf='.section_32N';if ~exist(strcat(outimg,sla,'PV.',snapshot,titf,'.jpg'),'file') |
78 |
|
79 |
%%%%%%%%%%%%%%%% |
80 |
% NETCDF files name: |
81 |
filPV = 'PV'; |
82 |
filST = 'SIGMATHETA'; |
83 |
filT = 'THETA'; |
84 |
filTx = 'TAUX'; |
85 |
filTy = 'TAUY'; |
86 |
filJFz = 'JFz'; |
87 |
filJBz = 'JBz'; |
88 |
filQnet = 'TFLUX'; |
89 |
filQEk = 'QEk'; |
90 |
%filMLD = 'KPPmld'; |
91 |
filMLD = 'MLD'; |
92 |
filOx = 'OMEGAX'; |
93 |
filOy = 'OMEGAY'; |
94 |
filZET = 'ZETA'; |
95 |
filEKL = 'EKL'; |
96 |
|
97 |
|
98 |
% Load fields: |
99 |
disp('load fields...') |
100 |
% (I keep proper axis for each variables in case of one day they would be different) |
101 |
ferfile = strcat(pathname,sla,snapshot,sla,filPV,'.',netcdf_domain,'.',ext); |
102 |
ncQ = netcdf(ferfile,'nowrite'); |
103 |
[Qlon Qlat Qdpt] = coordfromnc(ncQ); |
104 |
Q = ncQ{4}(:,:,:); clear ncQ ferfile |
105 |
[nz ny nx] = size(Q); |
106 |
%Qdpt = -Qdpt; |
107 |
|
108 |
ferfile = strcat(pathname,sla,snapshot,sla,filZET,'.',netcdf_domain,'.',ext); |
109 |
ncZET = netcdf(ferfile,'nowrite'); |
110 |
[ZETAlon ZETAlat ZETAdpt] = coordfromnc(ncZET); |
111 |
ZETA = ncZET{4}(:,:,:); clear ncZET ferfile |
112 |
% Move ZETA on the same grid as Q: |
113 |
ZETA = ( ZETA(:,:,2:nx-1) + ZETA(:,:,1:nx-2) )./2; |
114 |
ZETA = ( ZETA(:,2:ny-1,:) + ZETA(:,1:ny-2,:) )./2; |
115 |
ZETAlon = ( ZETAlon(2:nx-1) + ZETAlon(1:nx-2) )./2; |
116 |
ZETAlat = ( ZETAlat(2:ny-1) + ZETAlat(1:ny-2) )./2; |
117 |
|
118 |
ferfile = strcat(pathname,sla,snapshot,sla,filOx,'.',netcdf_domain,'.',ext); |
119 |
ncOX = netcdf(ferfile,'nowrite'); |
120 |
[OXlon OXlat OXdpt] = coordfromnc(ncOX); |
121 |
OX = ncOX{4}(:,:,:); clear ncOX ferfile |
122 |
% Move OMEGAx on the same grid as Q: |
123 |
OX = ( OX(:,2:ny-1,:) + OX(:,1:ny-2,:) )./2; |
124 |
OX = ( OX(2:nz-1,:,:) + OX(1:nz-2,:,:) )./2; |
125 |
OXlat = ( OXlat(2:ny-1) + OXlat(1:ny-2) )./2; |
126 |
OXdpt = ( OXdpt(2:nz-1) + OXdpt(1:nz-2) )./2; |
127 |
|
128 |
ferfile = strcat(pathname,sla,snapshot,sla,filOy,'.',netcdf_domain,'.',ext); |
129 |
ncOY = netcdf(ferfile,'nowrite'); |
130 |
[OYlon OYlat OYdpt] = coordfromnc(ncOY); |
131 |
OY = ncOY{4}(:,:,:); clear ncOY ferfile |
132 |
% Move OMEGAy on the same grid as Q: |
133 |
OY = ( OY(2:nz-1,:,:) + OY(1:nz-2,:,:) )./2; |
134 |
OY = ( OY(:,:,2:nx-1) + OY(:,:,1:nx-2) )./2; |
135 |
OYdpt = ( OYdpt(2:nz-1) + OYdpt(1:nz-2) )./2; |
136 |
OYlon = ( OYlon(2:nx-1) + OYlon(1:nx-2) )./2; |
137 |
|
138 |
|
139 |
ferfile = strcat(pathname,sla,snapshot,sla,filST,'.',netcdf_domain,'.',ext); |
140 |
ncST = netcdf(ferfile,'nowrite'); |
141 |
[STlon STlat STdpt] = coordfromnc(ncST); |
142 |
ST = ncST{4}(:,:,:); clear ncST ferfile |
143 |
|
144 |
ferfile = strcat(pathname,sla,snapshot,sla,filT,'.',netcdf_domain,'.',ext); |
145 |
ncT = netcdf(ferfile,'nowrite'); |
146 |
[Tlon Tlat Tdpt] = coordfromnc(ncT); |
147 |
T = ncT{4}(:,:,:); clear ncT ferfile |
148 |
|
149 |
ferfile = strcat(pathname,sla,snapshot,sla,filTx,'.',netcdf_domain,'.',ext); |
150 |
ncTx = netcdf(ferfile,'nowrite'); |
151 |
[Txlon Txlat Txdpt] = coordfromnc(ncTx); |
152 |
Tx = ncTx{4}(1,:,:); clear ncTx ferfile |
153 |
ferfile = strcat(pathname,sla,snapshot,sla,filTy,'.',netcdf_domain,'.',ext); |
154 |
ncTy = netcdf(ferfile,'nowrite'); |
155 |
[Tylon Tylat Tydpt] = coordfromnc(ncTy); |
156 |
Ty = ncTy{4}(1,:,:); clear ncTy ferfile |
157 |
|
158 |
ferfile = strcat(pathname,sla,snapshot,sla,filJFz,'.',netcdf_domain,'.',ext); |
159 |
ncJFz = netcdf(ferfile,'nowrite'); |
160 |
[JFzlon JFzlat JFzdpt] = coordfromnc(ncJFz); |
161 |
JFz = ncJFz{4}(1,:,:); |
162 |
|
163 |
ferfile = strcat(pathname,sla,snapshot,sla,filJBz,'.',netcdf_domain,'.',ext); |
164 |
ncJBz = netcdf(ferfile,'nowrite'); |
165 |
[JBzlon JBzlat JBzdpt] = coordfromnc(ncJBz); |
166 |
JBz = ncJBz{4}(1,:,:); |
167 |
|
168 |
ferfile = strcat(pathname,sla,snapshot,sla,filQnet,'.',netcdf_domain,'.',ext); |
169 |
ncQnet = netcdf(ferfile,'nowrite'); |
170 |
[Qnetlon Qnetlat Qnetdpt] = coordfromnc(ncQnet); |
171 |
Qnet = ncQnet{4}(1,:,:); |
172 |
% $$$ |
173 |
% $$$ ferfile = strcat(pathname,sla,snapshot,sla,filQEk,'.',netcdf_domain,'.',ext); |
174 |
% $$$ ncQEk = netcdf(ferfile,'nowrite'); |
175 |
% $$$ [QEklon QEklat QEkdpt] = coordfromnc(ncQEk); |
176 |
% $$$ QEk = ncQEk{4}(1,:,:); |
177 |
% $$$ |
178 |
ferfile = strcat(pathname,sla,snapshot,sla,filMLD,'.',netcdf_domain,'.',ext); |
179 |
ncMLD = netcdf(ferfile,'nowrite'); |
180 |
[MLDlon MLDlat MLDdpt] = coordfromnc(ncMLD); |
181 |
MLD = ncMLD{4}(1,:,:); |
182 |
|
183 |
ferfile = strcat(pathname,sla,snapshot,sla,filEKL,'.',netcdf_domain,'.',ext); |
184 |
ncEKL = netcdf(ferfile,'nowrite'); |
185 |
[EKLlon EKLlat EKLdpt] = coordfromnc(ncEKL); |
186 |
EKL = ncEKL{4}(1,:,:); |
187 |
|
188 |
|
189 |
%%%%%%%%%%%%%%%% |
190 |
% Q is defined on the same grid of ST but troncated by extrem 2 points, then here |
191 |
% make all fields defined with same limits... |
192 |
% In case of missing points, we add NaN. |
193 |
disp('Reshape them') |
194 |
ST = squeeze(ST(2:nz+1,2:ny+1,2:nx+1)); |
195 |
STdpt = STdpt(2:nz+1); |
196 |
STlon = STlon(2:nx+1); |
197 |
STlat = STlat(2:ny+1); |
198 |
T = squeeze(T(2:nz+1,2:ny+1,2:nx+1)); |
199 |
Tdpt = Tdpt(2:nz+1); |
200 |
Tlon = Tlon(2:nx+1); |
201 |
Tlat = Tlat(2:ny+1); |
202 |
JBz = squeeze(JBz(2:ny+1,2:nx+1)); |
203 |
JBzlon = JBzlon(2:nx+1); |
204 |
JBzlat = JBzlat(2:ny+1); |
205 |
Qnet = squeeze(Qnet(2:ny+1,2:nx+1)); |
206 |
Qnetlon = Qnetlon(2:nx+1); |
207 |
Qnetlat = Qnetlat(2:ny+1); |
208 |
MLD = squeeze(MLD(2:ny+1,2:nx+1)); |
209 |
MLDlon = MLDlon(2:nx+1); |
210 |
MLDlat = MLDlat(2:ny+1); |
211 |
EKL = squeeze(EKL(2:ny+1,2:nx+1)); |
212 |
EKLlon = EKLlon(2:nx+1); |
213 |
EKLlat = EKLlat(2:ny+1); |
214 |
ZETA = squeeze(ZETA(2:nz+1,:,:)); |
215 |
ZETA = cat(2,ZETA,ones(size(ZETA,1),1,size(ZETA,3)).*NaN); |
216 |
ZETA = cat(2,ones(size(ZETA,1),1,size(ZETA,3)).*NaN,ZETA); |
217 |
ZETA = cat(3,ZETA,ones(size(ZETA,1),size(ZETA,2),1).*NaN); |
218 |
ZETA = cat(3,ones(size(ZETA,1),size(ZETA,2),1).*NaN,ZETA); |
219 |
ZETAdpt = ZETAdpt(2:nz+1); |
220 |
ZETAlon = STlon; |
221 |
ZETAlat = STlat; |
222 |
OX = squeeze(OX(:,:,2:nx+1)); |
223 |
OX = cat(1,OX,ones(1,size(OX,2),size(OX,3)).*NaN); |
224 |
OX = cat(1,ones(1,size(OX,2),size(OX,3)).*NaN,OX); |
225 |
OX = cat(2,OX,ones(size(OX,1),1,size(OX,3)).*NaN); |
226 |
OX = cat(2,ones(size(OX,1),1,size(OX,3)).*NaN,OX); |
227 |
OXlon = STlon; |
228 |
OXlat = STlat; |
229 |
OXdpt = STdpt; |
230 |
OY = squeeze(OY(:,2:ny+1,:)); |
231 |
OY = cat(1,OY,ones(1,size(OY,2),size(OY,3)).*NaN); |
232 |
OY = cat(1,ones(1,size(OY,2),size(OY,3)).*NaN,OY); |
233 |
OY = cat(3,OY,ones(size(OY,1),size(OY,2),1).*NaN); |
234 |
OY = cat(3,ones(size(OY,1),size(OY,2),1).*NaN,OY); |
235 |
OYlon = STlon; |
236 |
OYlat = STlat; |
237 |
OYdpt = STdpt; |
238 |
|
239 |
|
240 |
% Planetary vorticity: |
241 |
f = 2*(2*pi/86400)*sin(ZETAlat*pi/180); |
242 |
[a f c]=meshgrid(ZETAlon,f,ZETAdpt); clear a c |
243 |
f = permute(f,[3 1 2]); |
244 |
|
245 |
% Apply mask: |
246 |
MASK = ones(size(ST,1),size(ST,2),size(ST,3)); |
247 |
MASK(find(isnan(ST))) = NaN; |
248 |
T = T.*MASK; |
249 |
Qnet = Qnet.*squeeze(MASK(1,:,:)); |
250 |
|
251 |
|
252 |
% Grid: |
253 |
global domain subdomain1 subdomain2 subdomain3 |
254 |
grid_setup |
255 |
subdomain = subdomain1; |
256 |
|
257 |
|
258 |
%%%%%%%%%%%%%%%% |
259 |
% Here we determine the isosurface and its depth: |
260 |
if getiso |
261 |
disp('Get iso-ST') |
262 |
[Iiso mask] = subfct_getisoS(ST,iso); |
263 |
Diso = ones(size(Iiso)).*NaN; |
264 |
Qiso = ones(size(Iiso)).*NaN; |
265 |
for ix = 1 : size(ST,3) |
266 |
for iy = 1 : size(ST,2) |
267 |
if ~isnan(Iiso(iy,ix)) & ~isnan( Q(Iiso(iy,ix),iy,ix) ) |
268 |
Diso(iy,ix) = STdpt(Iiso(iy,ix)); |
269 |
Qiso(iy,ix) = Q(Iiso(iy,ix),iy,ix); |
270 |
end %if |
271 |
end, end %for iy, ix |
272 |
end %if |
273 |
|
274 |
|
275 |
|
276 |
%%%%%%%%%%%%%%%% |
277 |
% "Normalise" the PV: |
278 |
fO = 2*(2*pi/86400)*sin(32*pi/180); |
279 |
dST = 27.6-25.4; |
280 |
H = -1000; |
281 |
RHOo = 1000; |
282 |
Qref = -fO/RHOo*dST/H; |
283 |
if getiso, QisoN = Qiso./Qref; end |
284 |
|
285 |
|
286 |
%%%%%%%%%%%%%%%% |
287 |
%%%%%%%%%%%%%%%% |
288 |
% Plots: |
289 |
disp('Plots ...') |
290 |
|
291 |
|
292 |
for i = 1 : length(pl) |
293 |
disp(strcat('Plotting module:',sub(pl(i)).name)) |
294 |
eval(sub(pl(i)).name(1:end-2),'disp(''Oups scratch...'');return'); |
295 |
end |
296 |
|
297 |
|
298 |
%%%%%%%%%%%%%%%% |
299 |
%%%%%%%%%%%%%%%% |
300 |
|
301 |
%else,disp(strcat('Skip:',snapshot));end |
302 |
|
303 |
fclose('all'); |
304 |
|
305 |
|
306 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
307 |
end %for it |